Please solve the following problems:

hand in your solutions on Tuesday the 21st of April by 16.00. Tutorial is on Thursday the 5th of March at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova

MAS8220 Topology and Functional Analysis (2015)

Examples Sheet 6

Qu. 1. A co-ordinate evaluation functional on the commutative Banach algebra ℓ^{∞} is a functional of the form

$$v_j: \ell^\infty \to \mathbb{C}: \ (x_n)_{n=1}^\infty \mapsto x_j$$

for some $j \in \mathbb{N}$. Use Theorem 7.17 to show that ℓ^{∞} contains a maximal ideal that is not of the form ker v_j for any $j \in \mathbb{N}$. 10 marks

- Qu. 2. Does the sequence of functions (f_n) converge (a) pointwise (b) uniformly on [0, 1), where
 - (i) $f_n(x) = x^n;$

(ii)
$$f_n(x) = xe^{-nx};$$

- (iii) $f_n(x) = nxe^{-nx}$; 10 marks
- (iv) f_n such that $f_n(t) = nt$ for $t \in [0, 1/n]$, $f_n(t) = 2 nt$ for all $t \in [1/n, 2/n]$ and $f_n(t) = 0$ for all $t \in [2/n, 1]$.
- Qu. 3. Construct a sequence of functions (f_n) in C[0,1] such that $f_n \to 0$ pointwise on [0,1] but $||f_n|| \to \infty$. 10 marks
- Qu. 4. Let X be a set and Y a topological space. For any functions $f_n, n \in \mathbb{N}$, and $g: X \to Y$, show that $f_n \to g$ pointwise on X if and only if $f_n \to g$ in the product topology Y^X .
- Qu. 5. Show that if K_1 and K_2 are homeomorphic compact Hausdorff spaces then $C(K_1)$ and $C(K_2)$ are isometrically isomorphic Banach algebras. [A linear mapping between Banach spaces is isometric if it preserves norms.] 10 marks
- Qu. 6. Let $K = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ with the relative topology induced by \mathbb{R} . Show that c_0 , the Banach algebra of complex sequences tending to 0, is isometrically isomorphic to a maximal ideal of C(K). **10 marks**
- Qu. 7. Does the geometric series $1 + z + z^2 + ...$ converge uniformly on \mathbb{D} ? On compact subsets of \mathbb{D} ?