
Please solve the following problems:

Qu.2, Qu.3, Qu.6 and Qu.10;

hand in your solutions on Tuesday the 24th of February by 16.00. Tutorial is on Thursday

the 12th of February at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova
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In Q1-5 R is a ring with identity.

Qu. 1. Show that if x ∈ R has both a left inverse and a right inverse then x is a regular element of

R.

Qu. 2. Show that if x, y ∈ R and both xy and yx are regular elements then (xy)−1x = x(yx)−1.

10 marks

Qu. 3. Let x, y ∈ R. Show that x and y are regular elements if and only if xy and yx are regular

elements. 15 marks

Qu. 4. Let x, y be commuting elements of R (i.e. xy = yx). Show that if x is singular then so is xy.

Qu. 5. If x, y ∈ R and x is singular, does it follow that xy is singular? [Recall Ex.2, Qu.7].

Qu. 6. Let D denote the open unit disc in C :

D = {z ∈ C : |z| < 1}

Let x(z) = z for all z ∈ D. Find the spectrum σ(x) of x when x is regarded as an element of

the algebra H∞(D). [Recall Ex. 2, Qu.5] 15 marks

Qu. 7. Same as 6, but for x as an element of `∞(D). [Ex. 2, Qu.4].

Qu. 8. Let x(z) = (3−z)−1 for z ∈ D. Show that x ∈ H∞(D). What is the spectrum of x in H∞(D)?
In `∞(D)?

Qu. 9. Show that, for x ∈ H∞(D), the spectrum of x in H∞(D) is the closure in C of x(D).

Qu. 10. Let X be a Banach space and let T ∈ B(X) [Ex. 1, Qu.5]. Show that if λ ∈ C is an eigenvalue

of T then λ ∈ σ(T ). Give an example to show that elements of σ(T ) need not be eigenvalues

of T [The forward shift S on `2 has no eigenvalues]. 10 marks
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