
MULTIFRACTION REDUCTION IV: PADDING AND

ARTIN–TITS MONOIDS OF SUFFICIENTLY LARGE TYPE

PATRICK DEHORNOY, DEREK F. HOLT, AND SARAH REES

Abstract. We investigate the padded version of reduction, an extension of
multifraction reduction as defined in arXiv:1606.08991, and connect it both
with ordinary reduction and with the so-called Property H. As an applica-
tion, we show that all Artin–Tits groups of sufficiently large type satisfy some
weakening Conjecture A

padded of Conjecture A, thus showing that the reduc-
tion approach is relevant for these groups.

Reduction of multifractions, which was introduced in [2] and [3], is a new ap-
proach to the word problem for Artin-Tits groups and, more generally, for groups
that are enveloping groups of monoids in which the divisibility relations have weak
lattice properties (“gcd-monoids”). It is based on a rewrite system (“R-reduction”)
that extends the usual free reduction for free groups, as well as the rewrite systems
known for Artin–Tits groups of spherical type, and more generally Garside groups.
It was proved in [2] that R-reduction is convergent for all Artin–Tits groups of
type FC, and in [3] that a certain condition called semi-convergence, weaker than
convergence, is sufficient to obtain the decidability of the word problem, leading
to the main conjecture (“Conjecture A”) that R-reduction is semi-convergent for
every Artin–Tits monoid.

The aim of the current paper is to exploit the observation that semi-convergence
up to Turing-computable padding, a weakening of semi-convergence, is again suf-
ficient to solve the word problem. By padding, we mean the insertion of an even
number of trivial components at the beginning of a multifraction.

The main results we prove are as follows. First, we have a simple criterion for
the word problem:

Proposition 1.6. If M is a strongly noetherian gcd-monoid with finitely many
basic elements, for which R-reduction is semi-convergent up to f -padding for some
Turing-computable map f , then the word problem of U(M) is decidable.

Next, we establish a simple connection between the padded version of semi-
convergence, the semi-convergence of a variant of R-reduction (“split reduction” or
“S-reduction”) and Property H of [1, 4, 8]:

Proposition 1.14. If M is a gcd-monoid and (S,R) is an lcm-presentation for M ,
then the following are equivalent:

(i) R-reduction is semi-convergent for M up to padding;
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(ii) S-reduction is semi-convergent for M ;
(iii) Property H is true for (S,R).

Finally, we consider the specific case of Artin–Tits groups. In view of Proposi-
tion 1.6, we propose

Conjecture Apadded. For every Artin–Tits monoid, R-reduction is semi-convergent
up to f -padding for some Turing-computable map f .

By the results of [2], Conjecture Apadded is true for every Artin–Tits monoid of
type FC. Here we prove:

Theorem 1. Conjecture Apadded is true for all Artin–Tits monoids of sufficiently
large type.

We recall from [10] that an Artin-Tits group is said to be of sufficiently large type
if, in any triangle in the associated Coxeter diagram, either no edge has label 2, or
all three edges have label 2, or at least one edge has label ∞. The result follows
directly from the more precise result stated as Proposition 2.1 below, which gives
an explicit quadratic upper bound on the padding that is needed. The proof relies
on a careful analysis of the techniques of [10] and [8]. With this result, the family
of Artin–Tits for which multifraction reduction is relevant is greatly enlarged.

The paper is organised in two sections. The first one is devoted to padded
reduction and its variants in a general context of gcd-monoids, and contains a
proof of Propositions 1.6 and 1.14. The second section is devoted to the specific
case of Artin–Tits monoids of sufficiently large type, with a proof of Theorem 1.

1. Padded multifraction reduction

After recalling in Subsection 1.1 the definitions that we need for multifraction
reduction and the rewrite system RM , we introduce in Subsection 1.2 padded ver-
sions of semi-convergence and use them to solve the word problem of the enveloping
group. Next, we introduce in Subsection 1.3 a new rewrite system SM , a variant
of RM called split reduction, and we connect its semi-convergence with the padded
semi-convergence of RM . Finally, we establish the connection with subword revers-
ing and Property H in Subsection 1.4.

