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PROJECT 1: EPIDEMICS

Instructions: Do questions 1 to 9, then do either question 10 or 11.

1. Epidemics. To model the spread of an epidemic (e.g. flu, smallpox) we
divide the population in three classes: susceptible individuals, S(t), who
do not have the diseases at time t but risk catching it; infected individ-
uals, I(t), who have the disease at time t and may pass it to susceptible
individuals if they get in contact with them; removed individuals, R(t),
who, having had the disease, are now immune to it, and cannot spread any
longer. The total number of individuals is N = S + I +R. This model is
called SIR, as individuals move from the S–class to the I–class and finally
to the R–class. 1

The governing equations of the model are:

Ṡ = −αIS, (1)

İ = αIS − βI, (2)

Ṙ = βI, (3)

where α > 0 is the rate of infection, and 1/β > 0 is the typical time to be
recover from the disease. The quantities S, I and R, being populations,
cannot be negative. We assume that N >> 1, so S, I and R are real
numbers.

The initial condition of the SIR model is that at the beginning of the
epidemic (t = 0) a small number I(0) of infected individuals is introduced
in the population; since R(0) = 0, then initially S(0) ≈ N .

Show that the total population N = S + I +R is constant, that is to say
dN/dt = 0.

2. Show that S(t) is a decreasing function, that is to say S(0) > S(t1) >
S(t2) > S(t3) · · · where 0 < t1 < t2 < t3 · · ·. (Hint: consider the signs of
the terms in Eq. 1).

1Mathematically, ”removed” means that members of the R–class have been removed from
the other classes. Clinically, depending on the disease which we model, ”removed” means that
either R-class individuals are healthy again, or that they are dead !
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3. Show that the epidemic will start spreading only if

S(0) >
β

α
. (4)

that is, if, for the same number of susceptible individuals, the infection
rate is large enough, or the recovery time is long enough. (Hint: consider
Eq. 2 at t = 0)

4. Derive an equation for dI/dS, solve it and show that the solution I in
terms of S is

I(t) = N − S(t) +
β

α
ln

(
S(t)
S(0)

)
, (5)

(Hint: write dI/dS = (dI/dt)/(dS/dt) and then use Eq. 2 and 1).

5. Show that, during the evolution of the epidemic, the maximum number of
infected people is

Imax = N − β

α
+
β

α
ln

(
β

αS(0)

)
, (6)

(Hint: maximise I as a function of S given by Eq. 5)

6. Derive and equation for dS/dR, solve it and show that the solution for S
in terms of R is

S(t) = S(0)e−αR(t)/β , (7)

(Hint: write dS/dR = (dS/dt)/(dR/dt) and then use Eq. 1 and 3)

7. Use the previous result and the fact that R(t) ≤ N to show that, at the end
of the epidemic, some susceptible individuals have escaped the infection.

8. Evaluate Eq. 5 at t =∞ and show that

β

α
=

N − S(∞)
ln (S(0)/S(∞))

(8)

9. Estimate α and β for an outbreak of bubonic plague in an English village
which took place in 1666, according to records found in the parish church.
The records(see the following table) list the number of susceptibles and
infected at different times. The records also suggest that the recovery time
for the disease is 11 days.
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Date Susceptibles Infectives
1 July 254 7
15 July 200 20

1 August 150 30
15 August 120 20

1 September 100 10
15 September 90 5

1 October 85 0

(Hint: The ratio β/α can be deduced from the size N of the population
before the epidemic and the number of people who survived the epidemic
without being infected.)

10. Flu outbreak. Write a Fortran 90 program or a Maple program to
integrate in time Eq. 1, 2 and 3 for given α and β with initial condition
S(0), I(0) and R(0) using the Euler method with time step ∆t.

Run the program to apply the SIR model to a town of N = 10000 people
suffering a flu outbreak. The parameters should be α = 0.001 and β = 3.
Your initial condition should be I(0) = 1, R(0) = 0 and S(0) = N − I(0).
The unit of time is one month. Find the solution S(t), I(t) and R(t) for
0 ≤ t ≤ 12 months. Use time step ∆t = 0.001. Plot S, I and R vs time t
for 0 ≤ t ≤ 12 months.

Plot S, I and R vs t. Then make a plot of I vs S. At the peak of the
infection, how many people are infected ? At the end of the infection, how
many people have escaped becoming ill ?

11. Plague outbreak. Write a Fortran 90 program or a Maple program to
integrate in time Eq. 1, 2 and 3 for given α and β with initial condition
S(0), I(0) and R(0) using the Euler method with time step ∆t.

Run the program to model the 1666 plague outbreak described in question
9 for 0 ≤ t ≤ 3 months. Plot S(t), I(t) and R(t). For comparison, plot in
the same figure the data listed in the table and compare the data and the
results of the SIR model. Discuss the limitations of the SIR model in this
case.
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TEAM PROJECT 2: CLOUDS AND DROPS

Instructions: Do all questions.

1. Evaporating cloud. A spherical droplet of water in a cloud has radius r,
volume V = (4π/3)r3 and surface area A = 4πr2. The droplet evaporates
at rate given by

dV

dt
= −kA, (9)

where t is time and k is a constant.

(a) Show that the governing equation for r(t) is

dr

dt
= −k, (10)

(b) Show that the solution of the above equation is is

r(t) = r0 − kt, (11)

where r(0) = r0 is the initial radius.

(c) Show that the time for the droplet to evaporate is tevap = r0/k
(that is to say, at t = tevap the radius becomes zero and the droplet
disappears).

