Please do the following problems:
Qu.58, Qu.59, Qu.64, Qu.66 and Qu.69.

hand in your solutions on Monday the 11th of December by 16.00. The tutorial is on Monday the 4th December at 11.00 in ARMB.3.38.

Z.A.Lykova

MAS3702 Linear Analysis (2017)
Examples Sheet 5

Qu.58 State the Riesz–Fréchet theorem. Define a mapping $T: C[0,1] \to \mathbb{C}$ by the formula

$$T(f) = -5i \int_0^1 f(t) t^3 dt, \quad i^2 = -1.$$

Prove that T is a bounded linear functional with respect to the norm $\|f\|_2$, where $\|f\|_2 = \left\{ \int_0^1 |f(t)|^2 dt \right\}^{1/2}$. Find $\|T\|$.

15 marks

Qu.59 Let $W = \{f \in C[0,1]: f(1) = 0\}$ and let $R: W \to \mathbb{C}$ be defined by

$$Rf = \int_0^1 xf(x) \, dx.$$

(i) Show that R is a linear functional.
(ii) Let W have the supremum norm $\|\cdot\|_\infty$. Prove that R is continuous on W and find $\|R\|$.

[Hint: Find a sequence of functions, f_n such that $\|f_n\|_\infty = 1$ and $|Rf_n| \to \|R\|$.

20 marks

Qu.60 Let $F: C^1[0,1] \to \mathbb{C}$ be defined by

$$F(f) = f'(1), \quad f \in C^1[0,1].$$

Show that F is a linear functional. Prove that F is discontinuous with respect to the norm $\|\cdot\|_2$, where $\|f\|_2 = \left\{ \int_0^1 |f(t)|^2 dt \right\}^{1/2}$.

Qu.61 Consider $C[-\pi, \pi]$ with the usual inner product norm $\|\cdot\|_2$, where

$$\|f\|_2 = \left\{ \int_{-\pi}^{\pi} |f(t)|^2 dt \right\}^{1/2}.$$

Let $F: C[-\pi, \pi] \to \mathbb{C}$ be defined by

$$Ff = \int_{-\pi}^0 f(x) \, dx.$$

Prove that F is a continuous linear functional on $C[-\pi, \pi]$ such that F is not equal to $<\cdot, g>$ for any $g \in C[-\pi, \pi]$.

Qu.62 Let $(c_0, \|\cdot\|_\infty)$ and $(\ell^1, \|\cdot\|_1)$ be as in Qu. 39 and Qu. 42 respectively. Show that the dual space $(c_0)^*$ of c_0 can be identified with ℓ^1: that is, there is a mapping $T: \ell^1 \to (c_0)^*$ which is an isomorphism of vector spaces and which preserves norms.

Qu.63 Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear operator defined by the formula

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2i \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$$

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2i \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$
where $i^2 = -1$. Find the adjoint operator T^* of T.

Qu.64 Let $T: \ell^2 \to \ell^2$ be the left shift operator:
$$T(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots, x_n, \ldots).$$

(i) Find the following operators T^*, T^*T and TT^*, where T^* is the adjoint operator of T.

(ii) Is T^* invertible? Is TT^* invertible?

20 marks

Qu.65 Show that if S and T are invertible operators in $B(\ell^2)$ then so is ST. Give an example of operators S, T such that ST is invertible, but neither S nor T is invertible.

Qu.66 Consider $C[0, 1]$ with the norm $\| \cdot \|_\infty$, where $\| f \|_\infty = \sup_{t \in [0,1]} |f(t)|$.
Let $T: C[0,1] \to C[0,1]$ be the linear operator defined by the formula
$$(Tx)(t) = 3t^2x(t), \ x \in C[0,1], \ t \in [0,1].$$
Find the spectrum $Sp T$ of T.

25 marks

Qu.67 Let $S, T \in M_n(\mathbb{C})$.

(i) Show that every non-zero eigenvalue of ST with eigenvector v is an eigenvalue of TS with eigenvector Tv.

(ii) Let S and T be matrices which satisfy
$$ST - TS = I.$$ Show that if λ is an eigenvalue of ST then $\lambda - 1$ is an eigenvalue of TS, with the same eigenvector. Hence show there are no pairs of matrices S, T such that $ST - TS = I$.

Qu.68 Let K be the linear operator $K: (C([0, 1]), \| \cdot \|_\infty) \to (C([0, 1]), \| \cdot \|_\infty)$ defined by
$$(Kf)(x) = \int_0^1 (x-t)f(t) \, dt.$$ Show that any eigenvector of K, with non-zero eigenvalue, is of the form $f(x) = Ax + B$, for some constants A and B. Find the non-zero eigenvalues and corresponding eigenvectors of this operator.

Qu.69 Let T be the left shift operator on $(\ell^\infty, \| \cdot \|_\infty)$ defined by
$$T(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots, x_n, \ldots).$$

(i) Find the operator norm $\| T \|$ of T.

(ii) Show that vectors $(1, \lambda, \lambda^2, \lambda^3, \ldots) \in \ell^\infty$, where $\lambda \in \mathbb{C}$ and $|\lambda| \leq 1$, are eigenvectors of T.

(iii) Find the spectrum $Sp T$ of T.

20 marks

Qu.70 (i) Find all the eigenvalues of the left shift operator on ℓ^2:
$$T(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots, x_n, \ldots).$$

(ii) Find the spectrum $Sp T$ of T (use the fact that $Sp T$ is a closed bounded subset of \mathbb{C} and is contained in the closed disc of centre 0, radius $\| T \|$).