1.1. Multifraction reduction. If M is a monoid, we denote by U(M) the en-
veloping group of M , and by ι the canonical (not necessarily injective) morphism
from M to U(M). We say that a finite sequence a = (a1, ... , an) of elements of M ,
also called a multifraction on M and denoted by a1/ ···/an, represents an element g
of U(M) if

(1.1) g = ι(a1)ι(a2)
−1ι(a3)···ι(an)

(−1)n−1

holds in U(M). In this context, the parameter n is called the depth of a, denoted
by ‖a‖, and the right hand side of (1.1) is denoted by ι(a). We use FM for the family
of all multifractions on M , and 1n for the depth n multifraction with all entries
equal to 1, skipping n when no ambiguity is possible. Our aim is to recognise which
multifractions represent 1 in U(M).

We collect together the definitions that we need concerning monoids.

Definition 1.2. A monoid M is called a gcd-monoid if it is cancellative, 1 is its
only invertible element, and any two elements of M admit a left- and a right-gcd,
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where, for a, b in M , we say that a left-divides b, written a 6 b, if we have b = ax
for some x in M , and that d is a left-gcd of a and b if d left-divides a and b and
every common left-divisor of a and b left-divides d. Right-division and right-gcd
are defined symmetrically, with b = xa replacing b = ax.

An atom in M is an element that is not expressible as ab with a, b 6= 1. A right-
(resp. left-) basic element is one that is obtained from atoms using the operation \
(resp. /) defined by a(a\b) = a ∨ b (resp. (a/b)b = a ∨̃ b).

The monoid M is called noetherian if there is no infinite descending sequence
with respect to proper left- or right-division, and strongly noetherian if there exists
a map λ from M \ {1} to the positive integers satisfying λ(ab) > λ(a) + λ(b).

Throughout the paper, we restrict our attention to gcd-monoids: Artin–Tits
monoids are typical examples. In a gcd-monoid, any two elements a, b that admit
a common right-multiple(resp. left-multiple) admit a least one, the right-lcm (resp.
left-lcm) of a and b, denoted by a ∨ b (resp. a ∨̃ b).

If M is a gcd-monoid, a family RM of rewrite rules on FM is defined in [2]: for
a, b in FM , and for i > 1 and x ∈ M , we write a • Ri,x = b if we have ‖b‖ = ‖a‖,
bk = ak for k 6= i− 1, i, i+ 1, and there exists x′ satisfying

for i even: bi−1 = ai−1x
′, xbi = aix

′ = x ∨ ai, xbi+1 = ai+1,
for i > 3 odd: bi−1 = x′ai−1, bix = x′ai = x ∨̃ ai, bi+1x = ai+1,
for i = 1: bix = ai, bi+1x = ai+1.

We say that a reduces to b in one step, and write a ⇒ b, if a • Ri,x = b holds for
some i and some x 6= 1. We use ⇒∗ for the reflexive–transitive closure of ⇒.

By [2, Lemma 3.8 and Cor. 3.20], a ⇒∗ b implies that a and b represent the same
element in U(M), and, conversely, the relation ι(a) = ι(b) is essentially the equiv-
alence relation generated by ⇒ (up to deleting trivial final entries). Furthermore,
whenever the monoid M is noetherian, R-reduction is terminating for M .

By [2, Prop. 4.16] and [3, Prop. 3.2], R-reduction is locally confluent for M if
and only if M satisfies the 3-Ore condition, meaning that any three elements of M
that pairwise admit a common right- (resp. left-) multiple admit a global one. In
this case, R-reduction is convergent, implying that a multifraction a represents 1
in U(M) if and only if a ⇒∗ 1 is satisfied. In the case of Artin–Tits monoids, this
exactly corresponds to type FC.

When M does not satisfy the 3-Ore condition, R-reduction is not confluent
for M , and no convergence result can be expected. However, a condition weaker
than convergence can be used to solve the word problem:

Definition 1.3 ([3]). We say that R-reduction is semi-convergent for M if a ⇒∗ 1
holds for every multifraction a that represents 1 in U(M).

