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This subject constitutes a synthesis of some of the main trends in analysis over
the past century. One studies functions not individually, but as a collection which
admits natural operations of addition and multiplication and has geometric struc-
ture. An algebra is a vector space with an associative multiplication. There is an
abundance of natural examples, many of them having the structure of a Banach
space. Examples are the spaces of n×n matrices and the continuous functions on
the interval [0, 1], with suitable norms. Putting together algebras and norms one
is led to the idea of a Banach algebra. A rich and elegant theory of such objects
was developed over the second half of the twentieth century. Several members of
staff have research interests close to this area.

You can consult the following books.

1. F. F. Bonsall, J. Duncan, “Complete Normed Algebras”. Springer-Verlag,
New York, 1973.

2. G. K. Pedersen, “Analysis now”, Springer-Verlag, 1989.

3. N. J. Young, “An Introduction to Hilbert Space”, Cambridge University
Press, 1988.

4. W. Rudin, “Functional analysis”, 2nd Edition, McGraw-Hill, 1991.

5. S. Willard, “General topology”, Dover Publications, 2004.
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Part I. Banach algebras and continuous homomorphisms

This part concerns the theory of Banach algebras and continuous homomor-
phisms between Banach algebras. We shall define these terms and study their
properties.
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1 Rings and algebras

Examples of rings: Z, C, C[z], Mn(C).

Definition 1.1. A ring is a triple (R,+, ·) where R is a set and +, · are binary
operations on R such that

• (R,+) is an abelian group;

• multiplication · is an associative operation: ∀a, b, c ∈ R,

a · (b · c) = (a · b) · c;

• multiplication · is distributive over +: ∀a, b, c ∈ R,

a · (b+ c) = (a · b) + (a · c),

(b+ c) · a = (b · a) + (c · a).

Notes 1.2. 1. We call +, · addition and multiplication respectively. We often
write ab for a · b.

2. Every field is a ring: thus R,C,Z5 with the usual addition and multiplication
are rings.

3. The set 2Z of even integers, with the usual addition and multiplication, is a
ring. It does not have an identity element for multiplication (a ”one”).

4. In the ring M2(R) of 2 × 2 matrices over R, with the usual addition and
multiplication, a ·b is typically not equal to b ·a. M2(R) is a non-commutative
ring.

Definition 1.3. We say that (R,+, ·) is a ring with identity if there is an element
e ∈ R such that x · e = e · x = x for all x ∈ R.

Definition 1.4. (R,+, ·) is said to be a commutative ring if a · b = b · a for all
a, b ∈ R.

Examples 1.5. 1. C[x, y], the set of polynomials in the two variables x, y with
complex coefficients, is a ring with respect to the usual addition and multi-
plication of polynomials. It is commutative and has an identity, which is the
constant polynomial 1.

2. Z[x], the set of polynomials in the variable x with integer coefficients, is a
commutative ring with identity.
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3. Z6, the set of residue classes of integers mod 6, with the usual addition and
multiplication, is a commutative ring with identity. It is not a field since [2]
has no multiplicative inverse.

Recall that a field is a commutative ring with identity in which every non-
zero element has a multiplicative inverse.

4. Tn, the set of upper triangular complex n×n matrices with the usual matrix
addition and multiplication is a non-commutative ring with identity (where
n > 1).

In checking a statement like (4) we do not check every ring axiom. We observe
that Tn is a subset of the standard ring Mn(C), and use the following observation.

Lemma 1.6. If R is a ring and S is a subset of R such that

(i) 0 ∈ S, where 0 is the zero of R;

(ii) for each x ∈ S, the additive inverse of x is also in S.

(iii) S is closed under addition and multiplication,

then S is a ring with respect to the same algebraic operations as R.

Among the above examples of rings, some are also vector spaces, some not.

Definition 1.7. Let k be a field. An algebra over k is a vector space A over k
equipped with a binary operation · such that

(i) (A,+, ·) is a ring;

(ii) λ(x · y) = (λx) · y = x · (λy)
for all λ ∈ k and x, y ∈ A.

Examples 1.8. 1. Mn(C) is an algebra over C.

2. R[x] is an algebra over R.

3. Z is a ring, but is not an algebra over R or C : there is no natural way to
define λn ∈ Z for general λ ∈ R and n ∈ Z.

4. Z[x] is a ring, but not an algebra over R or C.
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2 Normed algebras

These are algebras over R or C which are also normed space.

Examples: C[0, 1], Mn(C).

Recall that a normed linear subspace is a vector space V over R or C together
with a mapping ‖ · ‖ : V → R+ such that, for any x, y ∈ V and λ ∈ R or C, the
following conditions are satisfied

1. ‖x‖ = 0 if and only if x = 0;

2. ‖λx‖ = |λ|‖x‖;

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 2.1. A normed algebra is a normed linear space (A, ‖·‖) equipped with
a binary operation (x, y) 7→ xy which makes A into an algebra and satisfies

‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A. (2.1)

Property (2.1) is called the ”submultiplicativity of the norm”.

Examples 2.2. 1. (C, |.|) is a normed algebra over C.

2. (C[0, 1], ‖.‖∞) is a normed algebra over C, where C[0, 1] is the set of contin-
uous C−valued functions on [0, 1], addition and multiplication are the usual
”pointwise” operations,

(x+ y)(t) = x(t) + y(t), (xy)(t) = x(t)y(t), for all x, y ∈ C[0, 1], t ∈ [0, 1],

and the norm
‖x‖∞ = sup

0≤t≤1
|x(t)|.

Check ”submultiplicative property”. Consider x, y ∈ C[0, 1].

‖xy‖∞ = sup
0≤t≤1

|(xy)(t)|

= sup
0≤t≤1

|x(t)||y(t)|

≤ sup
0≤t≤1

|x(t)| sup
0≤t≤1

|y(t)|

= ‖x‖∞‖y‖∞.
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3. (C[z], ‖.‖∞) is a normed algebra over C, where C[z] denotes the set of poly-
nomials over C and addition, multiplication and ‖.‖∞ are as in (2).

4. (Mn(C), ‖.‖), the algebra of n× n matrices over C is a normed algebra over
C, where ‖.‖ is the ”operator norm”:

‖T‖ = sup
‖x‖Cn≤1

‖Tx‖Cn

Here ‖.‖Cn is the usual Euclidean norm on Cn

‖x‖Cn =

{
n∑

j=1

|xj |2
} 1

2

.

Check submultiplictivity. Consider S, T ∈Mn(C).

‖ST‖ = sup
‖x‖Cn≤1

‖STx‖Cn

≤ sup
‖x‖Cn≤1

‖S‖‖Tx‖Cn

= ‖S‖ sup
‖x‖Cn≤1

‖Tx‖Cn

= ‖S‖‖T‖.

Recall that a normed linear space is said to be complete if every Cauchy se-
quence converges in the space.

A Cauchy sequence in (X, ‖.‖) is a sequence (xn) in X such that, for every
ǫ > 0 there exists N ∈ N such that

‖xn − xm‖ < ǫ whenever m,n ≥ N.

A Banach space is a complete normed linear space.

Definition 2.3. A Banach algebra is a normed algebra over R or C that is com-
plete as a normed linear space.

We shall only study complex Banach algebras, i.e. Banach algebras over C.

Examples 2.4. 1. (C[0, 1], ‖.‖∞) is a Banach space and a normed algebra,
hence it is a Banach algebra. (cf. Example 2.2(2).)
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2. (C[z], ‖.‖∞) is a subalgebra of C[0, 1]. It is a normed algebra, but is incom-
plete, so not a Banach algebra.

Claim: (C[z], ‖.‖∞) is incomplete. Consider the sequence (xn) in C[z],
where

xn(z) = 1 + z +
z2

2!
+ ... +

zn

n!
.

If m > n then

‖xm − xn‖∞ = sup
0≤z≤1

∣∣∣∣
zn+1

(n + 1)!
+ ...+

zm

m!

∣∣∣∣

≤ 1

(n + 1)!
+ ... +

1

m!
.

It is easy to see that (xn) is Cauchy for ‖.‖∞, but

xn → exp as n→ ∞

in (C[0, 1], ‖.‖∞). Therefore xn cannot tend to a polynomial, i.e. (xn) is a
non-convergent Cauchy sequence in (C[z], ‖.‖∞). Hence (C[z], ‖.‖∞) is in-
complete.

3. Mn(C) is a finite-dimensional normed algebra. It is well-known that every
finite-dimensional normed linear space over C or R is complete. ThusMn(C)
is complete, so is a Banach algebra.

4. ”Zero multiplication algebras”. Any Banach space E becomes a Banach al-
gebra if we define xy to be 0 for all x, y ∈ E.

Multiplication in a normed algebra A is a mapping from A× A to A. We can
make A×A into a normed linear space by defining, for x1, y1, x2, y2 ∈ A and λ ∈ C,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

λ(x1, y1) = (λx1, λy1)

‖(x1, y1)‖A×A = max{‖x1‖A, ‖y1‖A}.
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Similarly C× A is a normed linear space with respect to

‖(λ, x)‖C×A = max{|λ|, ‖x‖A}
for λ ∈ C, x ∈ A.

Theorem 2.5. In any normed algebra A, multiplication is a continuous mapping
from A×A to A; scalar multiplication is a continuous mapping from C×A to A.

Proof. Consider (x0, y0) ∈ A× A. Let ǫ > 0. Observe that, for x, y ∈ A,

‖xy − x0y0‖ = ‖x(y − y0) + (x− x0)y0‖
≤ ‖x‖‖y − y0‖+ ‖x− x0‖‖y0‖.

Let ǫ > 0, choose

δ1 = min

{
1,

ǫ

2(1 + ‖y0‖)

}

δ2 = min

{
1,

ǫ

2(1 + ‖x0‖)

}

δ = min{δ1, δ2}.

Suppose ‖(x, y) − (x0, y0)‖A×A < δ, that is, max {‖x− x0‖A, ‖y − y0‖A} < δ.
Then

‖x− x0‖ < δ1 ≤ 1,

so that
‖x‖ < 1 + ‖x0‖.

Furthermore

‖x− x0‖ <
ǫ

2(1 + ‖y0‖)
,

‖y − y0‖ <
ǫ

2(1 + ‖x0‖)
.

Hence

‖xy − x0y0‖ ≤ ‖x‖‖y − y0‖+ ‖x− x0‖‖y0‖
< (1 + ‖x0‖)

ǫ

2(1 + ‖x0‖)
+ (1 + ‖y0‖)

ǫ

2(1 + ‖y0‖)
≤ ǫ

2
+
ǫ

2
= ǫ.

Hence multiplication is continuous at (x0, y0).

Scalar multiplication - exercise.
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3 Spectra and regular elements

The spectrum of an n× n matrix T is the set of its eigenvalues, that is, the set of
all λ ∈ C such that λI − T is singular. The notion extends fruitfully to Banach
algebras.

In this section we consider a Banach algebra A with identity element e. We
assume e 6= 0. (Think of C[0, 1] and Mn(C).)

Definition 3.1. An element x ∈ A is said to be a regular element (or invertible
element) if there exists y ∈ A such that xy = e and yx = e.

An element x ∈ A is singular if it is not regular. Any such y is called an inverse
of x.

Note that x can have at most one inverse, for if y1 and y2 are inverses of x then

y1 = y1e = y1(xy2) = (y1x)y2 = ey2 = y2.

We may speak of ”the” inverse of a regular element x; we denote it by x−1.

Examples 3.2. 1. The element

T1 =

[
1 2
3 4

]

is regular in M2(C); the element

T2 =

[
1 2
3 6

]

is singular in M2(C).

2. In C[0, 1],

f : [0, 1] → C : t 7→ 1 + t is regular, with the inverse t 7→ 1
1+t
.

g : [0, 1] → C : t 7→ t is singular.

f is regular in C[0, 1] if and only if 0 /∈ Rangef.
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Engineers call the following statement the ”small gain theorem”.

Lemma 3.3. Let A be a Banach algebra with the identity e. If x ∈ A and ‖e−x‖ <
1 then x is a regular element of A and

‖x−1 − e‖ ≤
(

1

1− ‖e− x‖

)
‖e− x‖.

Proof. Let u = e− x, so that

x = e− u and ‖u‖ < 1.

We shall show that
x−1 = (e− u)−1 = e+ u+ u2 + ... (3.1)

First show that the RHS of (3.1) is meaningful, that is, defines an element of A.

For n ∈ N, let
yn = e+ u+ u2 + ...+ un.

Claim: (yn) is a Cauchy sequence in A.

For m > n,

ym − yn = un+1 + ... + um,

and so

‖ym − yn‖ ≤ ‖u‖n+1 + ...+ ‖u‖m

≤ ‖u‖n+1

1− ‖u‖ (since ‖u‖ < 1).

Thus ‖ym − yn‖ → 0 as m,n → ∞. Therefore (yn) converges to a limit y ∈ A.
Furthermore

xyn = (e− u)yn = yn − uyn

= e + u+ ... + un − (u+ u2 + ...+ un+1)

= e− un+1

∴ ‖xyn − e‖ = ‖un+1‖ ≤ ‖u‖n+1

and so, since ‖u‖ < 1,
xyn → e as n→ ∞.
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Since yn → y and multiplication is continuous,

xy = x lim
n
yn = lim

n
xyn = e.

Similarly yx = e. Thus x is a regular element. Furthermore x−1 = y, and

x−1 − e = y − e = lim
n
(yn − e)

= lim
n
(u+ u2 + ...+ un).

∴ ‖x−1 − e‖ = ‖ lim
n
(u+ u2 + ...+ un)‖

= lim
n

‖u+ u2 + ...+ un‖
≤ lim ‖u‖+ ‖u‖2 + ...+ ‖u‖n

=

∞∑

j=1

‖u‖j

=
‖u‖

1− ‖u‖ since ‖u‖ < 1

=
‖e− x‖

1− ‖e− x‖ .

