Bayesian Statistics Group – 8th March 2000

Slice samplers

(A very brief introduction)

The basic idea

"To sample from a distribution, simply sample uniformly from the region under the density function and consider only the horizontal coordinates."

lacements

One way to do this is to

- introduce latent (auxiliary) variables,
- then use Gibbs sampling on the area beneath the density.

The "simple" slice sampler

Suppose we wish to sample from f(x) where $x \in \mathcal{X} \subseteq \mathbb{R}$.

To do this we sample uniformly from the 2-dimensional region under f(x) or g(x) = cf(x). This is implemented as follows:

- introduce a latent variable y with $y|x \sim \mathcal{U}(0, g(x));$
- this defines a uniform distribution for x and y over the region {(x, y) : 0 ≤ y ≤ g(x)} with density

$$f(x,y) = f(y|x)f(x)$$

=
$$\begin{cases} \frac{1}{g(x)}f(x) & \text{if } 0 \le y \le g(x), \\ 0 & \text{otherwise} \end{cases}$$

=
$$\begin{cases} \frac{1}{c} & \text{if } 0 \le y \le g(x), \\ 0 & \text{otherwise}; \end{cases}$$

• the conditional distribution for x|y has density

$$f(x|y) \propto f(x,y) \ \propto \left\{egin{array}{ll} rac{1}{c} & ext{if } 0 \leq y \leq g(x), \ 0 & ext{otherwise,} \end{array}
ight.$$

that is,

 $x|y \sim \mathcal{U}(S(y)),$ where $S(y) = \{x : g(x) \ge y\}.$

Here S(y) is the union of intervals that constitute the **slice** through the density defined by y.

To obtain a sample for x, we first sample (x_i, y_i) from f(x, y), then ignore the y_i 's.

The structure of this model leads us (naturally) to simulation using Gibbs sampling.

The *i*th iteration of the algorithm is:

- simulate $y_i \sim f(y|x_{i-1}) = \mathcal{U}ig(0, g(x_{i-1})ig)$,
- simulate $x_i \sim f(x|y_i) = \mathcal{U}(S(y_i))$, where $S(y) = \{x : g(x) \ge y\}$.

A key aspect to slice sampling is that only uniform random variates need be simulated.

N.B. Determining the slice S(y) may be tricky!

A simple example

Standard normal slice sampler

Suppose $x \sim \mathcal{N}(0, 1)$, so

$$f(x) \propto g(x) = \exp(-x^2/2),$$

then the **slice** through the density is

$$S(y) = \left\{ x : -\sqrt{-2\log(y)} \le x \le \sqrt{-2\log(y)} \right\}.$$

Therefore, the conditional distribution of the latent variable y is

$$y|x \sim \mathcal{U}\left(0, e^{-x^2/2}\right),$$

and the distribution of \boldsymbol{x} conditional on \boldsymbol{y} is

$$x|y \sim \mathcal{U}\left(-\sqrt{-2\log(y)}, \sqrt{-2\log(y)}
ight)$$

Simulation from these conditional distributions is trivial. The figure below shows the first 5 iterations of the slice sampler for the standard normal example.

The slice sampler carries out a Gibbs sampler on the area beneath the curve of the density g(x).

More complex distributions

- Determining the slice S(y) can be difficult when f(x) has a complex structure.
- Possible solution: use the **product** slice sampler.

Suppose \exists positive functions f_i such that

$$f(x) = c \prod_{i=1}^{k} f_i(x).$$

Then augment the model with latent variables $\underline{y} = (y_1, y_2, \dots, y_k)$ where

 $y_i | x \sim \mathcal{U}(0, f_i(x)),$ independent

so that (again) we have a uniform distribution under the functions f_i :

$$f(x,\underline{y}) = c \prod_{i=1}^{k} \mathbb{I}(y_i \le f_i(x)).$$

The conditional distribution for $x|\underline{y}$ has density

$$\begin{split} f(x|\underline{y}) &\propto f(x,\underline{y}) \\ &\propto \begin{cases} 1 & \text{if } 0 \leq y_i \leq f_i(x), \\ & i = 1, 2, \dots, k, \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

that is,

$$x|\underline{y} \sim \mathcal{U}(S(\underline{y})),$$

where

$$S(\underline{y}) = \bigcap_{i=1}^{k} S_i(y_i)$$

and

$$S_i(y_i) = \{x : f_i(x) \ge y_i\}.$$

Here $S(\underline{y})$ is the intersection of the slices $S_i(y_i)$ through the each of the functions f_i defined by the y_i .

