
Please solve the following problems:

Qu.1, Qu.2 (iii), Qu.3, Qu.5 and Qu.6;

hand in your solutions on Tuesday the 21st of April by 16.00. Tutorial is on Thursday the 5th

of March at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova
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Qu. 1. A co-ordinate evaluation functional on the commutative Banach algebra `∞ is a functional

of the form

vj : `∞ → C : (xn)∞n=1 7→ xj

for some j ∈ N. Use Theorem 7.17 to show that `∞ contains a maximal ideal that is not of

the form ker vj for any j ∈ N. 10 marks

Qu. 2. Does the sequence of functions (fn) converge (a) pointwise (b) uniformly on [0, 1), where

(i) fn(x) = xn;

(ii) fn(x) = xe−nx;

(iii) fn(x) = nxe−nx; 10 marks

(iv) fn such that fn(t) = nt for t ∈ [0, 1/n], fn(t) = 2−nt for all t ∈ [1/n, 2/n] and fn(t) = 0

for all t ∈ [2/n, 1].

Qu. 3. Construct a sequence of functions (fn) in C[0, 1] such that fn → 0 pointwise on [0, 1] but

‖fn‖ → ∞. 10 marks

Qu. 4. Let X be a set and Y a topological space. For any functions fn, n ∈ N, and g : X → Y, show

that fn → g pointwise on X if and only if fn → g in the product topology Y X .

Qu. 5. Show that if K1 and K2 are homeomorphic compact Hausdorff spaces then C(K1) and C(K2)

are isometrically isomorphic Banach algebras. [A linear mapping between Banach spaces is

isometric if it preserves norms.] 10 marks

Qu. 6. Let K = {0} ∪ { 1
n

: n ∈ N} with the relative topology induced by R. Show that c0, the

Banach algebra of complex sequences tending to 0, is isometrically isomorphic to a maximal

ideal of C(K). 10 marks

Qu. 7. Does the geometric series 1 + z + z2 + ... converge uniformly on D? On compact subsets of

D?
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