Definition 3.4. Let X be a normed linear space. For x ∈ X and ǫ > 0 the open
ball of centre x, radius ǫ is the set

{y ∈ X : ‖x− y‖ < ǫ}.

and is denoted by Bǫ(x).
A subset G of X is said to be open if, for every x ∈ G, there exists ǫ > 0 such that
Bǫ(x) ⊂ G. A closed set is a set whose complement is open.

Theorem 3.5. Let A be a Banach algebra with the identity e and let G(A) be the
set of regular elements in A. Then

1. G(A) is a group under multiplication;

2. G(A) is an open set in A;

3. the inversion map
x 7→ x−1

is a continuous map from G(A) to G(A).
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Proof. 1. If x, y ∈ G(A) then x−1, y−1 exist and y−1x−1 satisfies

(xy)(y−1x−1) = e = (y−1x−1)(xy),

so that xy ∈ G(A) and (xy)−1 = y−1x−1.

The element e is clearly a multiplicative identity for G(A).

If x ∈ G(A) then x−1 has inverse x in A, so x−1 ∈ G(A).

Multiplication is associative. Hence G(A) is a group with respect to multi-
plication.

2. Consider any x ∈ G(A). To prove that G(A) is open in A, we must find ǫ > 0
such that Bǫ(x) ⊂ G(A). Let ǫ = ‖x−1‖−1 > 0. Consider any y ∈ Bǫ(x), then
‖x− y‖ < ‖x−1‖−1. Thus we have

‖e− x−1y‖ = ‖x−1(x− y)‖ ≤ ‖x−1‖‖x− y‖ < ‖x−1‖‖x−1‖−1 = 1.

By Lemma 3.3, we have x−1y ∈ G(A).

∴ x(x−1y) ∈ G(A).

∴ y ∈ G(A).

∴ Bǫ(x) ⊂ G(A).

Hence G(A) is open.

3. Inversion is continuous
Let

f : G(A) → G(A) : x→ x−1.

We want to show that if xn → x in G(A) then f(xn) → f(x).
(i). First consider a sequence (xn) in G(A) such that xn → e. By Lemma
3.3, if ‖e− xn‖ < 1,

‖f(xn)− e‖ = ‖x−1
n − e‖
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≤ ‖e− xn‖
1− ‖e− xn‖

→ 0 as xn → e.

Now suppose xn → x in G(A). Then x−1xn → e, by continuity of multipli-
cation.

By Part (i),
(x−1xn)

−1 → e

as n→ ∞, that is, x−1
n x → e as n→ ∞,

∴ x−1
n = x−1

n xx−1 → ex−1 = x−1,

again by continuity of multiplication. Hence f : x 7→ x−1 is continuous.

Definition 3.6. The spectrum of an element x ∈ A is the set

{λ ∈ C : λe− x is singular in A}.

It is denoted by σ(x). The resolvent set of x, denoted by ρ(x), is the complement
of σ(x) :

ρ(x) = {λ ∈ C : λe− x is regular in A}.

Examples 3.7. (i) For T ∈Mn(C), σ(T ) is the set of eigenvalues of T .

(ii) For f ∈ C[0, 1], σ(f) = Range f.

Theorem 3.8. Let A be a Banach algebra with the identity e. For any x ∈ A,

1. λ ∈ σ(x) ⇒ |λ| ≤ ‖x‖;

2. ρ(x) is open in C;

3. σ(x) is a compact subset C.

Proof. 1. We show that |λ| > ‖x‖ ⇒ λ /∈ σ(x), that is, λ ∈ ρ(x).

Suppose λ ∈ C and |λ| > ‖x‖. Then λ 6= 0 and ‖x/λ‖ < 1, and so, by
Lemma 3.3, e− x/λ is regular .
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∴ λ(e− x/λ) is regular.

∴ λe− x is regular.

∴ λ ∈ ρ(x).

Hence λ ∈ σ(x) ⇒ |λ| ≤ ‖x‖. Thus σ(x) is a bounded set in C.

2. Let x ∈ A and define

F : C → A : λ 7→ λe− x.

For λ, µ ∈ C, we have

‖F (λ)− F (µ)‖ = ‖λe− µe‖ = |λ− µ|‖e‖,

and hence F is continuous.
By definition,

ρ(x) = {λ ∈ C : F (λ) is regular in A} = F−1(G(A)).

Since G(A) is open and F is continuous, ρ(x) is open.

3. Since ρ(x) is open and σ(x) = C \ ρ(x), σ(x) is closed. The spectrum σ(x) is
also bounded. Thus, by the Bolzano-Weierstrass theorem, σ(x) is compact.
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4 Analytic vector functions and the resolvent

Recall that, for an open set Ω ⊂ C, a function f : Ω → C is analytic if f is complex
differentiable at every point of Ω, that is, if the limit

lim
h→0, h∈C

f(z + h)− f(z)

h
exists for each z ∈ Ω.

In other words, if ∀z ∈ Ω there exists f ′(z) ∈ C such that
∀ǫ > 0 ∃δ > 0 such that ∣∣∣∣

f(z + h)− f(z)

h
− f ′(z)

∣∣∣∣ < ǫ

whenever |h| < δ and z + h ∈ Ω.

We can adapt there notions with minimal modifications to vector-valued func-
tions. Let X be a Banach space and consider a function

f : Ω → X.

For example, we might think of T ∈Mn(C) and

f : ρ(T ) →Mn(C) : λ 7→ (λI − T )−1.

Definition 4.1. We say that f : Ω → X is differentiable at z ∈ Ω if

lim
h→0, h∈C

f(z + h)− f(z)

h
exists,

or in other words, if there exists f ′(z) ∈ X such that for all ǫ > 0 there exists
δ > 0 such that ∥∥∥∥

f(z + h)− f(z)

h
− f ′(z)

∥∥∥∥
X

< ǫ

whenever |h| < δ and z + h ∈ Ω.

We say that f is analytic or holomorphic in Ω if f is differentiable at every
point of Ω.

Theorem 4.2. Let A be a Banach algebra with identity e and let x ∈ A. For
λ ∈ ρ(x), let

x(λ) = (λe− x)−1.

Then the function
x(·) : ρ(x) → A

is analytic in ρ(x) and, for all λ, µ ∈ ρ(x),

x(µ)− x(λ) = (λ− µ)x(λ)x(µ). (4.1)
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Proof. By Theorem 3.5(3) and Theorem 3.8(2), x(·) : ρ(x) → A is a continuous
function, being the composition of two known continuous functions

λ 7→ λe− x 7→ (λe− x)−1.

ρ(x) → G(A) → G(A).

For λ, µ ∈ ρ(x),

x(λ)−1 − x(µ)−1 = λe− x− (µe− x)

= (λ− µ)e.

Therefore

x(λ)(x(λ)−1 − x(µ)−1)x(µ) = x(λ)(λ− µ)ex(µ)

∴ x(µ)− x(λ) = (λ− µ)x(λ)x(µ).

Thus (4.1) holds. It is called the resolvent identity.
Next we show that x(·) is differentiable at λ ∈ ρ(x). Put µ = λ+ h ∈ ρ(x). By

(4.1),
x(λ+ h)− x(λ) = −hx(λ)x(λ + h).

∴
x(λ+ h)− x(λ)

h
− (−x(λ)2) = x(λ)(x(λ)− x(λ+ h))

∴

∥∥∥∥
x(λ + h)− x(λ)

h
− (−x(λ)2)

∥∥∥∥
A

≤ ‖x(λ)‖A‖x(λ)− x(λ + h)‖A.

RHS → 0 as h→ 0. Hence

lim
h→0

x(λ+ h)− x(λ)

h
= −x(λ)2.

Thus x′(λ) exists and equals −x(λ)2 for any λ ∈ ρ(x). Thus x(·) is analytic on
ρ(x).

Definition 4.3. The function x(·) : ρ(x) → A is called the resolvent of x.
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4.1 Cauchy’s integral formula

If X is a Banach space and f is an analytic X-valued function on an open set
U ⊂ C then we may define contour integrals

∫

γ

f(z)dz,

for a contour γ : [a, b] → U, just as for scalar-valued functions. We assume that
the contour γ(t) = u(t) + iv(t), t ∈ [a, b], has continuously differentiable u and v
on (a, b).

We consider a subdivision

a = t0 < ξ0 < t1 < ξ1 < t2 < ... < ξn−1 < tn = b

of [a, b] and form the corresponding ”Riemann sum”

n−1∑

j=0

f(γ(ξj))[γ(tj+1)− γ(tj)] ∈ X.

It can be proved that as the partition is refined, this sum tends to a limit in X
this limit is defined to be

∫
γ
f(z)dz.

Let X be a Banach space, let U be a starlike open set in C and let f : U → X
be analytic. For any close contour γ in U and any point a ∈ U not on γ,

∫

γ

f(z)dz

z − a
= 2πi n(γ; a)f(a) (4.2)

and ∫

γ

f(z)dz

(z − a)2
= 2πi n(γ; a)f ′(a). (4.3)

Lemma 4.4. Let X be a Banach space, let R > 0 and let f be an X-valued
function analytic on the disc

△(a, R) = {z ∈ C : |z − a| ≤ R}.

Suppose
‖f(z)‖X ≤M ∀z ∈ △(a, R).

Then

‖f ′(a)‖X ≤ M

R
.
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Proof. In Cauchy’s Integral Formula (4.3), take γR to be the anti-clockwise oriented
circle that bounds △(a, R) :

γR(t) = a +Reit, 0 ≤ t ≤ 2π.

Then n(γR; a) = 1, and so

f ′(a) =
1

2πi

∫

γR

f(z)dz

(z − a)2
.

Hence

‖f ′(a)‖X =
1

2π

∥∥∥∥
∫

γR

f(z)dz

(z − a)2

∥∥∥∥
X

. (4.4)

The integral on the RHS is the limit of Riemann sums of the form

Sτ =

n−1∑

j=0

f ◦ γ(ξj)
(γ(ξj)− a)2

(γ(tj+1)− γ(tj))

where
τ : 0 = t0 < ξ0 < t1 < ξ1 < t2 < ... < ξn−1 < tn = 2π.

By the triangle inequality,

‖S‖ ≤
n−1∑

j=0

‖f ◦ γ(ξj)‖X
|γ(ξj)− a|2 |γ(tj+1)− γ(tj)|

≤ M

R2
2πR = 2π

M

R
.

On combining this inequality with (4.4) we have

‖f ′(a)‖X ≤ M

R
.

Theorem 4.5. Liouville’s Theorem. A function that is analytic and bounded in
the entire complex plane is constant.

Proof. Let f : C → X be analytic and bounded by M , so that

‖f(z)‖X ≤M

for all z ∈ C.
Consider any a ∈ C and R > 0. The function f is analytic on △(a, R), and so,

by Lemma 4.4,

‖f ′(a)‖ ≤ M

R
.

Since this relation holds ∀R > 0, ‖f ′(a)‖X = 0, and so f ′(a) = 0. Thus f ′(z) = 0
for all z ∈ C. It follows that f is constant on C.
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Theorem 4.6. For any element x in a Banach algebra A with identity e 6= 0, the
spectrum σ(x) of x is a non-empty closed bounded set in C.

Proof. By Theorem 3.8, σ(x) is closed and bounded in C.We must show σ(x) 6= ∅.
Suppose σ(x) = ∅, so that ρ(x) = C. By Theorem 4.2,

x(·) : C → A : λ 7→ (λe− x)−1

is analytic on the entire complex plane. Note that x 6= 0 since 0 /∈ σ(0).

We claim that x(·) is a bounded function on C. If |λ| > 2‖x‖,

‖(λe− x)−1)‖ = ‖λ−1
(
e− x

λ

)−1

‖

= |λ|−1‖e+ x

λ
+
x2

λ2
+ ...‖ (see Lemma 3.3)

≤ 1

2‖x‖

(
‖e‖+

∞∑

n=1

∥∥∥x
λ

∥∥∥
n
)

≤ 1

2‖x‖(‖e‖+ 1).

On the other hand ‖x(·)‖ is continuous on the closed bounded set

{z ∈ C : |z| ≤ 2‖x‖},

hence is bounded above by some M1 > 0.
Let

M = max

{
M1,

‖e‖+ 1

2‖x‖

}
.

Then
‖x(λ)‖ ≤M ∀λ ∈ C.

By Liouville’s Theorem 4.5, x(·) is constant

∴ (λe− x)−1 = x(0) = −x−1 ∀λ ∈ C

∴ λe− x = −x ∀λ ∈ C

∴ λe = 0 ∀λ ∈ C,

a contradiction to e 6= 0. Hence σ(x) 6= ∅.
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5 The Gelfand-Mazur Theorem

Definition 5.1. A division algebra is a non-zero algebra with identity (over an
arbitrary field) in which every non-zero element has a multiplicative inverse [is
regular].

Example 5.2. Every field is a division algebra over itself. The quaternions H
form a (non-commutative) division algebra over R.

Definition 5.3. We say that two algebras A,B over C are isomorphic if there is
a bijective mapping F : A→ B such that ∀x, y ∈ A, λ ∈ C,

F (x+ y) = F (x) + F (y),

F (xy) = F (x)F (y),

F (λx) = λF (x).

Definition 5.4. We say that two Banach algebras A,B over C are isomorphic
if there is a bounded linear operator F : A → B such that F is invertible and
∀x, y ∈ A,

F (xy) = F (x)F (y).

Theorem 5.5. Gelfand-Mazur Theorem. Every Banach division algebra over C
is isomorphic the Banach algebra C.

Proof. Let A be a Banach algebra with identity e 6= 0, and suppose A is a division
algebra over C.

Consider any x ∈ A. By Theorem 4.6, σ(x) 6= ∅, so ∃λ ∈ σ(x). Hence λe− x is
singular. Since A is a division algebra, only 0 is singular.