(d) Show that the volume of the droplet changes with time according to

V (t) = V (0)
(

1− t

tevap

)3

. (12)

where V (0) is the initial volume.

2. Falling drop. Consider a rain droplet of constant radius r. The vertical
motion of the droplet is described by the equations

dz

dt
= v, (13)

dv

dt
= −v

τ
− g, (14)

where z is the position of the droplet, v is the velocity, g is the acceleration
due to gravity, and the parameter τ is

τ =
2ρr2

9µ
, (15)
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where ρ is the density of the droplet and µ is the viscosity of the sur-
rounding air. The initial conditions at t = 0 are that z(0) = z0 and
v(0) = v0.

(a) Show that

v(t) = (v0 + τg)e−t/τ − gτ, (16)

and that

z(t) = z0 + gτ + τ(v0 + gτ)(1− e−t/τ ) (17)

(b) Show that, for t >> τ , the droplet falls with constant velocity

v∞ = −gτ, (18)

(the minus sign means that the direction is down, opposite to grav-
ity).

3. Fall and evaporation of a raindrop. Write a Fortran 90 program or
a Maple program to predict the behaviour of a falling rain droplet which
evaporates (that is, its radius r changes with time). Your program should
use the Euler method to solve the following governing equations:

dr

dt
= −k, (19)

dz

dt
= v, (20)

dv

dt
= −v

τ
− g, (21)

where

τ =
2ρr2

9µ
, (22)

Note that, since here we assume r = r(t), then τ = τ(t).

The initial conditions are that r(0) = 0.01 cm, z(0) = 0 and v(0) = 0.
The values of the parameters are: µ = 1.78 × 10−4 g cm−1 s−1, g =
980.4 cm s−2, and ρ = 1 g cm−3. Use time step ∆t = τ/100.

Plot r(t), z(t), v(t) vs t in the range 0 ≤ t ≤ 2 s for the following values of
k: k = 0 (droplet which does not evaporate), k = 0.001, 0.005, 0.01 and
0.05 cm s−1. Discuss the effect of the evaporation of the falling motion of
the droplet.
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4. Visibility in fog and mist. Consider a given volume of water V which
consists of N droplets of radius r. Assuming no overlap of the line of sight,
each droplet blocks off the area πr2.

Find the area blocked off by N droplets and explain why we see further
in the rain (r ≈ 0.1 cm) than in a drizzle (r ≈ 0.02 cm) than in a fog
(r ≈ 0.001 cm).

5. Should one walk or run in the rain ? If it rains, we do not have an
umbrella and we do not like to get wet, it is not entirely obvious whether
we should walk or run 2. To model the problem, assume that rain is
falling with vertical velocity u, depositing water on the ground at the
rate of φ litres per square metre per second. Assume that the wind adds
a horizontal component w to the rain’s velocity. The apparent angle of
the rain to a stationary person is thus tan−1(w/u). Model a person as
a rectangular block of height h, shoulder width s and body thickness b.
Assume that the person wants to travel a distance d at speed v, choosing
v so that the total amount of water falling on the top (head and shoulders,
area sb) and the front or back (area hs) is minimised.

(a) Assume that the person walks against the rain. Show that the
amount of water collected by the top is W1 = sbφd/v. Explain why
the front, moving at effective velocity v+w through water of density
φ/u, collects it at the rate hs(v+w)φ/u, hence show that the amount
of water collected by the front is W2 = hs(φ/u)(v + w)(d/v). Show
that the total amount of water collected is

W = W1 +W2 = sφd

(
h

u
+

1
v

(
b+

hw

u

))
, (23)

hence state whether the person should run or not. Discuss what
happens in various limits (e.g. v → 0, w → 0).

(b) Do the same analysis in the case that the wind is from behind. Dis-
tinguish the two cases v > w and v < w (hint: check what happens
for b > hw/u or b < hw/u). Again, state whether the person should
run or not. If the person’s height and thickness are respectively
h = 180 cm and b = 30 cm, and the rain falls at an angle of 10
degrees, what should the person do ? Walk or run ?

2The problem was solved by David E. Bell, Mathematical Gazette, 60, 206–208 (1976)
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PROJECT 3: THE WAVE EQUATION

1. Derive the wave equation, utt = c2uxx, as a model for small transverse
vibrations of an elastic string.

2. Solve the wave equation using the method of d’Alembert and discuss how
the solution can be interpreted.

3. Use the method of separation of variables to solve the wave equation for
a string with fixed endpoints u(0, t) = u(L, t) = 0 and with a triangular
initial deflection,

u(x, 0) =
{

2x/L, 0 ≤ x ≤ L/2,
2(L− x)/L, L/2 ≤ x ≤ L,

and ut(x, 0) = 0.

There are many useful textbooks in the library. Use graphs, plotted with
Maple or another package, where appropriate. Be creative and remember that
historical information can provide an interesting and informative background.
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PROJECT 4: THE DIVERGENCE THEOREM OF GAUSS

1. Prove the divergence theorem of Gauss.

2. Derive the diffusion equation for heat flow in a body, ut = kuxx, using
Gauss’ divergence theorem.

3. Use the method of separation of variables to solve the diffusion equation
for the temperature u(x, t) in a 1D bar with insulated ends ux(0, t) =
ux(L, t) = 0 and an initial temperature

f(x) =
{
x, 0 ≤ x ≤ L/2,
L− x, L/2 ≤ x ≤ L.

There are many useful textbooks in the library. Use graphs, plotted with
Maple or another package, where appropriate. Be creative and remember that
historical information can provide an interesting and informative background.
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