Please solve the following problems:

Qu.1, Qu.2, Qu.3, Qu.5 and Qu.6;

hand in your solutions on Tuesday the 10th of February by 16.00. Tutorial is on Thursday the 29th of January at 16.00 in TR2, Level 4, Herschel Building. Z.A.Lykova

MAS8220 Topology and Functional Analysis (2015)

Examples Sheet 1

- Qu. 1. Consider the following sets with their natural addition and multiplication
 - (i) $M_2(\mathbb{Z}_6)$, the 2 × 2 matrices over \mathbb{Z}_6 ;
 - (ii) $\mathbb{R}^+[z]$, the polynomials in z with non-negative real coefficients;
 - (iii) $D_3(\mathbb{C})$, the diagonal 3×3 matrices over \mathbb{C} ;
 - (iv) C[0,1], the continuous \mathbb{C} -valued functions on the unit interval [0,1].

Say whether each of them is

- (a) a ring,
- (b) a ring with identity,
- (c) a commutative ring,
- (d) an algebra over an appropriate field.

30 marks

10 marks

Qu. 2. Give an example of an algebra which does not have an identity. 10 marks

- Qu. 3. Show that a ring can have at most one identity.
- Qu. 4. Let Ω be an open set in \mathbb{C} and let $\mathcal{O}(\Omega)$ be the set of analytic functions on Ω . Show that $\mathcal{O}(\Omega)$ is an algebra over \mathbb{C} with respect to the natural algebraic operations.
- Qu. 5. Let X be a normed linear space over \mathbb{C} and let $\mathcal{B}(X)$ denote the set of bounded linear operators on X. For $S, T \in \mathcal{B}(X)$ and $\lambda \in \mathbb{C}$ define operators S + T, ST and λS on X by

$$(S+T)x = Sx + Tx$$
, $(ST)x = S(Tx)$ and $(\lambda S)x = \lambda(Sx)$ for every $x \in X$.

Show that

- (i) S + T, ST and λS are in $\mathcal{B}(X)$;
- (ii) $\mathcal{B}(X)$ is an algebra over \mathbb{C} with respect to these operations. **30 marks**

Qu. 6. Let $\|\cdot\|$ be the operator norm on the algebra $\mathcal{B}(X)$ in Question 5, so that for $T \in \mathcal{B}(X)$

$$||T|| = \sup_{\|x\|_X \le 1} ||Tx||_X$$

Show that $(\mathcal{B}(X), \|\cdot\|)$ is a normed algebra.

20 marks