∴ λe− x = 0,

∴ x = λe.

Define F : C → A by F (λ) = λe. We have just shown that F is surjective.
Clearly F is injective, for if λ 6= µ and F (λ) = F (µ) then F (λ)− F (µ) = 0.

∴ (λ− µ)e = 0,

∴ (λ− µ)−1(λ− µ)e = 0,
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∴ e = 0.

This is contradiction. Hence F is bijective. For all λ, µ ∈ C,

F (λ+ µ) = (λ+ µ)e = λe + µe = F (λ) + F (µ),

F (λµ) = (λµ)e = (λe)(µe) = F (λ)F (µ),

F (µλ) = (µλ)e = µ(λe) = µF (λ).

Therefore F is an isomorphism of algebras over C.
Note that F is bounded, since

‖F‖ = sup
λ∈C, |λ|≤1

‖λe‖ = ‖e‖.

The inverse map is bounded too, since

F−1 : A→ C : x 7→ λ

where λ ∈ σ(x) and, by Theorem 3.8, |λ| ≤ ‖x‖. Hence ‖F−1‖ ≤ 1. Therefore F
is an isomorphism of Banach algebras A and C.
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6 Convolution algebras

The main examples of Banach algebras encountered so far are algebras of contin-
uous functions like C[0, 1] and H∞(Ω), and algebras of operators like Mn(C) and
B(X). Another important class comprises convolution algebras.

Example 6.1. The algebra ℓ1(Z+).
Let Z+ be the additive semigroup of non-negative integers, and let ℓ1(Z+) be the
Banach space of sequences (xn)

∞
n=0, with xn ∈ C for all n ≥ 0, such that

∞∑

n=0

|xn| <∞,

with co-ordinatewise addition and scalar multiplication and norm

‖(xn)‖1 =
∞∑

n=0

|xn|.

We could make ℓ1(Z+) into a Banach algebra by introducing co-ordinatewise
multiplication, but there is another natural multiplication which is more useful.
We can identify a sequence (xn)n≥0 with the power series

∑
xnz

n, which we can
think of as a formal power series or as the expansion of an analytic function on
the unit disc △(0, 1). Note that

(x0z
0 + x1z

1 + x2z
2 + ...)(y0z

0 + y1z
1 + y2z

2 + ...)

= x0y0z
0 + (x0y1 + x1y0)z

1 + (x0y2 + x1y1 + x2y0)z
2

+...+ (x0yn + x1yn−1 + ... + xny0)z
n + ...

This suggests the multiplication

(xn)n≥0 ∗ (yn)n≥0 = (x0yn + x1yn−1 + ... + xny0)n≥0

= (

n∑

j=0

xjyn−j)n≥0

This is called the convolution multiplication.
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If x = (xn)n≥0, y = (yn)n≥0 ∈ ℓ1(Z+), then

‖x ∗ y‖1 = ‖(
n∑

j=0

xjyn−j)‖1

=
∞∑

n=0

∣∣∣∣∣
n∑

j=0

xjyn−j

∣∣∣∣∣

≤
∞∑

n=0

n∑

j=0

|xj ||yn−j|

≤
∞∑

j,k=0

|xj ||yk|

= ‖x‖1‖y‖1.

Thus ‖.‖1 is submultiplicative on (ℓ1(Z+),+, ∗) and ℓ1(Z+) is a Banach algebra
with respect to ∗.

Example 6.2. The algebra ℓ1(Z).
Let ℓ1(Z) be the Banach space of sequences (xn)n∈Z, xn ∈ C for all n ∈ Z, such
that ∞∑

n=−∞
|xn| <∞

with co-ordinatewise addition and scalar multiplication and norm

‖(xn)n∈Z‖1 =
∞∑

n=−∞
|xn|.

The sequence (xn)n∈Z can be identified with the Laurent series
∑∞

n=−∞ xnz
n. This

power series does converge for z ∈ T, the unit circle, though we may think of it as
a formal power series. Formally,

(
...+ x−2z

−2 + x−1z
−1 + x0z

0 + x1z
1 + ...

) (
...+ y−2z

−2 + y−1z
−1 + y0z

0 + y1z
1 + ...

)

=

(
+

( ∞∑

k=−∞
xky−k

)
z0 +

( ∞∑

k=−∞
xky1−k

)
z1 + ...

)

=
∞∑

n=−∞

( ∞∑

k=−∞
xkyn−k

)
zn.
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We define convolution multiplication ∗ on ℓ1(Z) by

(xn)n∈Z ∗ (yn)n∈Z =

( ∞∑

k=−∞
xkyn−k

)

n∈Z

.

As in the previous example, we find, for x, y ∈ ℓ1(Z),

‖x ∗ y‖1 ≤ ‖x‖1‖y‖1.

Hence ℓ1(Z) is a commutative Banach algebra with respect to ∗. Since ℓ1(Z) can be
thought of as an algebra of power series

∑∞
−∞ xnz

n with pointwise multiplication,
it is clear that it has an identity

e = (...0, 0, 1, 0, 0, ...),

where 1 is in the ”zeroth co-ordinate”, corresponds to the constant function 1.

Example 6.3. Group algebras CG.
Let G be a finite group. The group algebra CG is the algebra of formal sums∑

g∈G agg where ag ∈ C, with the natural addition and scalar multiplication, and
multiplication ∗ given by

(∑

g∈G
agg

)
∗
(∑

g∈G
bgg

)
=

(∑

g∈G

(∑

kh=g

akbh

)
g

)
.

The formal sum
∑

g∈G agg is really ”the same thing” as the function a : G→ C
given by a(g) = ag. With this notation, a ∗ b is given by

a ∗ b : G→ C : g 7→
∑

k,h∈G, kh=g

a(k)b(h)

=
∑

k∈G
a(k)b(k−1g)

=
∑

h∈G
a(gh−1)b(h).

Hence CG is a finite dimensional algebra with identity 1eG, where eG is the identity
of G. Note that CG is commutative ⇐⇒ G is abelian. The algebra CG is a Banach
algebra with respect to the norm

‖
∑

g∈G
agg‖1 =

∑

g∈G
|ag|.
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Example 6.4. The algebra L1(R).
Let L1(R) be the Banach space of Lebesgue measurable functions f : R → C such
that ∫ ∞

−∞
|f(t)|dt <∞

with pointwise addition and scalar multiplication and norm

‖f‖1 =
∫ ∞

−∞
|f(t)|dt.

In this space we regard two functions f and g as equal if they agree ”almost ev-
erywhere”, that is, everywhere except a countable sequence of points. One of the
most significant properties of the Lebesgue integral is that L1(R) is complete.

For f, g ∈ L1(R) we define f ∗ g : R → C by

f ∗ g(t) =
∫ ∞

−∞
f(s)g(t− s)ds.

We shall show that f ∗ g ∈ L1(R) using two properties of the Lebesgue integral.

1. Translation invariance. For h ∈ L1(R), s ∈ R,

∫ ∞

−∞
h(t− s)dt =

∫ ∞

−∞
h(t)dt.

2. The Fubini-Tonnelli theorem. For an integrable Lebesgue measurable func-
tion F : R× R → R, if F (s, t) ≥ 0 for all s, t ∈ R,

∫ ∞

−∞

∫ ∞

−∞
F (s, t)dtds =

∫ ∞

−∞

∫ ∞

−∞
F (s, t)dsdt

(”reversing the order of integration”).
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We have
∫ ∞

−∞
|(f ∗ g)(t)|dt =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
f(s)g(t− s)ds

∣∣∣∣ dt

≤
∫ ∞

−∞

∫ ∞

−∞
|f(s)||g(t− s)|dsdt

=

∫ ∞

−∞

∫ ∞

−∞
|f(s)||g(t− s)|dtds (the Fubini-Tonnelli theorem)

=

∫ ∞

−∞
|f(s)|

∫ ∞

−∞
|g(t− s)|dt ds

=

∫ ∞

−∞
|f(s)|

∫ ∞

−∞
|g(t)|dt ds (translation invariance)

=

∫ ∞

−∞
|f(s)|‖g‖1ds

= ‖f‖1‖g‖1
Hence f ∗ g ∈ L1(R), and, moreover, ‖.‖1 is submultiplicative.

Let us show that ∗ is associative. For f, g, h ∈ L1(R) and t ∈ R,

((f ∗ g) ∗ h)(t) =
∫ ∞

−∞
(f ∗ g)(s) h(t− s) ds

=

∫ ∞

−∞

∫ ∞

−∞
f(u)g(s− u)du h(t− s)ds

=

∫ ∞

−∞

∫ ∞

−∞
f(u)g(s− u)h(t− s) ds du (the Fubini-Tonnelli theorem)

=

∫ ∞

−∞
f(u)

∫ ∞

−∞
g(s− u)h(t− s) ds du

=

∫ ∞

−∞
f(u)

∫ ∞

−∞
g(s)h(t− u− s)ds du (translation invariance)

=

∫ ∞

−∞
f(u) (g ∗ h)(t− u) du

= (f ∗ (g ∗ h))(t).
Hence ∗ is associative. Thus L1(R) is a Banach algebra. It is commutative, but
has no identity.

Note the probabilistic interpretation of ∗: if f, g are probability density func-
tions of random variables X and Y then f ∗ g is the probability density function
of X + Y.
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7 Homomorphisms and ideals

Definition 7.1. Let A, B be Banach algebras. A homomorphism from A to B is
a bounded linear operator

φ : A→ B

such that, ∀x, y ∈ A,
φ(xy) = φ(x)φ(y).

If A,B have identities eA, eB respectively and a homomorphism φ : A→ B satisfies

φ(eA) = eB

then φ is said to be a unital homomorphism.

Examples 7.2. 1. For any Banach algebras A and B, the map φ : A → B :
x 7→ 0 is a homomorphism, called the zero homomorphism.

2. For α ∈ [0, 1], let
vα : C[0, 1] → C : x 7→ x(α).

The map vα is ”evaluation at α”. For x, y ∈ C[0, 1], and λ ∈ C,
vα(x+ y) = (x+ y)(α) = x(α) + y(α) = vα(x) + vα(y),
vα(λx) = (λx)(α) = λx(α) = λvα(x),
vα(xy) = (xy)(α) = x(α)y(α) = vα(x)vα(y).
The operator norm

‖vα‖ = sup
‖x‖∞≤1

|vα(x)| = sup
‖x‖∞≤1

|x(α)| = 1.

Recall that C[0, 1] has an identity e given by e(t) = 1 ∀t ∈ [0, 1]. Thus
vα(e) = e(α) = 1 the identity of C.
Hence vα is a unital homomorphism of Banach algebras.

3. Notation. If X, Y are sets, M ⊂ X and f : X → Y is a map then f |M is the
restriction of f to M , that is, the map

f |M :M → Y : x 7→ f(x).

Define

φ : C[0, 1] → C

[
0,

1

2

]
: f 7→ f |[0, 1

2
].

It is easy to check that
‖φ‖ ≤ 1

and φ is a homomorphism.
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4. φ :M2(C) → M4(C) : A 7→
[
A 0
0 A

]
is a homomorphism.

5. For α ∈ △(0, 1) define

vα : ℓ1(Z+) → C : (xn)n∈Z+ 7→
∞∑

n=0

xnα
n.

Then vα is a homomorphism. Linearity is easy.

vα(x ∗ y) =
∞∑

n=0

(x ∗ y)nαn

=
∞∑

n=0

n∑

k=0

xkyn−kα
n

=
∞∑

n,m=0

xnymα
n+m

=

∞∑

n=0

xnα
n

∞∑

m=0

ymα
m

= vα(x)vα(y).

See Example 6.1.

6. Let C(△(0, 1)) be the Banach algebra of continuous C-valued functions on
△(0, 1) with sup norm. Define

φ : ℓ1(Z+) → C(△(0, 1))

by if x = (xn)n≥0 ∈ ℓ1(Z+), φ(x) is the function

z 7→
∞∑

0

xnz
n in C(△(0, 1)).

The proof that φ(x ∗ y) = φ(x)φ(y) is the same calculation as in (5).
All except (1) are unital homomorphisms.
None of them are isomorphisms, i.e. none is bijective.
All of them are continuous operators.

Definition 7.3. A character of a commutative Banach algebra A is a non-zero
homomorphism from A to C.

Examples 7.2 (2) and (5) above are examples of characters.
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Remark 7.4. φ(A) is a subspace of C and is not {0}, hence is C. Thus φ is
surjective.

Theorem 7.5. Let φ be a character of a commutative Banach algebra A with
identity e 6= 0. Then φ(e) = 1 and, for any x ∈ A,

φ(x) ∈ σ(x),

and so |φ(x)| ≤ ‖x‖.
Proof. Since φ(A) = C there exists a ∈ A such that φ(a) = 1. Then

1 = φ(a) = φ(ae) = φ(a)φ(e) = φ(e).

Hence φ is unital homomorphism.

Suppose φ(x) /∈ σ(x), that is, φ(x)e−x is a regular element in A. Hence it has
an inverse u ∈ A:

(φ(x)e− x)u = e.

Since φ is multiplicative,

φ((φ(x)e− x)u) = φ(e) = 1,

∴ (φ(x)φ(e)− φ(x))φ(u) = 1,

∴ 0 = 1 - contradiction.

Hence φ(x) ∈ σ(x). By Theorem 3.8,

|φ(x)| ≤ ‖x‖.

Corollary 7.6. Let A be a commutative Banach algebra with identity e 6= 0.
Characters of A are bounded linear functionals on A, and so belong to the dual
space A∗ of A and have norm ≤ 1.

Characters are also called multiplicative linear functionals.

Definition 7.7. The set of characters of a commutative Banach algebra A is called
the character space of A and is denoted by Â.

Examples 7.8. (1) Ĉ[0, 1] ⊃ {vα : 0 ≤ α ≤ 1}.

