Please solve the following problems:

Qu.4, Qu.6 and Qu.7;

hand in your solutions on Tuesday the 24th of February by 16.00. Tutorial is on Thursday the 5th of February at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova

MAS8220 Topology and Functional Analysis (2015)

Examples Sheet 2

Qu. 1. For r > 0 define the norm $\|\cdot\|_r$ on \mathbb{C} by

$$\|\lambda\|_r = r|\lambda|, \quad \lambda \in \mathbb{C}.$$

For which r is $(\mathbb{C}, \|\cdot\|_r)$ a normed algebra?

- Qu. 2. Show that an identity element e in a normed algebra satisfies $||e|| \ge 1$. Can it happen that ||e|| > 1?
- Qu. 3. Let X be a complex Banach space. Show that the normed algebra $\mathcal{B}(X)$ described in Ex. 1, Qu. 5 and 6, is complete, hence a Banach algebra.
- Qu. 4. Let M be a set and let $\ell^{\infty}(M)$ denote the normed space of bounded \mathbb{C} -valued functions on M with the natural algebraic operations and "supremum norm":

$$||f||_{\infty} = \sup_{m \in M} |f(m)|.$$

Show that $\ell^{\infty}(M)$ is a Banach algebra.

Qu. 5. Let Ω be an open set in \mathbb{C} and let $H^{\infty}(\Omega)$ be the set of functions bounded and analytic in Ω , with the usual addition and multiplication of functions and with supremum norm:

$$||f||_{\infty} = \sup_{z \in \Omega} |f(z)|.$$

Show that $H^{\infty}(\Omega)$ is a Banach algebra.

Qu. 6. Let A be a Banach algebra with indentity e. Show that, for $x, y \in A$, if e - xy is a regular element then so is e - yx [consider the element $u = e + y(e - xy)^{-1}x$]. Deduce that

$$\sigma(xy) \setminus \{0\} = \sigma(yx) \setminus \{0\}.$$

15 marks

Qu. 7. In a Banach algebra A with identity an element x has a "left inverse", that is, an element y such that yx = e. Must x be regular? [consider $A = \mathcal{B}(\ell^2)$, x = a shift operator.] 10 marks

25 marks