Convergence implies semi-convergence, but explicit examples of gcd-monoids M
for which R-reduction is semi-convergent but not convergent are known [6]. How-
ever:

Proposition 1.4 ([3, Prop. 3.16]). If M is a strongly noetherian gcd-monoid with
finitely many basic elements for which R-reduction is semi-convergent, then the
word problem of U(M) is decidable.

Conjecture A ([3]). R-reduction is semi-convergent for every Artin–Tits monoid.
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Conjecture A is true for every Artin–Tits monoid of FC type, but other cases re-
main open. Every Artin–Tits monoid satisfies the finiteness assumptions of Propo-
sition 1.4 and, therefore, the word problem of the enveloping group of every Artin–
Tits monoid satisfying Conjecture A is decidable.

1.2. Padded semi-convergence. We now introduce a weakening of semi-conver-
gence, in which trivial initial entries may be added to multifractions. For p a
nonnegative integer and a a multifraction, we write 12p/a for the multifraction
obtained from a by adding 2p trivial entries on the left of a. Note that the number
of 1s that are added must be even in order to preserve the image of the multifraction
in the group.

Definition 1.5. If f is a map from FM to N, we say that R-reduction is semi-
convergent for M up to f -padding if 12f(a)/a ⇒∗ 1 holds for every multifraction a

that represents 1 in U(M).

By definition, semi-convergence is semi-convergence up to 0-padding. Because
a ⇒∗ b trivially implies 12p/a ⇒∗ 12p/b for every p, semi-convergence ofR-reduction
up to f -padding implies its semi-convergence up to f ′-padding for f ′ > f (mean-
ing ∀a∈FM (f ′(a) > f(a))): appending trivial initial entries preserves the existing
reductions and possibly adds new ones.

Proposition 1.6. If M is a strongly noetherian gcd-monoid with finitely many
basic elements for which R-reduction is semi-convergent up to f -padding for some
Turing-computable map f on FM , then the word problem of U(M) is decidable.

Speaking of a Turing-computable map defined on FM makes sense because, under
the assumptions of Proposition 1.6, M admits a finite presentation in terms of the
finite atom family S of M , and every element of the monoid M is represented by
finitely many words in S only, which implies the decidability of the word problem
of M with respect to S. Then a Turing-computable map on M means one that is
induced by a Turing-computable map on words in S.

If (S,R) is a monoid presentation, that is, R is a family of pairs of words in S,
we denote by ≡+

R, or simply ≡+, the congruence on S∗ generated by R, implying
〈S | R〉+ = S∗/≡+. For w a word in S, we denote by [w]+ the element of 〈S | R〉+

represented by w, that is, the ≡+-class of w. Let S be a disjoint copy of S that
consists of a new element s for each element s of S. For w a word in S ∪ S, we
denote by w the word obtained from w by exchanging s and s everywhere and
reversing the order of letters. In this context, the element of S (resp. S) are called
positive (resp. negative), and we denote by [w] the element of the group 〈S | R〉
represented by w when s represents s−1.

Proof of Proposition 1.6. The argument is the same as the one in [3] for Proposi-
tion 1.4. Let S be the atom set ofM , and let w be a word in S∪S. To decide whether
w represents 1 in U(M), we first express it as w1w

−1
2 w3 ··· with w1, w2, ... in S∗

(no negative letters). Then, writing w = (w1, w2, ...) and [w]+ for [w1]
+/[w2]

+/ ··· ,
we append 2f([w]+) trivial entries on the left, and exhaustively enumerate all se-
quences w′ satisfying 12f([w]+)/[w]

+ ⇒∗ [w′]+: this is possible because, under the
assumptions of the statement, the existence of common multiples and, from there,
the relation ⇒∗, are decidable. Then w represents 1 in U(M) if and only if a trivial
sequence ε/ ···/ε appears in the list, where ε is the empty word. �
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We are thus led to the new conjecture, Conjecture Apadded, stated in the intro-
duction. Conjecture Apadded is a priori weaker than Conjecture A but, by Propo-
sition 1.6, it nevertheless implies the decidability of the word problem of every
Artin–Tits group for which it is true.