(2) ℓ̂1(Z+) ⊃ {φα : α ∈ △(0, 1)}.
Does equality hold? To be answered later.
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Remark 7.9. Suppose φ : A→ B is a homomorphism of algebras over C. Recall
that

ker φ = {x ∈ A : φ(x) = 0}.
Kerφ is also called the null space of φ.

Since φ is a linear mapping, Ker φ is a linear subspace of A.

If x ∈ ker φ and a ∈ A then

φ(ax) = φ(a)φ(x) = φ(a)0 = 0,

and similarly φ(xa) = 0.

Hence if x ∈ ker φ, then ax ∈ kerφ and xa ∈ kerφ for all a ∈ A.

Definition 7.10. An ideal in an algebra A is a linear subspace I of A such that,
for any x ∈ I and a ∈ A, ax ∈ I and xa ∈ I.
An closed ideal in a Banach algebra A is a closed linear subspace I of A such that,
for any x ∈ I and a ∈ A, ax ∈ I and xa ∈ I.

An ideal I is proper if I 6= A.

Examples 7.11. 1. In any algebra A, {0} and A are ideals.

2. In C[0, 1], for any set E ⊂ [0, 1],

{x ∈ C[0, 1] : x|E = 0}

is an ideal.

In particular, for α ∈ [0, 1],

ker vα = {x ∈ C[0, 1] : x(α) = 0}

is an ideal.

3. In ℓ1(Z+), for α ∈ △(0, 1),

kerφα = {(xn) ∈ ℓ1(Z+) :

∞∑

n=0

xnα
n = 0}

is an ideal.
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4. In C[z],
{f : f(3− i) = f(4 + 2i) = 0}

is an ideal.

5. c0 is an ideal in ℓ∞.

Theorem 7.12. In an algebra A with identity e 6= 0, let I be an ideal. The
following are equivalent:

1. I is proper;

2. e /∈ I;

3. I does not contain any regular element.

Proof. (3) ⇒ (2) ⇒ (1) is obvious.

To prove (1) ⇒ (3), suppose I is proper and I contains a regular element x.
Then x has an inverse x−1 ∈ A, and so for any a ∈ A we have

(ax−1)x ∈ I.

Therefore, a ∈ I. Hence A = I, this is a contradiction. Thus (1) ⇒ (3).

Consequently (1)-(3) are equivalent.

Definition 7.13. An ideal I in an algebra A is maximal if it is proper and the
only ideals of A which contain I are I and A.

Examples 7.14. 1. {0} is a maximal ideal in C.

2. In C[0, 1], I = {f : f(0) = 0 = f(1)} is an ideal, but is not maximal since
the ideal

J = {f : f(0) = 0}
is an ideal, J ⊃ I and J is not equal to I or C[0, 1].

Theorem 7.15. If φ is a character of a commutative Banach algebra A then ker φ
is a maximal ideal of A.

Proof. Let M = ker φ. Clearly M is an ideal of A, and M is proper, else φ is a
zero homomorphism contrary to the definition of character.

Let us show that M is maximal. Suppose M ⊂ I ⊂ A, where I is an ideal of
A and M 6= I. We wish to show I = A. Observe that φ(I) is a linear subspace of
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C, and hence either φ(I) = {0} or φ(I) = C.

If φ(I) = {0} then I ⊂ ker φ = M, hence I = M, contrary to hypothesis.
Hence φ(I) = C.

Pick x ∈ I such that φ(x) = 1. For any a ∈ A we have

φ(a− φ(a)x) = φ(a)− φ(a) = 0,

and so
a− φ(a)x ∈ M.

Hence
a ∈ φ(a)x+M ∈ I +M = I.

That is, a ∈ I. Hence I = A. Thus M is a maximal ideal.

Example 7.16. ker v 1
2
i = {f ∈ H∞(D) : f(1

2
i) = 0} is a maximum ideal in

H∞(D).

Theorem 7.17. In an algebra A with identity every proper ideal is contained in
a maximal ideal.

Proof. Let I be an ideal of A and let e be the identity element of A.

Let J be the set of proper ideals of A that contain I. J is a partially ordered
set under inclusion:

J1 ≤ J2 means J1 ⊂ J2.

If C is a chain in J then
⋃

J∈C J is an ideal of A containing I, and
⋃

J∈C J is proper
since it does not contain e. That is,

⋃
J∈C J ∈ J , and so every chain in J has an

upper bound in J . By Zorn’s Lemma, J contains a maximal element M. Thus
M is a proper ideal of A containing I. If J is an ideal of A containing M then
either J = A or J ∈ J , and hence, since M is a maximal element of J , J = M.
Therefore M is a maximal ideal of A, and I ⊂M.

Corollary 7.18. Let A be a commutative algebra with identity. For an element
x ∈ A, x is singular if and only if x belongs to some maximal ideal of A.

Proof. ⇐ If x is not singular then, by Theorem 7.12, x does not belong to any
proper ideal of A, and hence x does not belong to any maximal ideal. Therefore,
x is in some maximal ideal ⇒ that x is singular.
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⇒ Suppose x is singular. Let

xA = {xa : a ∈ A}.

The linear subspace xA is an ideal of A and, since x is singular, e /∈ xA. Hence,
by Theorem 7.12, xA is a proper ideal, and x = xe ∈ xA. By Theorem 7.17, there
is a maximal ideal M of A such that xA ⊂M. Hence x belongs to some maximal
ideal of A.
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8 The algebra C(K).

Definition 8.1. Let K be a compact Hausdorff space. C(K) denotes the Ba-
nach algebra of continuous C-valued functions on K with pointwise operations and
supremum norm ‖f‖∞ = supt∈K |f(t)|. Thus, for f, g ∈ C(K) and λ ∈ C, we
define

(f + g)(t) = f(t) + g(t), t ∈ K,

(λf)(t) = λf(t), t ∈ K,

(fg)(t) = f(t)g(t), t ∈ K.

Theorem 8.2. Let K be a compact Hausdorff space. Then (C(K), ‖ · ‖∞) is a
Banach algebra.

Proof. For f ∈ C(K),
sup
t∈K

|f(t)| <∞

since continuous R-valued functions on compact sets are bounded. Hence ‖ · ‖∞ is
well defined on C(K).

The linear space C(K) is closed under the stated algebraic operations. For
example, if f, g ∈ C(K) then f + g is continuous, being the composition of two
continuous maps:

K → C× C → C :

t 7→ (f(t), g(t)) 7→ f(t) + g(t).

It is straightforward to check that C(K) is a normed algebra over C. For all
f, g ∈ C(K),

‖fg‖∞ = sup
t∈K

|f(t)g(t)| = sup
t∈K

|f(t)||g(t)| ≤ sup
t∈K

|f(t)| sup
t∈K

|g(t)| = ‖f‖∞‖g‖∞.

Completeness of (C(K), ‖ · ‖∞). Let (fn)
∞
n=1 be a Cauchy sequence in C(K).

We must show (fn)
∞
n=1 tends to a limit f in (C(K), ‖ · ‖∞).

For any t ∈ K, (fn(t))
∞
n=1 is a Cauchy sequence in C since

|fn(t)− fm(t)| ≤ ‖fn − fm‖∞.
The normed space (C, | · |) is complete, and so there exists f(t) ∈ C such that

lim
n→∞

fn(t) = f(t).

We will show below that f is continuous on K and that ‖fn − f‖∞ → 0 as
n→ ∞.
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Digression on limits of sequences of continuous functions.

It is not true in general that if fn is continuous on K for every n and fn(t) → f(t)
as n→ ∞ for all t ∈ K then f is continuous on K.

Example 8.3. Let

fn(t) =

{
1− nt if 0 ≤ t ≤ 1/n,

0 if t > 1/n.

Then fn(t) → f(t) as n → ∞, where f(t) =

{
1 if t = 0,

0 if t > 0
is not continuous

on [0, 1].

Definition 8.4. Let fn, n ∈ N, and g be C-valued functions on a set E. We say
that fn → g

(i) pointwise on E as n→ ∞ if limn→∞ fn(t) = g(t) for every t ∈ E;

(ii) uniformly on E as n→ ∞ if, for every ǫ > 0, there exists N ∈ N such that
n ≥ N implies

|fn(t)− g(t)| < ǫ for all t ∈ E.

In the above example fn → f as n → ∞ pointwise but not uniformly. The
example shows that a pointwise limit of continuous functions on [0, 1] need not be
continuous.

Theorem 8.5. If (fn)
∞
n=1 is a sequence of continuous C-valued maps on a topo-

logical space E and fn → g uniformly on E as n → ∞ then g is continuous on
E.

Proof. This is an ” ǫ
3
argument”. Consider t ∈ E. We want to show that g is

continuous at t.
Let ǫ > 0. Since fn → g uniformly there exists N ∈ N such that n ≥ N implies

|fn(s)− g(s)| < ǫ
3
for all s ∈ E.

Since fN is continuous at t there is a neighbourhood U of t in E such that

|fN(t)− fN(s)| <
ǫ

3
for all s ∈ U.
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Then, for any s ∈ U,

|g(t)− g(s)| = |g(t)− fN(t) + fN(t)− fN(s) + fN(s)− g(s)|
≤ |g(t)− fN(t)|+ |fN(t)− fN(s)|+ |fN(s)− g(s)|
<
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ.

Hence g is continuous at t ∈ E.

Return to the proof that C(K) is complete (Theorem 8.2).

Recall that (fn)
∞
n=1 is a Cauchy sequence and fn(t) → f(t) as n→ ∞ for every

t ∈ K.
Let ǫ > 0. There exists N ∈ N such that m,n ≥ N implies

‖fm − fn‖∞ < ǫ,

and hence, for any t ∈ K,
|fm(t)− fn(t)| < ǫ.

Therefore
lim

m→∞
|fm(t)− fn(t)| ≤ ǫ

and
|fn(t)− f(t)| ≤ ǫ ∀t ∈ K and n ≥ N.

Thus fn → f uniformly on K as n→ ∞. By Theorem 8.5, f is continuous on K.
Moreover, for any ǫ > 0, ∃N ∈ N such that

‖fn − f‖∞ ≤ ǫ whenever n ≥ N,

by above. Thus fn → f as n→ ∞ in (C(K), ‖ · ‖∞).

Hence C(K) is complete with respect to ‖·‖∞. Thus C(K) is a Banach algebra.
Note that C(K) is a commutative Banach algebra with identity e where e(t) =
1 ∀t ∈ K.
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9 Characters of C(K)

Definition 9.1. For t ∈ K, we call the functional

vt : C(K) → C : f 7→ f(t)

an evaluation functional on C(K).

Evaluation functionals are characters of C(K).

Theorem 9.2. Let K be a compact Hausdorff space. Let φ be a character of
C(K). There exists t0 ∈ K such that

φ(f) = f(t0) ∀f ∈ C(K)

Thus the characters of C(K) are precisely the evaluation functionals.

Proof. Let M = ker φ. Since φ is non-zero, M is a proper ideal in C(K).
Suppose there is no t0 ∈ K such that every element of M vanishes at t0. Then,

for each t ∈ K, there exists ft ∈M such that ft(t) 6= 0.
Let gt = f̄tft : then gt ∈M and gt ≥ 0 on K and gt(t) > 0. Let

Ut = g−1
t (0,∞) = {τ ∈ K : gt(τ) > 0}.

Then Ut is an open neighbourhood of t, and so {Ut : t ∈ K} is an open cover
of K. Since K is compact, there exists a finite subcover {Ut1 , ..., Utn} for some
t1, ..., tn ∈ K. Let

g = gt1 + gt2 + ... + gtn .

Then g ∈ M and g > 0 on K. Hence 1
g
∈ C(K), that is, g is a regular element of

C(K). This contradicts the fact that M is a proper ideal of C(K) (see Theorem
7.12). Hence ∃t0 ∈ K such that

f(t0) = 0 ∀f ∈ M.

In other words,
M ⊂ {f ∈ C(K) : f(t0) = 0}.

By Theorem 7.15, M is a maximal ideal of C(K). Thus, by Theorem 7.17, we
must have

M = {f ∈ C(K) : f(t0) = 0}.
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Since φ is non-zero, we have φ(e) 6= 0. However, since e2 = e, we have φ(e)2 = φ(e),
and so φ(e) = 1. For any h ∈ C(K), we can write

h = (h− h(t0)e) + h(t0)e

where h− h(t0)e vanishes at t0 hence belongs to M . Thus

φ(h) = 0 + h(t0)φ(e) = h(t0).

Consequently φ is evaluation at t0.

We can state this result:

C(K)Λ = {vt : t ∈ K}

where vt is evaluation at t, that is, vt(f) = f(t) for all f ∈ C(K).
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Part II. Topics in Topology

This part concerns the theory of pseudometrics on sets, weak∗-topologies on dual
Banach spaces and product topologies. We shall define these objects and study
their properties.
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10 Metric spaces

Definition 10.1. A metric space is a pair (M, d) where M is a set and a metric

d :M ×M → R+

satisfies

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

for all x, y, z ∈M.

Examples 10.2. 1. Any normed linear space X is a metric space with respect
to the metric

d(x, y) = ‖x− y‖ for all x, y ∈ X.

2. Any subset of (X, d) of a metric space (M, d) is a metric space with respect
to the restriction of d, since the restriction of a metric is a metric.

3. For any set M, define
d :M ×M → R+

by

d(x, y) =

{
0 if x = y

1 if x 6= y.

This is the “small world” metric.

Definition 10.3. In a metric space (M, d) we define, for ǫ > 0, the open ball of
centre x, radius ǫ, to be

Bǫ(x) = {y ∈M : d(x, y) < ǫ} ⊂M.

For any set U ⊂ M we say that x ∈ U is an interior point of U if there exists
ǫ > 0 such that Bǫ(x) ⊂ U.

We say that U is an d-open set inM if every point of U is an interior point of U.

