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It is essential that you read and try to understand the lecture notes from the beginning to
the end.

Many questions from the exam paper will be similar to what you have been asked to do
during the semester.

I do not answer e-mail enquiries as to what material will be in the exam.

Exam Information

Exam:
14.00 p.m. - 16.00 p.m. on Friday 31st May 2019 in St James’ Park, Room A, Bamburgh
Suite, (Main Venue)

Office Hour:
14.00-17.00 on Thursday 30th May 2019 in Herschel Building, Room 3.13

Exam papers MAS3209 and MAS3706 on Topology can be found on
http://www.ncl.ac.uk/exam.papers/

Marks in Exam paper

Section A: 5 questions - 40 marks

Define - 14 marks (bookwork)
Prove - 9 marks (similar to homework examples)
Answer - 17 marks (similar to homework/lecture examples)

Section B: 2 questions - 60 marks

Define/State - 11 marks (bookwork)
Prove - 40 marks (bookwork or similar to homework examples)
Answer - 9 marks (similar to homework/lecture examples)
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Section 1 Open Subsets of R and Continuous Functions

You need to understand all main notions from this section to be able to follow futher
material: open set, continuous function, inverse image, topology on R (Thm 1.19).

Examples Sheet 1: Qu.1

Section 2 Metric Spaces

Definitions: metric, metric space, open ball, open set, metric topology (Thm 2.21).
Theorem 2.22 (statement and a proof).
Examples of metric spaces 2.4-2.11.
Examples of open balls 2.13-2.18.
Examples of open sets 2.24-2.25.

Examples Sheet 1: Qu.4, Qu.9

Qu.

1. Give the definition of an open subset in C with the usual topology.

2. Which of the following subsets of C are open, which are not? Justify your answer:

(a)
⋂∞
n=1{z ∈ C : |z − 2i| < 1 + 1

n
};

(b)
⋃∞
n=1{z ∈ C : |z − 2i| ≤ n}.

Solution

1. A subset U of the topological space (C, τ) with the usual topology τ is called open
if for each point z ∈ U there is an open ball B(z, r) ⊂ U .

2. (a) The set
⋂∞
n=1{z ∈ C : |z − 2i| < 1 + 1

n
} = {z ∈ C : |z − 2i| ≤ 1} is not open in

(C, τ).

(b) The set
⋃∞
n=1{z ∈ C : |z − 2i| ≤ n} = C is open in (C, τ).

H/W 1, Qu. 9. `∞ denotes the set of all bounded sequences ~x = (xn)∞n=1 of complex
numbers. Verify that

d∞(~x, ~y) = sup
n∈N
|xn − yn|

is a metric on `∞.

Solution. For each ~x ∈ `∞, there is a constant M > 0 such that supn∈N |xn| < M . Hence
the mapping

d∞ : `∞ × `∞ → R : (~x, ~y) 7→ sup
n∈N
|xn − yn|

is well-defined.
Let us verify [M1]-[M3].
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[M1] For all ~v = (vn)∞n=1, ~w = (wn)∞n=1 ∈ `∞,
d∞(~v, ~w) = supj∈N |vj − wj| > 0 if ~v 6= ~w and

d∞(~v,~v) = sup
j∈N
|vj − vj| = 0.

[M2] For all ~v = (vn)∞n=1, ~w = (wn)∞n=1 ∈ `∞,

d∞(~v, ~w) = sup
j∈N
|vj − wj|

= sup
j∈N
|wj − vj| = d∞(~w,~v).

[M3] For all ~v = (vn)∞n=1, ~w = (wn)∞n=1, ~u = (un)∞n=1 ∈ `∞, observe that

d∞(~v, ~w) = sup
j∈N
|vj − wj|

= sup
j∈N
|vj − uj + uj − wj|

≤ sup
j∈N

(|vj − uj|+ |uj − wj|)

≤ sup
j∈N
|vj − uj|+ sup

j∈N
|uj − wj|

= d∞(~v, ~u) + d∞(~u, ~w).