1.3. Split reduction. We now connect the padded version of semi-convergence of
R-reduction with the ordinary semi-convergence of a new rewrite system, a variant
of R-reduction that can naturally be called split reduction.

In the definition of multifraction reduction used in [2, 3, 6] and repeated in
Section 1.2, in order for a • Ri,x to be defined, x and ai have to admit a common
multiple, a left- or right-multiple depending on the parity of i. In order to define a
variant of this reduction, we now relax the assumption and only require that x and
some divisor of ai admit a common multiple; then, we again remove x from ai+1

and push it to the left or right side using the lcm operation, this time through the
divisor of ai that is involved and not necessarily through the whole of ai.

Definition 1.7. (See Figure 1 right.) Assume that M is a gcd-monoid. For a, b
in FM , and for i > 1 even (resp. odd) and x, y in M such that x ∨ y (resp. x ∨̃ y)
exists, we write a •Rbreak

i,x,y = b if we have ‖b‖ = ‖a‖+2, bk = ak for k < i, bk = ak−2

for k > i+ 3, and

for i even: ybi = ai, ybi+1 = xbi+2 = x ∨ y, xbi+3 = ai+1,
for i odd: biy = ai, bi+1y = bi+2x = x ∨̃ y, bi+3x = ai+1.

In addition we define “trimming” rules R trim

i , such that a • R trim

i = b holds if we
have ai+1 = 1, ‖b‖ = ‖a‖ − 2, and bk = ak for k < i, bk = ak+2 for k > i + 1,
and bi = aiai+2 (resp. ai+2ai) if i is odd (resp. even). We write a ⇒split b if either
a •Rbreak

i,x,y = b holds for some i, x, y with xy 6= 1 or a •R trim

i = b holds for some i, and
denote by ⇒∗

split
the reflexive–transitive closure of ⇒split. The rewrite system SM so

obtained is called split reduction on M .

...
ai−1

x′

bi−1
ai

bi

x

bi+1

...

ai+1

⇐

...
ai−1bi−1

bi+1
bi y

ai

bi+2

x

bi+3

...

ai+1

⇐
part

Figure 1. Comparing the reduction Ri,x (left) and the split reduc-
tion Rbreak

i,x,y (right), here for i odd: in both cases, we divide ai+1 by x

and push x to the left using an lcm, but, for Ri,x, we demand that
x crosses the whole of ai, whereas, for Rbreak

i,x,y , we only require that x

crosses the possibly proper divisor y of ai; as a consequence, we cannot
gather the elements at level i− 1 and the depth increases by 2.

Adding the trimming rules R trim

i is a technical artefact that will make statements
simpler. It directly follows from the definition that, if a ⇒∗

split
b is true, then a and b

represent the same element in the group U(M). A major difference between R-
and S-reductions is that, even if the monoid M is noetherian, no termination can
be expected for the latter in general.
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Example 1.8. Let M be the Artin–Tits monoid of type Ã2, that is,

〈a, b, c | aba = bab, bcb = cbc, cac = aca〉+,

and let a = ab/c. Then we find a • Rbreak

1,c,bR
break

1,c,a = 1/ac/ca/b/cb/1, whence

a • Rbreak

1,c,bR
break

1,c,aR
break

3,b,aR
break

3,b,cR
break

5,a,cR
break

5,a,b = 1/ac/1/cb/1/ba/ab/c/ac/1/ba/1/cb/1,

that is, with obvious notation, a ⇒6
split

1/ac/1/cb/1/ba/a/ac/1/ba/1/cb/1, leading
to an infinite sequence of split reductions from a.

The following result directly follows from the definition; we state it both and as
a useful example for practice and for future reference.

Lemma 1.9. If M is a gcd-monoid, and a = ···/a/1/bc/ ··· is a multifraction on M
with elements a, 1, and bc in positions i− 1, i, and i+ 1, then we have

a • Ri,b = ···/a/1/bc/ ··· • Ri,b = ···/ab/1/c/ ··· for i even,
a • Ri,c = ···/a/1/bc/ ··· • Ri,c = ···/ca/1/b/ ··· for i odd.