Thus U is an open set in (M, d) if for all x ∈ U there exists ǫ > 0 such that
Bǫ(x) ⊂ U. If we need to emphasize the metric we write Bǫ(x, d).
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Examples 10.4. 1. For (M, d) as in the discrete metric, B 1
2
(x) = x for any

x ∈M. Thus every subset of M is open.

2. LetM = R2 and let d1, d2, d∞ be the metrics induced by the norms ‖.‖1, ‖.‖2
and ‖.‖∞ respectively. Thus

‖(x1, x2)‖1 = |x1|+ |x2|
‖(x1, x2)‖2 = {|x1|2 + |x2|2}

1
2

‖(x1, x2)‖∞ = max{|x1|, |x2|},

and for x, y ∈ C2,

d1(x, y) = ‖x− y‖1
d2(x, y) = ‖x− y‖2
d∞(x, y) = ‖x− y‖∞.

The set U = {(x1, x2) : x1 > 0, x2 > 0} is open with respect to all 3 metrics.
Choose ǫ = min{x1, x2} > 0. Then

Bǫ(x, d1) ⊂ U, Bǫ(x, d2) ⊂ U, Bǫ(x, d∞) ⊂ U.
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11 Topologies of metric spaces

Definition 11.1. Two metrics on a set M are said to be topologically equivalent
if they give rise to the same open sets.

Note that d2 and d∞ are topologically equivalent metrics on R2, while d2 and
d defined by

d(x, y) =

{
0 if x = y

1 if x 6= y,

are topologically inequivalent, since the singleton set {0} is d-open, but not d2-
open.

Definition 11.2. The topology J of a metric space (M, d) is the collection of
d-open sets in M .

Theorem 11.3. The topology J of a metric space (M, d) satisfies the following
conditions:

T1. ∅ ∈ J and M ∈ J ;

T2. if U, V ∈ J then U ∩ V ∈ J ;

T3. if {Uα : α ∈ A} is a collection of members of J , for any index set A, then
⋃

α∈A
Uα ∈ J .

Proof. T1. It is immediate.

T2. Let U, V ∈ J and let x ∈ U ∩ V. Choose ǫ1, ǫ2 such that Bǫ1(x) ⊂ U,
Bǫ2(x) ⊂ V. Let ǫ = min{ǫ1, ǫ2}. Then Bǫ(x) ⊂ U ∩ V. Hence x is interior to
U ∩ V. Thus U ∩ V ∈ J .

T3. Let Uα ∈ J for α ∈ A and let U =
⋃

α Uα. Consider x ∈ U. Then x ∈ Uβ for
some β ∈ A, and hence there exists ǫ > 0 such that Bǫ(x) ⊂ Uβ ⊂ U. Hence
x is interior to U . Thus U ∈ J .

Remark 11.4. It follows from (T2) that the topology J of a metric space is
closed under finite intersections: if U1, U2, ..., Un are open sets then U1 ∩ ...∩Un is
open. However J is not in general closed under infinite intersections. In R, with
its standard metric (d(x, y) = |x− y|), take

Un = (−1

n
,
1

n
) = B 1

n
(0).

U1 ∩ U2 ∩ ... = {0} which is not open.
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12 Topological spaces

In analysis we often need a more subtle notion of “nearness” or continuity than
that provided by a metric. The idea of a topology provides such a notion.

Definition 12.1. A topology on a set X is a family J of subsets of X with the
properties:

T1. ∅ ∈ J , X ∈ J ;

T2. J is closed under finite intersections;

T3. J is closed under arbitrary unions.

A topological space is a pair (X,J ) where X is a set and J is a topology on
X. Elements of J are called open sets or J -open sets.

By Theorem 11.3, every metric space is naturally a topological space.

Not all topological spaces are obtainable from metrics.

Examples 12.2. 1. Let (M, d) is a metric space and let J be the collection of
d-open sets. Then (M,J ) is a topological space.

2. Let X be a set. The indiscrete or trivial topology on X is J = {∅, X}. Thus
an indiscrete topological space is

(X,J ) where J = {∅,X}.

3. The discrete topology: (X,J ) where J is the collection of all subsets of X .

The topology is induced by the ”small world metric”: d(x, y) =

{
0 if x = y

1 if x 6= y.

4. The cofinite topology: (N,J ) where J consists of the empty set and all sets
with finite complement in N.

5. Rn,Cn have a natural or standard topology, induced by the Euclidean norm.
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Remark 12.3. Note that in a metric space (M, d), for any x ∈ M the set
U =M \ {x} is an open set. For y ∈ U such that d(x, y) > 0, we have Bǫ(y) ⊂ U
where ǫ = 1

2
d(x, y).

In Example 2 with X having more than one point, the complements of single-
tons do not belong to J . Hence there is no metric d on X such that the topology
corresponding to d is J .

Thus the notion of a topological space is more general than the notion of a
metric space.
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13 Pseudometrics

Definition 13.1. A pseudometric on a set X is a function

d : X ×X → R+

which satisfies, for all x, y, z ∈ X,

1. d(x, y) = d(y, x);

2. d(x, z) ≤ d(x, y) + d(y, z).

Note: it can happen that d(x, y) = 0 even though x 6= y.

Example 13.2. On C[0, 1], define dt, for 0 ≤ t ≤ 1, by

dt(f, g) = |f(t)− g(t)|.

Note that dt is a pseudometric for t ∈ [0, 1].

Definition 13.3. Let D be a non-empty set of pseudometrics on a set X. For any
x ∈ X, ǫ > 0 and any finite set d1, ..., dn ∈ D, we define

Bǫ(x; d1, ..., dn) = {y ∈ X : dj(x, y) < ǫ for j = 1, 2, ..., n}.

For any subset U of X, we say that x is an interior point of U with respect to
D if there exist ǫ > 0 and finitely many d1, ..., dn ∈ D such that

Bǫ(x; d1, ..., dn) ⊂ U.

A set U ⊂ X is D-open if every point of U is interior with respect to D.

Lemma 13.4. Bǫ(x, d1, ..., dn) is D-open.

Proof. Consider y ∈ Bǫ(x, d1, ..., dn), so that

dj(x, y) < ǫ, for all j = 1, 2, . . . , n.

Let
η = min

1≤j≤n
(ǫ− dj(x, y)).

Then η > 0, and
Bη(y, d1, ..., dn) ⊂ Bǫ(x, d1, ..., dn).

Thus y is an interior point of Bǫ(x, d1, ..., dn), and Bǫ(x, d1, ..., dn) is D-open.
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Theorem 13.5. Let D be a set of pseudometrics on a set X. The collection of
D-open sets is a topology on X.

Proof. Let J be the collection of D-open subsets of X .

T1. ∅, X ∈ J trivially.

T2. Suppose U, V are D-open and consider x ∈ U ∩ V. There exist ǫ1, ǫ2 > 0 and
d1, ..., dn, dn+1, ..., dm ∈ D such that

Bǫ1(x; d1, ..., dn) ⊂ U, Bǫ2(x; dn+1, ..., dm) ⊂ V.

Then, if ǫ = min{ǫ1, ǫ2},
Bǫ(x; d1, ..., dn, ..., dm) ⊂ U ∩ V.

Thus every point of U ∩ V is D-interior to U ∩ V , that is, U ∩ V ∈ J .
T3. Suppose Uα ∈ J ∀α ∈ Λ, and consider

x ∈ U =
⋃

α∈Λ
Uα.

We have x ∈ Uβ for some β ∈ Λ, and there exist ǫ > 0, d1, ..., dn ∈ D such
that B = Bǫ(x; d1, ..., dn) ⊂ Uβ . Clearly B ⊂ U, and so x is D-interior to U .
Thus U is D-open.

Definition 13.6. The collection J of D-open sets is called the topology induced
by the set of the set D of pseudometrics.

Examples 13.7. 1. On C[0, 1], let

D = {dt : 0 ≤ t ≤ 1}
where

dt(f, g) = |f(t)− g(t)|.
For t1, ..., tn ∈ [0, 1],

Bǫ(f, dt1, ..., dtn) = {g ∈ C[0, 1] : |f(tj)− g(tj)| < ǫ, 1 ≤ j ≤ n}.

The topology induced by D is called the topology of pointwise convergence
on C[0, 1].

2. Let E be a Banach space and E∗ its dual. For any x ∈ E, define a pseudo-
metric dx on E∗ by

dx(F,G) = |F (x)−G(x)|, F, G ∈ E∗.

The set {dx : x ∈ E} of pseudometrics induces a topology on E∗ called the
w∗-topology.
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14 Hausdorff spaces

Definition 14.1. A topological space X is Hausdorff if, for any pair x, y of distinct
points in X, there exists disjoint open sets U, V in X containing x, y respectively.

Examples 14.2. 1. Metric space are Hausdorff.

2. In N with the cofinite topology, any pair of non-empty open sets have (in-
finitely many) points in common and so the space is not Hausdorff.

3. If E is a Banach space and E∗ is its dual space, then E∗ is a Hausdorff space
in the w∗-topology.

Consider distinct elements F,G ∈ E∗. Since F 6= G, there exists x ∈ E such
that F (x) 6= G(x).

Let

ǫ =
1

2
|F (x)−G(x)| = 1

2
dx(F,G).

Then ǫ > 0, and
Bǫ(F ; dx), Bǫ(G; dx)

are disjoint open sets containing F,G respectively. Therefore E∗ is Hausdorff.

Note: Since N with the cofinite topology is not Hausdorff, it’s topology does
not arise from a metric.

Note: Not all Hausdorff topologies arise from metrics. In fact E∗ with the
w∗-topology (with dimE = ∞) does not.

Definition 14.3. For any (xn)
∞
n=1 in a topological space (X,J ) we say xn → a as

n→ ∞, or
lim
n→∞

xn = a,

if, for every neighbourhood U of a, there exists N ∈ N such that xn ∈ U for all
n ≥ N.

In C[0, 1], with the topology of pointwise convergence,

fn → g ⇐⇒ fn(t) → g(t) ∀t ∈ [0, 1].
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15 Compactness

Definition 15.1. Let (X,J ) be a topological space. A cover of a subset Y of X
is a collection of subsets of X whose union contains Y.

Examples 15.2. 1. In R, a cover of [0, 1] is {(−1, 3
4
), (1

4
, 2)}. This is a finite

cover.

2. In R, a cover of (0, 1) is the collection of sets {Ux : x ∈ (0, 1)} where

Ux = (
x

2
,
1 + x

2
).

Note that no finite subcollection of the Ux covers (0, 1) : if x1 < x2 < ... < xn,
then

Ux1 ∪ ... ∪ Uxn
⊂ (

x1
2
,
1 + xn

2
)

and so Ux1 ∪ ... ∪ Uxn
is a proper subset of (0, 1).

Definition 15.3. Let (X,J ) be a topological space. An open cover of a subset Y
of X is a cover of Y consisting of open sets. A subcover of a cover U of Y is a
subcollection of U that covers Y .

Definition 15.4. Let (X,J ) be a topological space. A subset Y of X is compact
if every open cover of Y has a finite subcover.

Theorem 15.5. Any bounded closed interval in R is compact.

Theorem 15.6. Let (X,J ) be a compact topological space. Any continuous func-
tion f : X → R is bounded and attains its supremum and infimum on X.

Proof. Let Un = f−1(−n, n), since f is continuous, Un is open, and {Un : n ∈ N}
is an open cover of X . It therefore has a finite subcover {Un1 , ..., Unk

}, where
n1 < ... < nk. Thus |f(x)| < nk ∀x ∈ X, and so f is bounded.
Let

M = sup
x∈X

f(x) <∞.

Suppose f does not attain its supremum M on X : this means that f(x) < M
∀x ∈ X. For each x ∈ X pick yx such that

f(x) < yx < M,

and let
Ux = f−1(−∞, yx).
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Ux is an open neighbourhood of x, since f is continuous. The family {Ux : x ∈ X}
is an open cover of X , and so by compactness it has an open subcover:

X ⊂ Ux1 ∪ ... ∪ Uxn

for some x1, ..., xn ∈ X.

We have f(x) ≤ yxj
on Uxj

, and so

sup
x∈X

f(x) ≤ max
1≤j≤n

yxj
< M,

contrary to choice of M as the least upper bound of f . Hence f attains its supre-
mum on X .

Similarly f attains its infimum on X .

Theorem 15.7. A closed subset of a compact topological space is compact.

Proof. Let (X,J ) be compact and let Y be closed in X . Then X \ Y is open.
Consider any open cover U of Y . Then U ′ = {U : U ∈ U and X \ Y } is an open
cover of X . Since X is compact, U ′ has a finite subcollection that covers X :

X = (X \ Y ) ∪ U1 ∪ ... ∪ Un,

some U1, ..., Un ∈ U . Thus
Y ⊂ U1 ∪ ... ∪ Un.

Hence U has a finite subcover. Therefore Y is compact.

Theorem 15.8. A compact subset of a Hausdorff space is closed.

Proof. Let (X,J ) be a Hausdorff space and let Y be a compact subset of X .
Consider any x ∈ X \ Y. For each y ∈ Y, by the Hausdorff condition, there exist
disjoint open neighbourhoods Uy of y, Vy of x.

The family {Uy : y ∈ Y } is an open cover of the compact Y , hence has a finite
subcover {U1, ..., Uyn} with yj ∈ Y. Let V (x) = Vy1 ∩ ...∩Vyn , then V (x) is an open
neighbourhood of x. V (x) is disjoint from Uy1 ∪ ... ∪ Uyn , hence from Y , so that
V (x) ⊂ X \ Y.

We have
X \ Y =

⋃

x∈Y \X
V (x),

and since each V (x) is open in X , it follows that X \ Y is open in X . Hence Y is
closed.
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Examples 15.9. Non-compact spaces.

1. (0, 1) is non-compact. {(x
2
, 1+x

2
) : x ∈ (0, 1)} is an open cover having no finite

subcover.

