Please solve the following problems:

Qu.2, Qu.3, Qu.6 and Qu.10;

hand in your solutions on Tuesday the 24th of February by 16.00. Tutorial is on Thursday the 12th of February at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova

MAS8220 Topology and Functional Analysis (2015)

Examples Sheet 3

In Q1-5 R is a ring with identity.

- Qu. 1. Show that if $x \in R$ has both a left inverse and a right inverse then x is a regular element of R.
- Qu. 2. Show that if $x, y \in R$ and both xy and yx are regular elements then $(xy)^{-1}x = x(yx)^{-1}$.

10 marks

- Qu. 3. Let $x, y \in R$. Show that x and y are regular elements if and only if xy and yx are regular elements. 15 marks
- Qu. 4. Let x, y be commuting elements of R (i.e. xy = yx). Show that if x is singular then so is xy.
- Qu. 5. If $x, y \in R$ and x is singular, does it follow that xy is singular? [Recall Ex.2, Qu.7].
- Qu. 6. Let \mathbb{D} denote the open unit disc in \mathbb{C} :

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$$

Let x(z) = z for all $z \in \mathbb{D}$. Find the spectrum $\sigma(x)$ of x when x is regarded as an element of the algebra $H^{\infty}(\mathbb{D})$. [Recall Ex. 2, Qu.5] 15 marks

- Qu. 7. Same as 6, but for x as an element of $\ell^{\infty}(\mathbb{D})$. [Ex. 2, Qu.4].
- Qu. 8. Let $x(z) = (3-z)^{-1}$ for $z \in \mathbb{D}$. Show that $x \in H^{\infty}(\mathbb{D})$. What is the spectrum of x in $H^{\infty}(\mathbb{D})$? In $\ell^{\infty}(\mathbb{D})$?
- Qu. 9. Show that, for $x \in H^{\infty}(\mathbb{D})$, the spectrum of x in $H^{\infty}(\mathbb{D})$ is the closure in \mathbb{C} of $x(\mathbb{D})$.
- Qu. 10. Let X be a Banach space and let $T \in \mathcal{B}(X)$ [Ex. 1, Qu.5]. Show that if $\lambda \in \mathbb{C}$ is an eigenvalue of T then $\lambda \in \sigma(T)$. Give an example to show that elements of $\sigma(T)$ need not be eigenvalues of T [The forward shift S on ℓ^2 has no eigenvalues]. 10 marks