Please solve the following problems:

Qu.1, Qu.2, Qu.5, Qu.10, Qu.11, Qu. 13 and Qu.14;

hand in your solutions by 10.00am on Friday the 8th of March. A tutorial is on Thursday the 28th of February at 17.00 in HERB.G LT2 and a drop-in session is on Thursday the 7th of March at 17.00 in HERB.G LT2.

Z.A.Lykova

MAS3706 Topology (2019) Examples Sheet 2

Qu.1 Consider the metric space (\mathbb{C}^n, d_1) , where

$$d_1(\underline{\mathbf{v}},\underline{\mathbf{w}}) = \sum_{j=1}^n |v_j - w_j|, \text{ for } \underline{\mathbf{v}} = (v_1,\ldots,v_n), \underline{\mathbf{w}} = (w_1,\ldots,w_n) \in \mathbb{C}^n.$$

Give the definition of an *open ball* in the metric space (\mathbb{C}^n, d_1) . Are the following subsets of the metric space (\mathbb{C}^n, d_1) open?

(i)
$$\{ \underline{\mathbf{v}} = (v_1, \dots, v_n) \in \mathbb{C}^n \colon \sum_{j=1}^n |v_j - j| < 5 \},$$

(ii) $\bigcup_{p=1}^\infty \{ \underline{\mathbf{v}} \in \mathbb{C}^n \colon \sum_{j=1}^n |v_j|$

Justify your answer.

Qu.2 Consider the metric space $(C[0, 1], d_{\infty})$, where

$$C[0,1] = \{f: [0,1] \to \mathbb{C}: f \text{ is continuous on } [0,1]\}$$

and

$$d_{\infty}(f,g) = \sup_{0 \le t \le 1} |f(t) - g(t)|.$$

Give the definition of an open ball in the metric space $(C[0, 1], d_{\infty})$. Are the following subsets of the metric space $(C[0, 1], d_{\infty})$ open?

(i)
$$\{f \in C[0,1]: \sup_{0 \le t \le 1} |f(t) - 2007| < 1\},$$

(ii) $\bigcap_{p=1}^{\infty} \{f \in C[0,1]: \sup_{0 \le t \le 1} |f(t) - \cos t| < \frac{1}{p}\}.$

Justify your answer.

Qu.3 Consider the metric space $(\mathbb{C}^n, d_{\infty})$, where

$$d_{\infty}(\underline{\mathbf{v}},\underline{\mathbf{w}}) = \max_{j=1,\dots,n} |v_j - w_j|, \text{ for } \underline{\mathbf{v}} = (v_1,\dots,v_n), \underline{\mathbf{w}} = (w_1,\dots,w_n) \in \mathbb{C}^n.$$

Show that $W = \{ \underline{\mathbf{x}} = (x_n)_{n=1}^5 \in \mathbb{C}^5 : \max_{n=1,\dots,5} |x_n| \leq 1 \}$ is not an open subspace of (\mathbb{C}^5, d_∞) .

Qu.4 Let *a* be a point in a metric space (X, d), and let *r* be a positive real number. Show that the set

$$\{x \in X \colon d(x,a) > r\}$$

is open.

15 marks

15 marks

- **Qu.5** (i) Give the definition of a *topology* on a set X.
 - (ii) Give the definition of the *discrete topology* on a set X.
 - (iii) Is the usual topology on $\mathbb R$ discrete? Justify your answer.

10 marks

- **Qu.6** Find all topologies on the two-element set $X = \{a, b\}$.
- **Qu.7** Find all topologies on the three-element set $X = \{a, b, c\}$.

Qu.8 Prove the following statements, where $f: A \longrightarrow B$ and T_{λ} , $\lambda \in \Lambda$, are subsets of B.

(i)
$$f^{-1}(\bigcup_{\lambda \in \Lambda} T_{\lambda}) = \bigcup_{\lambda \in \Lambda} f^{-1}(T_{\lambda});$$

- (ii) $f^{-1}(\bigcap_{\lambda \in \Lambda} T_{\lambda}) = \bigcap_{\lambda \in \Lambda} f^{-1}(T_{\lambda});$
- (iii) $f^{-1}(B \setminus T) = (A \setminus f^{-1}(T));$
- (iv) $f^{-1}(B) = A$ and $f^{-1}(\emptyset) = \emptyset$;
- (v) If $g: B \longrightarrow C$ then, for each $W \subseteq C$, $(f \circ g)^{-1}(W) = g^{-1}(f^{-1}(W))$.

Recall that, for a subset T of B the **inverse image** of T under f is

$$f^{-1}(T) = \{a \in A : f(a) \in T\}.$$

Recall that, for $S \subseteq A$, the **complement** of S in A is $A \setminus S = \{x \in A : x \notin S\}$.

Qu.9 Let $f: X \longrightarrow Y$, where Y is a topological space. Show that $\{f^{-1}(U): U \text{ open in } Y\}$

is a topology on X.

Qu.10 Let X be any nonempty set and let $p \in X$. Show that

$$\tau_p = \{\emptyset\} \cup \{S \subseteq X \colon p \in S\}$$

is a topology. This is called a **particular point topology**. If $X = \{0, 1\}$, then it is called the **Sierpinski** topology.

10 marks

Qu.11 A topological space X is **Hausdorff** if for each pair of points x_1 and x_2 there are disjoint open sets U_1 and U_2 such that $x_1 \in U_1$ and $x_2 \in U_2$. Show that every metric space (X, d) is Hausdorff.

20 marks

Qu.12 Give the definition of *topologically equivalent* metrics on a set X. Consider the following metrics on \mathbb{C}^3 :

$$d_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^3 |\mathbf{x}_i - \mathbf{y}_i|,$$

$$d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^3 |\mathbf{x}_i - \mathbf{y}_i|^2}$$

and

$$d_{\infty}(\mathbf{x}, \mathbf{y}) = \sup\{|\mathbf{x}_{\mathbf{i}} - \mathbf{y}_{\mathbf{i}}|: 1 \le \mathbf{i} \le \mathbf{3}\}$$

for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ and $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ from \mathbb{C}^3 . Show that d_1, d_2 and d_{∞} are topologically equivalent.

Qu.13 Let C[1,2] be the set of all continuous complex-valued functions defined on the closed interval [1,2], and let

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : 1 \le x \le 2\},\$$

and

$$d_2(f,g) = \left\{ \int_1^2 |f(x) - g(x)|^2 dx \right\}^{1/2}$$

be metrics on C[1,2]. Show that d_{∞} and d_2 are not topologically equivalent.

20 marks

Qu.14 Show that the topology $\tau_{s.i.}$ on \mathbb{R} which consists of \mathbb{R} , \emptyset , and all the semi-infinite open intervals (a, ∞) , $a \in \mathbb{R}$, is not Hausdorff.

10 marks

Qu.15 How many Hausdorff topologies are there on a finite set? Justify your answer.