2. R is non-compact. {(−n, n) : n ∈ N} is an open cover having no finite
subcover.

3. The closed unit ball in ℓ2 is non-compact in the norm topology.

Theorem 15.10 (Heine-Borel). Any closed bounded set in Rn is compact.

Theorem 15.11. For any normed linear space E, the closed unit ball of E∗ is
compact in the w∗-topology. That is, {F ∈ E∗ : ‖F‖ ≤ 1} is compact in the
topology defined by the pseudometrics {dx : x ∈ E}, where

dx(F,G) = |F (x)−G(x)|.

One can find a proof of this theorem in Walter Rudin’s book “Functional
Analysis”, 1973, Theorem 3.15.
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16 Topological subspaces

Definition 16.1. Let (X,J ) be a topological space and let Y be a subset of X.
The relative topology of Y in X, or the induced topology of Y , is the topology

JY = {U ∩ Y : U ∈ J }.

Check that JY is a topology on Y .

There are two natural ways to specifiy a topology on Q : by the natural metric
d(x, y) = |x − y|, x, y ∈ Q, or by giving Q the relative topology as a subset of R
(with its natural metric). In fact they coincide.

Theorem 16.2. Let D be a set of pseudometrics which defines a topology J on
a set X, and let Y be a subset of X. The induced topology JY coincides with the
topology determined by the pseudometrics

DY = {d|Y×Y : d ∈ D}.

Proof. Let V be JY -open, so that V = U ∩ Y for some U ∈ J . Consider any
x ∈ V. Then x ∈ U, and so, since U is D-open, ∃ǫ > 0 and d1, ..., dn ∈ D such that

Bǫ(x; d1, ..., dn) ⊂ U.

Let d′j = dj|Y×Y ∈ DY . Then

Bǫ(x; d
′
1, ..., d

′
n) = Y ∩ Bǫ(x; d1, ..., dn) ⊂ Y ∩ U = V.

Hence x is DY -interior to V .

∴ V is DY -open.

∴ Every JY -open set is DY -open.

Conversely, let V be DY -open. For each x ∈ V we can pick a pseudoball

Bǫ(x; d
′
1, ..., d

′
n) ⊂ V,

where d′j = dj |Y×Y ∈ DY . Then U(x) = Bǫ(x; d1, ..., dn) is J -open in X , and

U(x) ∩ Y = Bǫ(x, d
′
1, ..., d

′
n).

Let U = ∪x∈V U(x). Then U ∈ J and U ∩ Y = V. Hence V ∈ JY.

∴ Every DY -open set is JY -open.
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Theorem 16.3. Let (X,J ) be a topological space and let Y ⊂ X. The following
statements are equivalent.

1. Y is a compact subset of X;

2. (Y,JY ) is a compact topological space.

Proof. (1) ⇒ (2). Suppose Y is a compact subset of X , and so every cover of Y
by open subsets of X has a finite subcover. Consider any cover of Y by JY -open
sets, say,

U = {Uα : α ∈ A}
where Uα = Vα ∩ Y, Vα ∈ J . Then {Vα : α ∈ A} is a cover of Y by J -open sets.
Hence there is a finite subcover

{Vα1 , ..., Vαn
}

for some α1, ..., αn ∈ A. Then {Uα1 , ..., Uαn
} is a finite subcover of U . Hence

(Y,JY ) is compact.

(2) ⇒ (1) Suppose (Y,JY ) is compact. Consider any cover U of Y by J -open
sets. Then

{U ∩ Y : U ∈ U}
is a cover of Y by JY -open sets, hence it has a finite subcover

{Uα1 ∩ Y, ..., Uαn
∩ Y },

for some Uα1 , ..., Uαn
∈ U . Clearly {Uα1 , ..., Uαn

} is a finite subcover of U .
∴ Y is a compact subset of X .
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17 Product topologies

Let (X1,J1) and (X2,J2) be topological spaces. We can define a topology on
X1 × X2 in a natural way. Consider a subset S of X1 × X2 and a point x =
(x1, x2) ∈ S.

We say that S is a J1×J2-neighbourhood of x if there exists a J1-neighbourhood
U1 of x1 and a J2-neighbourhood U2 of x2 such that

U1 × U2 ⊂ S.

We say that a subset S ofX1×X2 is J1×J2-open if S is a J1×J2-neighbourhood
of each of its points.

Theorem 17.1. The collection of J1 × J2-open sets is a topology on X1 ×X2.

Check the statement.

This topology is called the product topology of J1 and J2, and is denoted by
J1 × J2.

[Strictly speaking, this is an abuse of notation, since J1 ×J2 ”ought to” mean
{(U1, U2) : U1 ∈ J1, U2 ∈ J2}.]

Example 17.2. Let (X1,J1) = (X2,J2) = R with the natural topology. Then
J1 × J2 coincides with the natural topology of R2, i.e. the topology induced by
the Euclidean metric on R2.

Let d denote the Euclidean metric on R2. Consider any d-open set U ⊂ R2

and any x ∈ U. Since U is open there exists ǫ > 0 such that Bǫ(x; d) ⊂ U. Then
(xj − ǫ√

2
, xj +

ǫ√
2
) is open in R for j = 1, 2, and

(x1 −
ǫ√
2
, x1 +

ǫ√
2
)× (x2 −

ǫ√
2
, x2 +

ǫ√
2
) ⊂ Bǫ(x; d) ⊂ U.

Hence U is a J1 ×J2-neighbourhood of each of its points, i.e. U ∈ J1 × J2.

Converse – exercise.
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Theorem 17.3. The product topology J1×J2 comprises the collection of all unions
of families of products Uλ × Vλ where λ runs over an arbitrary index Λ and Uλ ∈
J1, Vλ ∈ J2 for all λ ∈ Λ.

Proof. Let G be a J1 × J2-open set. For each point λ ∈ G, since G is a J1 ×
J2-neighbourhood of λ, there exist J1- and J2-open sets respectively such that
Uλ × Vλ ⊂ G. Then ⋃

λ∈G
Uλ × Vλ = G

and so G is a union of a family of sets Uλ × Vλ of the stated type.

Coversely, suppose

G =
⋃

λ∈Λ
Uλ × Vλ

for some index set Λ and some families {Uλ}λ∈Λ, {Vλ}λ∈Λ of J1- and J2- open sets
respectively. Clearly, for any λ ∈ Λ, Uλ × Vλ is a J1 × J2-neighbourhood of each
of its points, i.e. it is J1 × J2-open. Since J1 ×J2 is a topology,

⋃
λ∈Λ Uλ × Vλ is

J1 × J2-open, and hence G is J1 × J2-open.

Theorem 17.4. If (X, T ) and (Y,J ) are compact topological spaces then X × Y
is compact with respect to the product topology T × J .

Proof. Let {Gλ}λ∈Λ be an open cover of X × Y for the product topology T × J .
We shall construct a finite subcover for X ×Y. To begin with hold x ∈ X fixed an
consider the points {(x, y) : y ∈ Y }.

For each y ∈ Y there is a λ(x,y) ∈ Λ such that (x, y) ∈ Gλ(x,y)
and since each Gλ

is open there are open neighbourhoods Ux(y), Vx(y) of x, y in X, Y respectively
such that

Ux(y)× Vx(y) ⊂ Gλ(x,y)
.

Since {Vx(y) : y ∈ Y } is an open cover of Y and Y is compact, there is a positive
integer N(x) and points y1, ..., yN(x) ∈ Y such that

Vx(y1) ∪ ... ∪ Vx(yN(x)) = Y.

Let
Ux = Ux(y1) ∩ ... ∩ Ux(yN(x)).

Then {Ux : x ∈ X} is an open cover of X. Hence, since X is compact, there is a
positive integer M and points x1, ..., xM ∈ X such that

Ux1 ∪ ... ∪ UxM
= X.
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We claim that {Uxi
× Vxi

(yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N(xi)} is an open cover of
X × Y. Since

Uxi
× Vxi

(yi) ⊂ Gλ(xi,yj),

it will follow that {Gλ}λ∈Λ has a finite subcover.

Consider any point (x, y) ∈ X × Y. Since the (Uxi
)Mi=1 cover X, there exists

i ∈ {1, ...,M} such that x ∈ Uxi
. Since, for each i, the sets (Vxi

(yj))
N(xi)
j=1 cover Y,

there exists j ∈ {1, 2, ..., N(xi)} such that y ∈ Vxi
(yj). Thus

(x, y) ∈ Uxi
× Vxi

(yj)

as required.

We have shown that every open subcover of X×Y has a finite subcover. Hence
X × Y is compact.
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18 Infinite products

The construction in the previous sections extends fairly easily to arbitary products.

Let Λ be an index set and suppose that, for each λ ∈ Λ, we have a topological
space (Xλ,Jλ). Recall that the Cartesian product of the family {Xλ}λ∈Λ is defined
to be the set of functions

x : Λ →
⋃

λ∈Λ
Xλ

such that x(λ) ∈ Xλ for all λ ∈ Λ.

We often write xλ instead of x(λ), and think of xλ as the ”λth co-ordinate” of
x. Thus we can write x = (xλ)λ∈Λ.

We denote the Cartesian product of the family {Xλ}λ∈Λ by
∏

λ∈ΛXλ.

In the case that all the Xλ are equal, say to X , the product
∏

λ∈ΛXλ is also
written XΛ.

We wish to define a ”product topology” on
∏

λ∈ΛXλ. For any λ1 ∈ Λ and
U1 ∈ Jλ1, let

N (λ1, U1) = {x ∈
∏

λ∈Λ
Xλ : xλ1 ∈ U1}.

For any positive integer n, any λ1, ..., λn ∈ Λ and

Uλj
∈ Jλj

for j = 1, 2, ..., n,

let
N (λ1, ..., λn, U1, ..., Un) = N (λ1, U1) ∩ ... ∩ N (λn, Un)

= {x ∈
∏

λ∈Λ
Xλ : xλj

∈ Uj , 1 ≤ j ≤ n}.

Consider a subset S of
∏

λ∈ΛXλ and a point x ∈ S. We define a topology

J =
∏

λ∈Λ
Jλ

on
∏

λ∈ΛXλ by saying that S is a J -neighbourhood of x if there exist a positive
integer n, points λ1, ..., λn ∈ Λ and neighbourhoods Uj ∈ Jλj

of xλj
for j = 1, ..., n

such that
N (λ1, ..., λn, U1, ..., Un) ⊂ S.
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We say that S ⊂∏λ∈ΛXλ is J -open if S is a J -neighbourhood of each of its points.

We define J to be the collection of all J -open sets.

Theorem 18.1. J is a topology on
∏

λ∈ΛXλ.

Note that in the case that Λ = {1, 2} the topology J coincides with the prod-
uct topology J1 × J2 of Section 17.

Example 18.2. Let Λ = N, Xλ = R for all λ ∈ N. Here
∏

λ∈ΛXλ = RN the set
of infinite sequences x = (xn)n∈N of real numbers. Any open non-empty set in RN

for the product topology is big.

Consider, for example, any open neighbourhood U of the zero sequence (0)n∈N.
For some positive integer m and open neighbourhoods U1, ..., Um of 0 in R we have

U ⊃ N (1, 2, ..., m, U1, ..., Um)

= {(xn)n∈N : x1 ∈ U1, ..., xm ∈ Um}.
Note that only finitely many co-ordinates of elements ofN (1, ..., Um) are restricted:
if (xn)n∈N ∈ N then also (x1, x2, ..., xm, x

′
m+1, x

′
m+2, ...) ∈ N for any choice of

x′m+1, x
′
m+2, ... ∈ R.

Example 18.3. Let Λ = N, Xλ = [0, 1] for all λ ∈ N. HereX =
∏

λ∈ΛXλ = [0, 1]N.
We can define a metric d on X by

d((xn)n∈N, (yn)n∈N) = sup
n

|xn − yn|.

It is not the case that d induces the product topology on [0, 1]N. Consider the
sequence x1, x2, x3, ... of elements of [0, 1]N, where

xk = (0, 0, ..., 0, 1, 1, 1, ...)

xk tends to the zero sequence as k tends to ∞ when [0, 1]N has the product topol-
ogy. However d(xk, xl) = 1 whenever k 6= l, and so the sequence (xk)k∈N does not
converge in the topological space ([0, 1]N, d).

Remarkably enough the space [0, 1]N is compact with respect to the product
topology.
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Theorem 18.4. (Tychonov’s Theorem) If Λ is a set and (Xλ,Jλ) is a compact
topological space for every λ ∈ Λ then

∏
λ∈ΛXλ is compact with respect to the

product topology.

This theorem requires one of the higher axioms of set theory. In fact it is
equivalent to the axiom of choice. Thus it is not true in Zermelo-Fraenkel set theory
without the axiom of choice. There are models of set theory in which Tychonov’s
Theorem is false. However almost all professional mathematicians work within the
framework of Zermelo-Fraenkel set theory with the axiom of choice.
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Part III. The Gelfand representation theorem

The main aim of this part of lectures is to prove the Gelfand representation the-
orem for a commutative Banach algebra A. To start with we shall define the
character space Â of a commutative Banach algebra A and the Gelfand topology
on Â. We shall show that there is a bijective mapping between the character space
Â and the set of maximal ideals of A. We shall introduce the radical of A and a
notion of semisimplicity of A.
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19 The character space

Let A be a commutative Banach algebra. Recall that a character of A is a non-zero
algebra homomorphism from A to C; the character space Â of A is the set of all
characters of A.

Lemma 19.1. Let A be a commutative Banach algebra (with or without e). For
any character φ of A and any x ∈ A,

|φ(x)| ≤ ‖x‖.
Proof. Let λ = φ(x) and suppose |λ| > ‖x‖. Then ‖x/λ‖ < 1, and so

y = lim
n→∞

(
x

λ
+
x2

λ2
+ ...+

xn

λn

)

exists; see a proof of Lemma 3.3.
We have

λy − xy = λ lim
n→∞

(
x

λ
+
x2

λ2
+ ... +

xn

λn

)
− x lim

n→∞

(
x

λ
+
x2

λ2
+ ...+

xn

λn

)

= lim
n→∞

(
x+

x2

λ
+ ...+

xn

λn−1
− x2

λ
− ...− xn

λn−1

)

= x.