Implementation

The jth iteration of the algorithm is:

• simulate (independently)

$$y_i^{(j)} \sim \mathcal{U}(0, f_i(x^{(j-1)})), \ i = 1, 2, \dots, k$$

• simulate $x^{(j)} \sim \mathcal{U}\left(S\left(\underline{y}^{(j)}\right)\right)$, where $S\left(\underline{y}^{(j)}\right) = \bigcap_{i=1}^{k} \left\{x : f_i(x) \ge y_i^{(j)}\right\}.$

Multivariate case: $\underline{x} \in \mathcal{X} \subseteq \mathbb{R}^p$.

Sample uniformly from the p + 1-dimensional region under $g(\underline{x})$ using either the simple slice sampler or the product slice sampler $(x \to \underline{x})$.

An application in Bayesian statistics

Random sample $\underline{x} = (x_1, x_2, \dots, x_n)$ from $f(x|\theta)$, prior density $\pi(\theta)$.

From Bayes' theorem, the posterior density is

$$\pi(\theta|\underline{x}) \propto \pi(\theta) \prod_{i=1}^n f(x_i|\theta)$$

cf.

$$f(x) \propto \prod_{i=1}^k f_i(x)$$

- Conjugate updates \rightarrow simple slice sampler.
- Non-conjugate updates \rightarrow product slice sampler.

Another simple example

Suppose $X_i | \theta \sim \mathcal{E} \times p(\theta)$ and we take a random sample of size n = 2, i.e. $\underline{x} = (x_1, x_2)$.

Our prior for θ is $\pi(\theta) = \text{const.}$ (i.e. an improper prior). From Bayes' theorem, the posterior density for θ is

$$\pi(heta|x) \propto heta e^{- heta x_1} imes heta e^{- heta x_2} \ \uparrow \qquad \uparrow \ f_1(heta) \ f_2(heta)$$

We can simulate from this posterior density using a product slice sampler with 2 latent variables $\underline{y} = (y_1, y_2)$.

The jth iteration of the algorithm is:

- simulate $y_1^{(j)} \sim \mathcal{U}(0, f_1(\theta^{(j-1)}))$
- simulate $y_2^{(j)} \sim \mathcal{U}(0, f_2(\theta^{(j-1)}))$
- simulate $\theta^{(j)} \sim \mathcal{U}\left(S(\underline{y}^{(j)})\right)$,

where $S(\underline{y}^{(j)}) = \left\{ \theta : f_1(\theta) \ge y_1^{(j)}, f_2(\theta) \ge y_2^{(j)} \right\}.$

lacements

Why use the slice sampler?

- ✓ Almost automatic method to simulate from new densities – just simulate uniforms.
- ✓ Applies to most distributions.
- Easier to implement than a Gibbs sampler

 no need to devise methods to simulate
 from non-standard distributions.
- Can be more efficient than Metropolis-Hastings algorithms – these also need the specification of a proposal.
- **X** Determination of $S(\cdot)$ can be tricky.
- ✗ Some models require lots of latent variables.

For more details, see, for example,

Damien, Wakefield and Walker (1999) Gibbs sampling for non-conjugate and hierarchical models by using auxiliary variables. JRSSB.

Neal (1997) Markov chain Monte Carlo methods based on 'slicing' the density function. Technical report (U. Toronto).

Robert and Casella (1999) *Monte Carlo Statistical Methods*. Springer.

Roberts and Rosenthal (1999) Convergence of slice sampler Markov chains. JRSSB.