
Bayesian Statistics Group – 8th March 2000

Slice samplers
(A very brief introduction)

The basic idea

“To sample from a distribution, simply sam-
ple uniformly from the region under the den-
sity function and consider only the horizontal
coordinates.”
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One way to do this is to

• introduce latent (auxiliary) variables,

• then use Gibbs sampling on the area be-
neath the density.

1



The “simple” slice sampler

Suppose we wish to sample from f(x) where

x ∈ X ⊆ R.

To do this we sample uniformly from the

2-dimensional region under f(x) or

g(x) = cf(x). This is implemented as follows:

• introduce a latent variable y with

y|x ∼ U(0, g(x));

• this defines a uniform distribution for x

and y over the region {(x, y) : 0 ≤ y ≤ g(x)}
with density

f(x, y) = f(y|x)f(x)

=







1
g(x)

f(x) if 0 ≤ y ≤ g(x),

0 otherwise

=







1
c if 0 ≤ y ≤ g(x),

0 otherwise;
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• the conditional distribution for x|y has den-

sity

f(x|y) ∝ f(x, y)

∝







1
c if 0 ≤ y ≤ g(x),

0 otherwise,

that is,

x|y ∼ U
(

S(y)
)

,

where S(y) = {x : g(x) ≥ y} .

Here S(y) is the union of intervals that

constitute the slice through the density

defined by y.
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To obtain a sample for x, we first sample

(xi, yi) from f(x, y), then ignore the yi’s.

The structure of this model leads us (natu-

rally) to simulation using Gibbs sampling.

The ith iteration of the algorithm is:

• simulate yi ∼ f(y|xi−1) = U
(

0, g(xi−1)
)

,

• simulate xi ∼ f(x|yi) = U
(

S(yi)
)

, where

S(y) = {x : g(x) ≥ y} .

A key aspect to slice sampling is that only

uniform random variates need be simulated.

N.B. Determining the slice S(y) may be tricky!
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A simple example

Standard normal slice sampler

Suppose x ∼ N (0,1), so

f(x) ∝ g(x) = exp(−x2/2),

then the slice through the density is

S(y) =
{

x : −
√

−2 log(y) ≤ x ≤
√

−2 log(y)
}

.

Therefore, the conditional distribution of the

latent variable y is

y|x ∼ U
(

0, e−x
2/2

)

,

and the distribution of x conditional on y is

x|y ∼ U
(

−
√

−2 log(y),
√

−2 log(y)
)

.

Simulation from these conditional distribu-

tions is trivial.
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The figure below shows the first 5 iterations

of the slice sampler for the standard normal

example.
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Slice sampler in action
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The slice sampler carries out a Gibbs sampler

on the area beneath the curve of the density

g(x).
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Generalisations

More complex distributions

• Determining the slice S(y) can be difficult
when f(x) has a complex structure.

• Possible solution: use the product slice
sampler.

Suppose ∃ positive functions fi such that

f(x) = c
k
∏

i=1

fi(x).

Then augment the model with latent vari-
ables y = (y1, y2, . . . , yk) where

yi|x ∼ U(0, fi(x)), independent

so that (again) we have a uniform distribution
under the functions fi:

f(x, y) = c
k
∏

i=1

I(yi ≤ fi(x)).
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The conditional distribution for x|y has den-

sity

f(x|y) ∝ f(x, y)

∝















1 if 0 ≤ yi ≤ fi(x),

i = 1,2, . . . , k,

0 otherwise,

that is,

x|y ∼ U
(

S(y)
)

,

where

S(y) =
k
⋂

i=1

Si(yi)

and

Si(yi) = {x : fi(x) ≥ yi} .

Here S(y) is the intersection of the slices

Si(yi) through the each of the functions fi
defined by the yi.
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Implementation

The jth iteration of the algorithm is:

• simulate (independently)

y
(j)
i ∼ U

(

0, fi(x
(j−1))

)

, i = 1,2, . . . , k

• simulate x(j) ∼ U
(

S
(

y(j)
))

, where

S
(

y(j)
)

=
k
⋂

i=1

{

x : fi(x) ≥ y(j)
i

}

.

Multivariate case: x ∈ X ⊆ Rp.

Sample uniformly from the p+ 1-dimensional

region under g(x) using either the simple slice

sampler or the product slice sampler (x→ x).
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An application in Bayesian statistics

Random sample x = (x1, x2, . . . , xn) from f(x|θ),

prior density π(θ).

From Bayes’ theorem, the posterior density

is

π(θ|x) ∝ π(θ)
n
∏

i=1

f(xi|θ)

cf.

f(x) ∝
k
∏

i=1

fi(x)

• Conjugate updates

→ simple slice sampler.

• Non-conjugate updates

→ product slice sampler.
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Another simple example

Suppose Xi|θ ∼ Exp(θ) and we take a random
sample of size n = 2, i.e. x = (x1, x2).

Our prior for θ is π(θ) = const. (i.e. an im-
proper prior). From Bayes’ theorem, the pos-
terior density for θ is

π(θ|x) ∝ θe−θx1 × θe−θx2

↑ ↑
f1(θ) f2(θ)

We can simulate from this posterior density
using a product slice sampler with 2 latent
variables y = (y1, y2).

The jth iteration of the algorithm is:

• simulate y
(j)
1 ∼ U

(

0, f1(θ(j−1))
)

• simulate y
(j)
2 ∼ U

(

0, f2(θ(j−1))
)

• simulate θ(j) ∼ U
(

S(y(j))
)

,

where S(y(j)) =
{

θ : f1(θ) ≥ y(j)
1 , f2(θ) ≥ y(j)

2

}

.
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Why use the slice sampler?

✔ Almost automatic method to simulate from

new densities – just simulate uniforms.

✔ Applies to most distributions.

✔ Easier to implement than a Gibbs sampler

– no need to devise methods to simulate

from non-standard distributions.

✔ Can be more efficient than Metropolis-

Hastings algorithms – these also need the

specification of a proposal.

✘ Determination of S(·) can be tricky.

✘ Some models require lots of latent vari-

ables.
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For more details, see, for example,

Damien, Wakefield and Walker (1999) Gibbs

sampling for non-conjugate and hierarchical

models by using auxiliary variables. JRSSB.

Neal (1997) Markov chain Monte Carlo meth-

ods based on ‘slicing’ the density function.

Technical report (U. Toronto).

Robert and Casella (1999) Monte Carlo Sta-

tistical Methods. Springer.

Roberts and Rosenthal (1999) Convergence

of slice sampler Markov chains. JRSSB.
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