Apply the character φ:

λ = φ(x) = φ(λy − xy) = λφ(y)− φ(x)φ(y)

= λφ(y)− λφ(y) = 0.

Therefore, λ = 0. This is a contradiction. Hence |φ(x)| ≤ ‖x‖.
Corollary 19.2. Let A be a commutative Banach algebra. The character space Â
of A is a subset of the closed unit ball of A∗.

Recall that, for φ ∈ A∗,
‖φ‖ = sup

‖x‖≤1

|φ(x)|.

Definition 19.3. Let A be a commutative Banach algebra. For x ∈ A, the Gelfand
transform of x is the function

x̂ : Â→ C : φ 7→ φ(x).

Thus
x̂(φ) = φ(x)

for every x ∈ A and every character φ of A.
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Example 19.4. If A = C(K), then Â = {vt : t ∈ K}. For x ∈ C(K), x̂ : Â→ C
satisfies

x̂(vt) = vt(x) = x(t), t ∈ K.

Thus, if vt is identified with t, x̂ is the same as x.

Example 19.5. If A = ℓ1(Z+), then Â contains the characters φα for α ∈ △(0, 1)
where

φα((xn)
∞
n=0) =

∞∑

n=0

xnα
n.

Then, if x = (xn)
∞
n=0,

x̂(φα) = φα(x) =
∞∑

n=0

xnα
n.

Definition 19.6. Let A be a commutative Banach algebra. The Gelfand topology
on Â is the coarsest topology for which the functions {x̂ : x ∈ A} are continuous.

Recall that if σ, τ are topologies on a set E then σ is coarser than τ is σ ⊂ τ.
One also says that τ is finer than σ.

Lemma 19.7. If F is a collection of C−valued functions on a set E then there
exists a coarsest topology κ for which the members of F are continuous. A base
for κ consists of the sets

V (f1, ..., fn;U1, ..., Un) = {t ∈ E : fj(t) ∈ Uj , 1 ≤ j ≤ n}

where n ∈ N, f1, ..., fn ∈ F and U1, ..., Un are open in C.

Proof. One can readily check that the sets V (f1, ..., fn;U1, ..., Un) do comprise the
base for a topology κ on E.

For any f ∈ F and open U ⊂ C we have

f−1(U) = V (f ;U),

a basic κ-open set. Hence the members of F are continuous with respect to k.
Let τ be a topology on E such that all members of F are continuous with

respect to τ. Consider any f1, f2, ..., fn ∈ F and open U1, ..., Un in C. Then

f−1
j (Uj) ∈ τ,

and hence

V (f1, ..., fn; , U1, ..., Un) = f−1
1 (U1) ∩ ... ∩ f−1

n (Un) ∈ τ.

Thus κ ⊂ τ. Therefore κ is the coarsest topology for which the members of F are
continuous.
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Thus the definition of the Gelfand topology in Definition 19.6 makes sense, and
we have:

Theorem 19.8. Let A be a commutative Banach algebra. A base for the Gelfand
topology on Â is given by the sets

V (x1, ..., xn; , U1, ..., Un) = {φ ∈ Â : x̂j(φ) ∈ Uj , 1 ≤ j ≤ n}

= {φ ∈ Â : φ(xj) ∈ Uj , 1 ≤ j ≤ n}
where n ∈ N, x1, ..., xn ∈ A, U1, ..., Un are open in C.

Note that, by Lemma 19.1, any character φ of A satisfies

φ(x) ∈ △(0, ‖x‖) = {z ∈ C : |z| ≤ ‖x‖}

for x ∈ A. Hence
φ ∈

∏

x∈A
△(0, ‖x‖).

Corollary 19.9. Let A be a commutative Banach algebra. The Gelfand topology
of Â coincides with the relative topology Â enjoys as a subset of

∏
x∈A △(0, ‖x‖)

with the product topology.

Proof. The sets V (x1, ..., xn;U1, ..., Un) in Theorem 19.8 constitute a base for both
topologies.

Theorem 19.10. If the commutative Banach algebra A has an identity then Â is
a compact Hausdorff space with respect to the Gelfand topology.

Proof. Let A have identity e. Let H be the set of homomorphisms from A to C.
Note that H = Â ∪ {0}.

Let Y =
∏

x∈A△(0, ‖x‖). By Tychonov’s Theorem 18.4, Y is compact and
Hausdorff in the product topology.

Claim: H is a closed subset of Y . Let x ∈ A and

vx : Y → C : φ 7→ φ(x).

For U open in C,

v−1
x (U) = {φ ∈

∏

y∈A
△(0, ‖y‖) : φ(x) ∈ U}

is a basic open set in Y, and so vx is continuous.
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Hence, for any x, y ∈ A,

vxy − vxvy : Y → C

is continuous. Therefore

⋂

x,y∈A
(vxy − vxvy)

−1({0})

is closed in Y . That is, the set of multiplicative functions in Y is closed in Y .
Similarly for the other algebraic operations.

Thus H is a closed subset of the compact Hausdorff space Y . By Theorem
15.7, H is a compact Hausdorff space.

For φ ∈ H we have
φ ∈ Â ⇐⇒ φ(e) = 1,

so that
Â = H ∩ v−1

e ({1}).
Hence Â is a closed subspace of H , and so Â is a compact Hausdorff space.

Theorem 19.11. For any compact Hausdorff space K, the character space C(K)Λ

of C(K) in the Gelfand topology is homeomorphic to K.

Proof. By Theorem 9.2, the map

v : K → C(K)Λ : t 7→ vt

is surjective. A theorem in topology (Urysohn’s Lemma) asserts that if t1 6= t2 in
K then there exists f ∈ C(K) such that f(t1) 6= f(t2), and hence vt1 6= vt2 . Thus
v is bijective.

For any x ∈ C(K), we have, for t ∈ K,

x̂(vt) = x(t) = x ◦ v−1(vt),

so that
x̂ = x ◦ v−1.

Let τ be the ”topology of K transferred to C(K)Λ”: more precisely,

τ = {v(U) : U open in K}.

Claim: for any x ∈ C(K),
x̂ : (C(K)Λ, τ) → C
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is continuous. For any open set W ⊂ C we have

x̂−1(W ) = (x ◦ v−1)−1(W ) = v(x−1(W )) ∈ τ

since x−1(W ) is open in K. Hence x̂ is continuous with respect to τ. Since the
Gelfand topology is the coarsest topology for which all the x̂ are continuous, τ is
finer than the Gelfand topology. That is, for each Gelfand-open set V in C(K)Λ,
v−1(V ) is open in K. Hence v : K → C(K)Λ is continuous.

Every bijective continuous map from a compact space to a Hausdorff space is
a homeomorphism, Hence K is homeomorphic to C(K)Λ.

This theorem shows that we can ”recover” K from the structure of the algebra
C(K).
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20 The Gelfand representation theorem

To what extent is a general commutative Banach algebra like C(K) for some
Hausdorff space K?

Theorem 20.1. Let A be a commutative Banach algebra with identity. The
Gelfand transformation

Γ : A→ C(Â) : x 7→ x̂

is an algebra homomorphism from A to the algebra of continuous C-valued func-
tions on the compact Hausdorff space Â in its Gelfand topology, with pointwise
operations. Moreover ‖Γ‖ ≤ 1.

Proof. By Theorem 19.10, Â is a compact Hausdorf space. For x ∈ A, x̂ is
continuous on Â by Definition 19.6, that is, x̂ ∈ C(Â). Thus Γ does map A into
C(Â).

Note that Γ is linear. Consider x, y ∈ A and λ ∈ C. For any φ ∈ Â, we have

̂(x+ y)(φ) = φ(x+ y) = φ(x) + φ(y) = x̂(φ) + ŷ(φ).

∴
̂(x+ y) = x̂+ ŷ.

∴ Γ(x+ y) = (Γx) + (Γy)

for all x, y ∈ A. Therefore Γ is additive.

λ̂xφ = φ(λx) = λx̂(φ)

∴ Γ(λx) = λΓ(x)

for all x ∈ A and λ ∈ C. Thus Γ is multiplicative.
For φ ∈ Â,

(̂xy)(φ) = φ(xy) = φ(x)φ(y) = x̂(φ)ŷ(φ) = (x̂ŷ)(φ).

∴ Γ(xy) = (Γx)(Γy)

for all x, y ∈ A. Hence Γ is a homomorphism of algebras.
For x ∈ A, we have

‖Γx‖C(Â) = sup
φ∈Â

|Γx(φ)|

= sup
φ∈Â

|x̂(φ)| = sup
φ∈Â

|φ(x)|

≤ ‖x‖A (by Lemma 19.1).

Hence ‖Γ‖ ≤ 1.
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As we have seen in Theorem 19.11, if A = C(K) for some compact Hausdorff
space K then Â can be identified with K and Γ is the identity mapping A→ C(Â).
More commonly Range Γ is a proper subalgebra of C(Â).

Example 20.2. Let A = C1[0, 1], the Banach algebra of continuously differen-
tiable C-valued functions on [0, 1] with pointwise operations and norm

‖f‖C1 = sup
0≤t≤1

|f(t)|+ sup
0≤t≤1

|f ′(t)|.

Then Â consists of evaluation functionals

vt : A→ C : f 7→ f(t)

for 0 ≤ t ≤ 1. The character space Â in its Gelfand topology can be identified with
[0, 1] in its standard topology, and Γ : C1[0, 1] → C[0, 1] is the natural injection
mapping.

We shall shortly give an example in which Γ is not an obvious injection.

20.1 Singly generated algebras.

Definition 20.3. Let A be a Banach algebra with identity e. We say that A is
generated by an element x ∈ A if the smallest closed subalgebra of A containing e
and x is A; equivalently, if the closed linear span of {e, x, x2, ...} in A is A.

Theorem 20.4. Let A be a commutative Banach algebra with identity e and sup-
pose that A is generated by x. The character space Â can be identified with the
spectrum σ(x) of x, and the Gelfand topology of Â agrees with the natural topology
of σ(x) ⊂ C. More precisely,

x̂ : Â→ σ(x) ⊂ C : φ 7→ x̂(φ) = φ(x)

is a homeomorphism.

Proof. Proof to follow on Page 76.

Example 20.5. Consider ℓ1(Z+) with convolution multiplication (Example 6.1).
What is the Gelfand representation of A?

Note that A is singly generated. Let en = (0, ..., 0, 1, 0, ...) (1 in the nth place
for n ∈ Z+.) The element e0 is an identity for A and e1 is a generator. In fact
e1 ∗ e1 ∗ ... ∗ e1 = en, and

(x0, x1, ..., xn, 0, 0, ...) = x0e0 + x1e1 + x2e1 ∗ e1 + ... + xne1 ∗ ... ∗ e1.
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Hence the smallest closed subalgebra of A containing e0 and e1 is A. It follows
that Â is homeomorphic to σ(e1). Since ‖e1‖ = 1, we have σ(e1) ⊂ △(0, 1).

Claim: each φ ∈ Â has a form φα for some α ∈ △(0, 1). Consider any
φ ∈ Â and suppose φ(e1) = α ∈ △(0, 1). For x = (x0, x1, ..., xn, 0, 0, ...) ∈ ℓ1(Z+),
we have

x = x0e0 + x1e1 + x2e1 ∗ e1 + ... + xne1 ∗ ... ∗ e1
and so

φ(x) = x0φ(e0) + x1φ(e1) + x2φ(e1)
2 + ...+ xnφ(e1)

n

=

n∑

j=0

xjα
j

= φα(x) in the notation of Example 7.2(5).

Since {x ∈ A : φ(x) = φα(x)} is a closed subalgebra of A that contains e0 and e1
it equals A; that is, φ = φα. Hence

ê1 : Â→ σ(e1) = △(0, 1) : φα 7→ φα(e1) = α

is a homeomorphism, and if we identity Â with △(0, 1) via φ 7→ α we have the
Gelfand representation

Γ : ℓ1(Z+) → C(△(0, 1)) : x 7→ x̂

where

x̂(α) = φα(x) =
∞∑

n=0

xnα
n.

Notice that if (xn)
∞
n=0 ∈ ℓ1(Z+) then

x̂(z) =
∞∑

n=0

xnz
n

is an absolutely convergent Taylor series in △(0, 1).

Thus ”Γ maps ℓ1(Z+) to the algebra of analytic functions in D with absolutely
convergent Taylor series in △(0, 1).”
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21 Closed ideals

Let A be a Banach algebra with identity e. Ideals of A are not necessarily closed.
For example, in ℓ∞ the linear subspace cF of finitely non-zero sequences is an ideal,
but its closure is c0.

Lemma 21.1. Let A be a Banach algebra with identity e.
(i) The closure of an ideal in A is an ideal.
(ii) The closure of a proper ideal is a proper ideal.

Proof. (i). Let I be an ideal, we denote the closure of I by Cl I. Consider
x, y ∈ Cl I. Suppose x+ y /∈ Cl I. There is a neighbourhood U of x+ y which does
not meet I. Since addition

A×A→ A

is continuous at (x, y) there are neighbourhood V,W of x, y respectively such that
V + W ⊂ U. Since x, y ∈ Cl I there exist points ξ ∈ V ∩ I, η ∈ W ∩ I. Then
ξ + η ∈ V +W ⊂ U and ξ + η ∈ I, contradicting the fact that U ∩ I = ∅. Hence
x+ y ∈ Cl I.

Likewise, for a ∈ A and x ∈ Cl I, xa ∈ Cl I and ax ∈ Cl I, and λx ∈ Cl I for
λ ∈ C. Hence Cl I is an ideal.