Therefore d∞ is a metric and (`∞, d∞) is a metric space.

Section 3 Topological Spaces

Definitions: topology (3.1), topological space (3.2).
Examples of topological spaces 3.4-3.9.

Examples Sheet 2: Qu.1, Qu.2, Qu.4, Qu.5, Qu.10, Qu.14

Qu.

1. Give the definition of a topology on a set X.

2. Let τs.i. consist of R, ∅, and all the semi-infinite open intervals (a,∞), a ∈ R. Then
τs.i. is a topology on R.

Solution.

1. Let X be a set. Then a topology on X is a family τ of subsets of X such that

[T1] τ includes X and ∅;

[T2] τ is closed under arbitrary unions:
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Uλ ∈ τ for all λ ∈ Λ =⇒
⋃
λ∈Λ

Uλ ∈ τ ;

[T3] τ is closed under finite intersections:

U1, U2, . . . , Un ∈ τ =⇒ U1 ∩ U2 ∩ . . . ∩ Un ∈ τ.

2. One can check that

[T1]: τs.i. includes R and ∅.

[T2]: Let (aλ,∞), λ ∈ Λ, be a family of members of τs.i.. Then

(i) if the aλ, λ ∈ Λ are bounded below, their union is (inf aλ,∞) ∈ τs.i.;

(ii) if they are not bounded below, their union is R ∈ τs.i..
[T3]

n⋂
i=1

(ai,∞) = (max(a1, a2, . . . , an),∞) ∈ τs.i..

Hence τs.i. is a topology in R.

Section 4 Hausdorff Spaces and Limits

Definitions: Hausdorff Space (4.1), convergent sequence in a metric space (4.7), convergent
sequence in a topological space (4.11).
Theorems 4.5, 4.13 (statements and proofs).
Examples 4.2 -4.4, 4.9, 4.10 4.12.

Examples Sheet 2: Qu.11
Examples Sheet 3: Qu.1, Qu.2.

Example. Consider the metric space (C4, d1), where C4 = {~v = (v1, v2, v3, v4); vi ∈
C, i = 1, 2, 3, 4} and

d1(~v, ~w) =
4∑
j=1

|vj − wj|,

for ~v = (v1, v2, v3, v4), ~w = (w1, w2, w3, w4).

Show that the sequence (~vn)∞n=1, where
~vn = (2019i+ 1

n2 , 2,
i

2n
,−i) ∈ C4,

i2 = −1, converges to ~u = (2019i, 2, 0,−i) as n→∞ with respect to the metric d1.
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Proof. In the metric space (C4, d1), a sequence (~xn)∞n=1, ~xn ∈ C4, converges to ~x ∈ C4, as
n→∞ if for every ε > 0 there is N ∈ N such that, for all n ≥ N , d1(~xn, ~x) < ε.
Note that

d1(~vn, ~u) =

d1((2019i+
1

n2
, 2,

i

2n
,−i), (2019i, 2, 0,−i)) =

|2019i+
1

n2
− 2019i|+ |2− 2|+

| i
2n
− 0|+ | − i− (−i)| =

{ 1

n2
+

1

2n
} → 0

as n→∞. Thus limn→∞ ~vn = ~u = (2019i, 2, 0,−i) with respect to the metric d1.

Recall that a topological space X is Hausdorff if for each pair of points x1 and x2 there
are disjoint open sets U1 and U2 such that x1 ∈ U1 and x2 ∈ U2.

Example. Show that every metric space (X, d) is Hausdorff.

Proof. Suppose that X is a metric space and x1 and x2 are distinct points of X. Then
δ = d(x1, x2) > 0 and let U1 = B(x1, δ/2), U2 = B(x2, δ/2). Then U1 and U2 are open,
x1 ∈ U1, x2 ∈ U2. Finally, U1 and U2 are disjoint, because if they have a common point z,
it follows that

δ = d(x1, x2) ≤

d(x1, z) + d(z, x2) <

δ/2 + δ/2 = δ,

a contradiction.

Example. The topological space X with the indiscrete topology τ is not Hausdorff
provided X contains more than one point.