In particular, for a = 1, we find

a • Ri,b = ···/1/1/bc/ ··· • Ri,b = ···/b/1/c/ ··· for i even,
a • Ri,c = ···/1/1/bc/ ··· • Ri,c = ···/c/1/b/ ··· for i odd.

Proof. The diagrams provide a proof.

ab
1

c

a
1

bc

b b

ca
1

b

a
1

bc

c c

�

Lemma 1.10. Assume that M is a gcd-monoid and a, b belong to FM .
(i) If a ⇒∗ b holds, then so does a ⇒∗

split
b.

(ii) If a ⇒∗
split

b holds, then 12p/a ⇒∗ b/12q holds for some p and q.

Proof. (i) For an induction it is sufficient to prove that a ⇒ b implies a ⇒∗
split

b. So
assume that a •Ri,x = b with, say, i even. Writing x∨ai = xbi = aix

′ and applying
the definition of Rbreak

i,x,y, we find

a • Rbreak

i,x,ai
= a1/ ···/ai−1/1/x

′/bi/ ···/bn = b1/ ···/bi−2/ai−1/1/x
′/bi/ ···/bn.

The definition of Ri,x gives bi−1 = ai−1x
′, so we deduce

a • Rbreak

i,x,ai
R trim

i = b1/ ···/bi−2/ai−1x
′/bi/ ···/bn = b,

whence a ⇒2
split

b. The argument is similar for i odd.
(ii) We prove using induction on m that a ⇒m

split
b implies the existence of p and q

satisfying 12p/a ⇒∗ b/12q. Put n := ‖a‖. The result is straightforward for m = 0
with p = q = 0. Suppose that m = 1. Suppose first a • Rbreak

i,x,y = b with, say, i even.

By hypothesis, y left-divides ai, and we have ai = ybi. Starting from 12/a, we can
first use i reduction steps to split ai into bi and y by pushing a1, ... , ai−1, and bi to
the left using Lemma 1.9 repeatedly: precisely, we find

12/a • R2,a1
R3,a2

···Ri,ai−1
Ri+1,bi = a1/ ···/ai−1/bi/1/y/ai+1/ ···/an,
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whence 12/a ⇒i b1/ ···/bi/1/y/ai+1/bi+4/ ···/bn+2. Let a′ be the latter multifrac-
tion. By hypothesis, x divides ai+1, which is a′i+3, and the lcm of x and y, that is,
of x and ai+2, exists, so a′ is eligible for Ri+2,x. Then we obtain

a′ • Ri+2,x = b1/ ···/bi/bi+1/bi+2/bi+3/bi+4/ ···/bn+2b,

whence 12/a ⇒∗ a′ ⇒ b, the expected result with p = 1 and q = 0.
Suppose now a • R trim

i = b, still with i even. By hypothesis, we have ai+1 = 1,
and we find

a • Ri+1,ai+2
= a1/ ···/ai−1/aiai+2/1/1/ai+3/ ···/an

and from there, by the same argument as above with 12/a, we can push ai+3, ... , an
to the left, obtaining

a • Ri+1,ai+2
Ri+2,ai+3

/ ···/Rn−1,an
= a1/ ···/ai−1/aiai+2/ai+3/ ···/an/1/1,

which implies a ⇒∗ b/12, the expected result with p = 0 and q = 1. The verifications
for i odd are similar.

Suppose finally m > 2. Write a ⇒m−1
split

c ⇒split b. The induction hypothesis
implies the existence of p and q satisfying 12p/a ⇒∗ c/12q, and that of p′ and q′

satisfying 12p′/c ⇒∗ b/12q′ . As R-reduction is compatible with left and right multi-
plication, 12p/a ⇒∗ c implies 12p+2p′/a ⇒∗ 12p′/c/12q, and 12p′/c ⇒∗ b/12q′ implies
12p′/c/12q ⇒∗ b/12q+2q′ . By transitivity of ⇒∗, we deduce 12p+2p′/a ⇒∗ b/12q+2q′

and this is the expected result. �

We deduce a simple connection between R- and S-reductions to 1:

Proposition 1.11. If M is a gcd-monoid then, for every multifraction a on M ,

(1.12) a ⇒∗
split

1 is equivalent to ∃p (12p/a ⇒∗ 1).