(ii). Let I be a proper ideal of A. By Theorem 7.12, I does not contain any
regular element of A. By Lemma 3.3, B1(e) is a neighbourhood of e consisting of
regular elements, hence is disjoint from I. Thus e /∈ Cl I, and so Cl I is a proper
ideal.

Theorem 21.2. Let A be a Banach algebra with identity e. Maximal ideals of A
are closed.

Proof. Let I be a maximal ideal of A. By definition I is proper, and so, by Lemma
21.1, Cl I is a proper ideal of A. We have

I ⊂ Cl I ( A,

and so, by maximality of I, I = Cl I. Thus I is closed.
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22 Quotient algebras

Recall that the kernel of an algebra homomorphism is an ideal, see Remark 7.9.
We shall show the converse: every ideal is the kernel of a homomorphism. Given
an ideal I in an algebra A we shall construct an algebra A/I (”A mod I”) and a
homomorphism φ : A→ A/I such that ker φ = I.

Definition 22.1. Let A be an algebra and let I be an ideal in A. For x ∈ A the
coset of x mod I is the set x+ I, that is, {x+ y : y ∈ I}.

The quotient set A/I is the set of cosets in A (mod I):

A/I = {x+ I : x ∈ A}.

Note: if we write x ≡ y (mod I) to mean x − y ∈ I, then ≡ (mod I) is an
equivalence relation, and A/I consists of the corresponding equivalence classes.

Example 22.2. Let A = C[0, 1] and let

I = {f ∈ A : f(t) = 0 for t ∈
[
0,

1

2

]
}.

I is an ideal of A. For any g ∈ A, g + I consists of all f ∈ A such that f agrees
with g on

[
0, 1

2

]
. A/I can be naturally identified with C

[
0, 1

2

]
.

Theorem 22.3. Let A be an algebra and let I be an ideal in A. The quotient
linear space A/I is an algebra with respect to the operations defined for x, y ∈ A
and scalar λ ∈ C by

(x+ I) + (y + I) = (x+ y) + I,

(x+ I)(y + I) = (xy) + I,

λ(x+ I) = (λx) + I.

Furthermore the map
k : A→ A/I : x 7→ x+ I

is a homomorphism of algebras.

Proof. The above operations are well defined, for if x+I = x′+I and y+I = y′+I
then there are i1, i2 ∈ I such that

x− x′ = i1, y − y′ = i2,

and hence x+ y − (x′ + y′) = i1 + i2 ∈ I, so that

(x+ y) + I = (x′ + y′) + I.
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Similarly

x′y′ − xy = (x− i1)(y − i2)− xy = −i1y − xi2 + i1i2 ∈ I,

so that
x′y′ + I = xy + I,

and
λx− λx′ = λi1 ∈ I,

so that
λx+ I = λx′ + I.

The algebra axioms for A/I follow easily from those for A.
The fact that k is a homomorphism is immediate from the definition.

Definition 22.4. k : A→ A/I is called the quotient map or the canonical homo-
morphism.

Corollary 22.5. Let A be an algebra. The ideals of A coincide with the kernels
of homomorphisms of A.

Proof. If φ : A → B is a homomorphism then ker φ is an ideal. If I is an ideal
then

k : A→ A/I

is a homomorphism of algebras and

x ∈ ker k ⇐⇒ k(x) = 0 in A/I

⇐⇒ x+ I = 0 + I

⇐⇒ x ∈ I.

Thus I = ker k, and so I is the kernel of a homomorphism.

Now consider the case of normed algebras.

Definition 22.6. Let E be a normed space and let F be a closed subspace of E.
For x ∈ E the coset of x mod F is the set x+ F. The quotient set E/F is the set
of cosets of E mod F .

Addition and scalar multiplication are defined in E/F by

(x+ F ) + (y + F ) = (x+ y) + F, λ(x+ F ) = (λx) + F. (22.1)
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Theorem 22.7. Let E be a normed space and let F be a closed subspace of E. The
quotient set E/F is a linear space under operations (22.1). The pair (E/F, ‖.‖E/F )
is a norm space, where

‖x+ F‖E/F = inf
y∈F

‖x+ y‖E.

If E is a Banach space then so is E/F.

‖.‖E/F is called the quotient norm.

Corollary 22.8. If I is a closed ideal in a Banach algebra A then A/I is a Banach
algebra under the quotient norm. If A has an identity, so does A/I.

Proof. By Theorems 22.5 and 22.7, A/I is an algebra and a Banach space. For
x, y ∈ A,

‖(x+ I)(y + I)‖A/I = ‖xy + I‖A/I

= inf
z∈I

‖xy + z‖A
≤ inf

z1,z2∈I
‖(x+ z1)(y + z2)‖A

≤ inf
z1,z2∈I

‖x+ z1‖A‖y + z2‖A
= ‖x+ I‖A/I‖y + I‖A/I .

Thus ‖.‖A/I is submultiplicative. Hence A/I is a Banach algebra.
If e is an identity in A then e + I is one in A/I.

Example 22.9. Let A = C[0, 1] and let

I = {f ∈ A : f(t) = 0 for t ∈
[
0,

1

2

]
}.

I is an ideal of A as in Example 22.2. Define

φ : A/I → C

[
0,

1

2

]
: f + I 7→ f|[0, 1

2
].

Then φ : A/I → C
[
0, 1

2

]
is an isometric isomorphism.
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23 Maximal ideals and characters

Recall Theorem 7.15 that the kernel of a character of a commutative Banach
algebra is a maximal ideal.

Theorem 23.1. Every maximal ideal of a commutative Banach algebra with iden-
tity is the kernel of a character.

Proof. Let A be commutative Banach algebra with identity e and let I be a max-
imal ideal of A. By Theorem 21.2, I is a closed ideal. By Corollary 22.8, A/I is a
commutative Banach algebra with identity.

The zero element of A/I is 0 + I, which we can write {I}.
Claim: {I} is a maximal ideal of A/I. Let

k : A→ A/I : x 7→ x+ I

be the canonical homomorphism. Consider any proper ideal J of A/I. Then

k−1(J ) = {x ∈ A : x+ I ∈ J }

is a proper ideal of A containing I. Since I is maximal we have k−1(J) = I, that
is,

x+ I ∈ J ⇐⇒ x ∈ I.

Therefore, J = {I}. Hence {I} is a maximal ideal, as claimed.
Since A/I is a commutative Banach algebra with identity in which the only

ideals are {I} and A/I, it follows from Examples Sheet 5, Q7, that A/I is a field
and so, by the Gelfand-Mazur Theorem 5.5, that A/I is isomorphic (as an algebra)
to C.

Hence k : A → A/I ≈ C is a character (note that k(e) is the identity of A/I,
so k 6= 0), and I = ker k is the kernel of a character.

Corollary 23.2. There is a bijective mapping φ 7→ kerφ between the character
space and the set of maximal ideals of a commutative Banach algebra with identity.

We shall denote by MA the set of maximal ideals of a commutative Banach
algebra A.

Proof. By Theorem 7.15,
Â→MA : φ 7→ ker φ

is a well defined mapping, and, by Theorem 23.1, it is surjective.
It is also injective. Suppose φ, ψ ∈ Â and ker φ = kerψ. We have

φ(e) = ψ(e) = 1
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where e is the identity of A. For any x ∈ A, x− φ(x)e ∈ ker φ = kerψ, and so

0 = ψ(x− φ(x)e) = ψ(x)− φ(x)ψ(e) = ψ(x)− φ(x).

Hence φ = ψ.
Thus Â→ MA : φ 7→ ker φ is a bijection.

Remark 23.3. In view of Corollary 23.2 we can identify Â with MA. For any
x ∈ A, we can regard the Gelfand transform x̂ as a function

x̂ :MA → C,

given by
x̂(M) = φ(x), where M = ker φ ∈MA.

The Gelfand topology on MA is the coarsest topology for which the functions
x̂, x ∈ A, are continuous.

Definition 23.4. Let A be commutative Banach algebra with identity e. The set
of maximal ideals MA, with the Gelfand topology, is called the maximal ideal space
of A.

Corollary 23.5. In any commutative Banach algebra A with identity, for any
x ∈ A,

σ(x) = {φ(x) : φ ∈ Â} = Range x̂.

Proof. By Theorem 7.5,
{φ(x) : φ ∈ Â} ⊂ σ(x).

Consider λ ∈ σ(x). The ideal (λe − x)A is proper, hence, by Theorem 7.17,
(λe−x)A is contained in a maximal idealM . By Theorem 23.1, there is a character
φ of A such that M = ker φ. Then λe− x ∈ ker φ, that is

φ(λe− x) = 0.

Hence
φ(x) = φ(λe) = λ.

Thus
σ(x) ⊂ {φ(x) : φ ∈ Â}.

Hence

σ(x) = {φ(x) : φ ∈ Â}
= {x̂(φ) : φ ∈ Â}
= Range x̂.
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Proof of Theorem 20.4: if a commutative Banach algebra with identity e is
generated by an element x then

x̂ : Â→ σ(x)

is a homeomorphism.

Proof. By Corollary 23.5, x̂ : Â→ σ(x) is a surjective mapping. It is also injective,
for suppose φ, ψ ∈ Â and x̂(φ) = x̂(ψ). Then

{a ∈ A : φ(a) = ψ(a)}

is a closed subalgebra of A containing e and x, hence it is all of A. That is, φ = ψ.
It follows that x̂ : Â→ σ(x) is a bijective mapping. The function x̂ is continuous,
by definition of the Gelfand topology. The character space Â is compact and σ(x)
is Hausdorff, hence x̂ is a homeomorphism.
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24 Semisimplicity and the radical

Return to the Question of Section 20: to what extent does a general commutative
Banach algebra resemble C(K)? In the case that A has an identity we answered
the question by constructing the Gelfand transformation

Γ : A→ C(Â),

so that A can be homomorphically mapped into C(Â). If Γ is injective, this means
that A can be regarded as a subalgebra of C(Â). However, Γ need not be injective.

Examples 24.1. 1. Let E be a Banach space endowed with zero multiplica-
tion: xy = 0 ∀x, y ∈ E. Then E is a commutative Banach algebra without
identity. Note that Ê is empty. For suppose φ is a character of E. For
x ∈ E, we have

φ(x2) = φ(xx) = φ(0) = 0,

and so φ = 0 - a contradiction. Thus Γ is not defined for E.

2. Let A be the algebra obtained by ”adjoining an identity” to E. That is,
A = C⊕ E, with operations

(λ, x) + (µ, y) = (λ+ µ, x+ y),

(λ, x)(µ, y) = (λµ, µx+ λy),

c(λ, x) = (cλ, cx),

for λ, µ, c ∈ C and x, y ∈ E.

A is a Banach algebra with identity under the norm

‖(λ, x)‖ = |λ|+ ‖x‖E .

Its identity is e = (1, 0).

We can define a character φ0 on A by

φ0(λ, x) = λ.

If ψ is any character on A then ψ|E is a homomorphism E → C, hence is 0.
Thus

ψ(λ, x) = ψ(λe+ (0, x)) = λψ(e) = λ,

and so ψ = φ0. Thus Â = {φ0}. Here C(Â) is one-dimensional, and

Γ : A→ C(Â)

is far from injective. In fact ker Γ = E.
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3. A more natural example than (2): A = C⊕ L1(0, 1), with convolution mul-
tiplication also has a unique character

(λ, x) 7→ λ.

When ker Γ is large the Gelfand transformation tells us little about the struc-
ture of an algebra A. However, for many natural algebras, ker Γ = {0}.

Definition 24.2. Let A be a commutative algebra with identity. The Jacobian
radical RadA of A is defined to be the intersection of all the maximal ideals of A.
It is an ideal of A.

Note that if A is a commutative Banach algebra with identity then RadA is a
closed ideal of A, since maximal ideals are closed.

Theorem 24.3. For any commutative Banach algebra A with identity the kernel
of the Gelfand transformation Γ of A is RadA.

Proof. Consider x ∈ A.

x ∈ ker Γ ⇐⇒ Γx = 0

⇐⇒ x̂ = 0

⇐⇒ x̂(φ) = 0 ∀φ ∈ Â

⇐⇒ φ(x) = 0 ∀φ ∈ Â

⇐⇒ x ∈ ker φ ∀φ ∈ Â

⇐⇒ x ∈M for all M ∈ MA

⇐⇒ x ∈
⋂

M∈MA

M

⇐⇒ x ∈ RadA.

Hence ker Γ = RadA

Corollary 24.4. The Gelfand transformation of a commutative Banach algebra
A with identity is an injective homomorphism if and only if RadA = {0}.

Definition 24.5. A commutative Banach algebra with identity is semisimple if its
Jacobian radical is {0}.

Thus A is semisimple ⇐⇒ RadA = {0} ⇐⇒ Γ is injective.
Intuitively, A can be thought of as an algebra of continuous functions with

pointwise operations if and only if A is semisimple.
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Examples 24.6. 1. Any algebra which is defined as an algebra of functions
with pointwise operations is semisimple. Indeed, any function in the radical
lies in the kernel of all point evaluations, hence is identically zero.

Thus ℓ∞ is semisimple.

2. A = ℓ1(Z+) is semisimple. Recall Example 20.5,

Â = △(0, 1) = {z ∈ C : |z| ≤ 1}.

Consider x ∈ Rad ℓ1(Z+), x = (xn)
∞
n=0. We have, for all z ∈ △(0, 1),

φz(x) = x̂(z) =

∞∑

n=0

xnz
n = 0.

Notice that if (xn)
∞
n=0 ∈ ℓ1(Z+) then

x̂(z) =

∞∑

n=0

xnz
n

is an absolutely convergent Taylor series in △(0, 1). It follows that all xn = 0,
for example, from the relation

xn =
1

2π

∫

|z|=1

x̂(z)

zn+1
dz.
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