Proof. Let x1 and x2 be distinct points in X. Recall that the indiscrete topology τ =
{X, ∅}. Every open set U1 ∈ τ such that x1 ∈ U1 has to be X and therefore x2 ∈ U1. Thus
there are no disjoint open sets U1 and U2 in the indiscrete topology such that x1 ∈ U1

and x2 ∈ U2.
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Section 5 Closed Sets

Definitions: closed set, closed ball.
Propositions 5.4, 5.6 (statements and proofs).
Examples 5.2, 5.3, 5.7.

Examples Sheet 3: Qu.10, Qu.12

Example Consider the topological space (C[0, 1], τd∞) with the metric topology induced
by d∞, where C[0, 1] = {f : [0, 1]→ C : f is continuous on [0, 1]} and

d∞(f, g) = sup
0≤t≤1

|f(t)− g(t)|.

Is the following subset of (C[0, 1], τd∞) closed?

3⋃
p=1

{f ∈ C[0, 1] : sup
0≤t≤1

|f(t)− (cos t)p| ≤ 2p}.

Justify your answer.

Proof. A closed ball B∞(g, r) with centre at g and radius r is closed, since

B∞(g, r)
c

= {f ∈ C[0, 1] : d∞(f, g) > r}

is open in (C[0, 1], τd∞). The set

3⋃
p=1

{f ∈ C[0, 1] : sup
0≤t≤1

|f(t)− (cos t)p| ≤ 2p}

is a finite union of closed balls B∞(gp, rp), where gp(t) = (cos t)p and rp = 2p, p = 1, 2, 3.
Therefore it is closed in (C[0, 1], τd∞).

Section 6 Separation axioms
Read and try to understand the material.

Section 7 Basic Topological Concepts

Definitions: interior of a set (7.1, 7.3), closure of a set (7.8, 7.9), boundary of a set (7.16,
7.17), topology on a subset.
Examples 7.4, 7.5, 7.10, 7.11, 7.18, 7.19.

Definition 0.1. The subset A◦ of A consisting of all the interior points of A is called
interior of A.
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Example 0.2. Consider R with the usual topology and the closed interval A = [a, b] ⊆ R.
Then every point r of the open interval (a, b) is an interior point of [a, b]. One can see that
r ∈ (a, b) and the open subset (a, b) ⊆ A, but a and b are not interior points. Therefore
[a, b]◦ = (a, b).

Example 0.3. Consider R with the usual topology and the subset Z ⊆ R. Every point
of Z is NOT an interior point of Z, since every nonempty open interval contains points
which are not in Z. Therefore Z◦ = ∅.

Section 8 Compactness

Definitions: open cover of X (8.1), open subcover of X (8.3), compact (8.5).
Propositions/Theorems 8.7, 8.8, 8.11, 8.12, 8.15, 8.17 (statements and a number of proofs).
Heine-Borel theorem 8.14 (statements and a proof)
Examples 8.2, 8.4, 8.6, 8.9, 8.16.

Examples Sheet 4: Qu.1, Qu.2

Section 9 Continuity

Definition of a continuous function (9.1, 9.2).
Theorems 9.3, 9.8 and 9.9 (statements and some proofs).
Examples 9.5, 9.6.

Section 10 Metric Spaces Again

Theorems 10.1 and 10.2 (statements and some proofs).

Section 11 Completeness in Metric Spaces

Definitions: Cauchy sequence (11.1), completeness of a metric space (11.5), contraction
(11.11), fixed point of a mapping (11.14).
Theorems/Propositions 11.2, 11.3, 11.8 (statements and some proofs)
Completeness of C(K) (11.9, statement and a proof).
Examples 11.4, 11.6, 11.16.

Examples Sheet 4: Qu.17, Qu.18, Qu.19, Qu.21, Qu.22

Section 12 Connectedness
Read and try to understand the material.

Section 13 Picard’s Theorem
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Picard’s Theorem (try to understand the proof).

Examples Sheet 5: Qu.27
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