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Slice samplers

(A very brief introduction)

T he basic ideal

“To sample from a distribution, simply sam-
ple uniformly from the region under the den-
sity function and consider only the horizontal

coordinates.”

T T

One way to do this is to
e introduce latent (auxiliary) variables,

e then use Gibbs sampling on the area be-
neath the density.



The “simple” slice samplerl

Suppose we wish to sample from f(x) where
x e X CR.

To do this we sample uniformly from the
2-dimensional region under f(x) or
g(x) = cf(x). Thisis implemented as follows:

e introduce a latent variable y with
ylz ~ U0, g(x));

e this defines a uniform distribution for x
and y over the region {(z,y) : 0 <y < g(x)}
with density

f(z,y) = fylz) f(z)
<'g(%)f(w) if 0 <y<g(z),

|0 otherwise

(1 ifo<y<ga),
O otherwise;

|
O

\



e the conditional distribution for x|y has den-
Sity
f(@|y) o< f(z,y)

1 .
O otherwise,

that is,

zly ~U(S(y)),

where S(y) = {z : g(z) > y} .

Here S(y) is the union of intervals that
constitute the slice through the density
defined by y.



To obtain a sample for z, we first sample
(z;,y;) from f(x,vy), then ignore the y;’'s.

The structure of this model leads us (natu-
rally) to simulation using Gibbs sampling.

The :th iteration of the algorithm is:
o similate y; ~ f(ylzi—1) =U(0,g(xi-1)),

e simulate x; ~ f(x|y;) = U(S(yi)), where
S(y) ={z:9(z) > y}.

A Kkey aspect to slice sampling is that only
uniform random variates need be simulated.

N.B. Determining the slice S(y) may be tricky!



A simple examplel

Standard normal slice sampler

Suppose z ~ N (0,1), so
f(z) < g(z) = exp(—z2/2),

then the slice through the density is

S(y) = {:v : —\/—2 log(y) <z < \/—2|09(y)}-

Therefore, the conditional distribution of the
latent variable y is

ylz ~ U (0, 6_372/2),
and the distribution of x conditional on y is

oly ~U (—y/~2109(),\/~2109(»)).

Simulation from these conditional distribu-
tions is trivial.




The figure below shows the first 5 iterations
of the slice sampler for the standard normal
example.

Slice sampler in action
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The slice sampler carries out a Gibbs sampler
on the area beneath the curve of the density

g(x).
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Generalisations l

More complex distributions

e Determining the slice S(y) can be difficult
when f(x) has a complex structure.

e Possible solution: use the product slice
sampler.

Suppose d positive functions f; such that

k
flx) =c ]I fi(=).
i=1
Then augment the model with latent vari-
ables y = (y1,y2,...,yx) Where
yi|lz ~ U0, f;(x)), independent

so that (again) we have a uniform distribution
under the functions f;:

k
flz,y) =c H I(y; < fi(x)).

=1



The conditional distribution for x|y has den-
Sity

f(zly) o< f(z,y)

(1 if 0 <y < fi(a),

X 4 1 =1,2,... ,k,
|0 otherwise,

that is,
zly ~U(S()),
where
k
S(y) = ) Si(yi)
i=1
and

Si(y;) = {z : fi(z) > y;}.

Here S(y) is the intersection of the slices
S;(y;) through the each of the functions f;
defined by the y;.



Implementation

The j5th iteration of the algorithm is:

e simulate (independently)
y ~u(0, f;(zG-1)), i=1,2,... K

o simulate z(J) ~ Z/{(S (g(j))) , where
k

S(P) = N {=: fi@) 2P}

i=1
Multivariate case: x €¢ X C RP,

Sample uniformly from the p 4+ 1-dimensional
region under g(z) using either the simple slice
sampler or the product slice sampler (x — z).
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An application in Bayesian statisticsl

Random sample z = (x1, 22, ... ,xn) from f(z|0),
prior density w(0).

From Bayes' theorem, the posterior density
IS

w(0|x) ox 7(6H) H f(x;]0)
1=1

cf.

k
fl@) oc 1] fiz)
i=1

e Conjugate updates
— simple slice sampler.

e Non-conjugate updates
— product slice sampler.
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Another simple examplel

Suppose X;|0 ~ Exp(f) and we take a random
sample of size n =2, i.e. x = (x1,x2).

Our prior for 0 is w(6) = const. (i.e. an im-
proper prior). From Bayes' theorem, the pos-
terior density for 0 is

w(0)x) o De 071 x ge 072
T T
f1(0)  f2(0)

We can simulate from this posterior density
using a product slice sampler with 2 latent

variables y = (y1,v2).

The j5th iteration of the algorithm is:
e simulate ygj) NZx[(O,fl(G(j_l)))

e simulate ygj) ~ U<O,f2(9(j_1)))

e simulate 0(1) ~ U/ (S(g(j))) ;

where S(y@)) = {9  1100) > 49, £2(6) > y&“}.
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Why use the slice sampler?l

[ Almost automatic method to simulate from
new densities — just simulate uniforms.

[1 Applies to most distributions.

[1 Easier to implement than a Gibbs sampler
— no need to devise methods to simulate
from non-standard distributions.

[1 Can be more efficient than Metropolis-
Hastings algorithms — these also need the
specification of a proposal.

[0 Determination of S(-) can be tricky.

[ Some models require lots of latent vari-
ables.
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For more details, see, for example,

Damien, Wakefield and Walker (1999) Gibbs
sampling for non-conjugate and hierarchical
models by using auxiliary variables. JRSSB.

Neal (1997) Markov chain Monte Carlo meth-
ods based on ‘slicing’ the density function.
Technical report (U. Toronto).

Robert and Casella (1999) Monte Carlo Sta-
tistical Methods. Springer.

Roberts and Rosenthal (1999) Convergence
of slice sampler Markov chains. JRSSB.
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