Proof. Assume a ⇒∗
split

1, say a ⇒∗
split

1r. By Lemma 1.10, there exist p, q satisfying
12p/a ⇒∗ 1r+2q, whence 12p/a ⇒∗ 1.

Conversely, assume 12p/a ⇒∗ 1. Suppose first ‖a‖ 6 1. Then 12p/a ⇒∗ 1 is
possible only for a = 1, in which case a ⇒∗

split
1 is trivial. Now suppose ‖a‖ > 2

with a not trivial, that is, at least one entry of a is not 1. Let i be minimal
satisfying ai 6= 1. Then a is eligible for Rbreak

i,1,a1
, and we find a • Rbreak

i,1,ai
= 12/a,

whence a ⇒∗
split

12p/a in p steps. Next, by Lemma 1.10 again, 12p/a ⇒∗ 1 implies
12p/a ⇒∗

split
1. We deduce a ⇒∗

split
1 by transitivity of ⇒∗

split
. �

We naturally say that S-reduction is semi-convergent for M if a ⇒∗
split

1 holds for
every multifraction a that represents 1 in U(M). Proposition 1.11 implies:

Corollary 1.13. If M is a gcd-monoid, then S-reduction is semi-convergent for M
if and only if R-reduction is semi-convergent for M up to padding.

1.4. Connection with subword reversing and Property H. In the absence
of a a solution of the word problem for general Artin–Tits groups, Property H was
proposed [1] as a weaker statement in the direction of such a solution along the line
of Dehn’s algorithm for hyperbolic groups, and it was proved that Property H is
indeed satisfied for the standard presentation of all Artin–Tits groups of type FC [4]
and of sufficiently large type [8]. We now establish a simple connection between
Property H and multifraction reduction:
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Proposition 1.14. If M is a gcd-monoid and (S,R) is an lcm-presentation for M
(on both sides), then the following are equivalent:

(i) R-reduction is semi-convergent for M up to padding;
(ii) S-reduction is semi-convergent for M ;
(iii) Property H is true for (S,R).

By Corollary 1.13, (i) and (ii) in Proposition 1.14 are equivalent, and we are left
with establishing the equivalence of (ii) and (iii), which will occupy the rest of the
section.

We first recall a few definitions. If (S,R) is a monoid presentation, and w,w′

are words in S ∪ S, then we say that w′ is obtained from w by one step of right R-
reversing if w′ is obtained by deleting some length 2 factor ss of w or replacing some
length 2 factor st of w with vu such that sv = tu is a relation of R. Symmetrically,
we say that w′ is obtained from w by one step of left R-reversing if w′ is obtained
by deleting some length 2 factor ss of w or replacing some length 2 factor st of w
with vu such that vs = ut is a relation of R.

Definition 1.15. Suppose that (S,R) is a monoid presentation. If w,w′ are words
in S ∪S, we say that w  w′ is true if one can go from w to w′ using finitely many
special transformations of the following types: (i) replacing a positive factor u of w
by u′ with u′ ≡+ u (“positive equivalence”), (ii) replacing a negative factor u of w
by u′ with u′ ≡+ u (“negative equivalence”), (iii) right R-reversing, (iv) left R-
reversing. We say that (S,R) satisfies Property H if [w] = 1 implies w  ε, where
ε is the empty word.

All special transformations map a word in S ∪S to one that represents the same
element in U(M), so w  ε always implies [w] = 1: Property H says that this
implication is an equivalence. Note that special transformations add no new trivial
factor ss or ss, a situation reminiscent of Dehn’s algorithm for hyperbolic groups [4,
Sec. 1.2].

Let us say that a presentation (S,R) of a monoid M is a right-lcm presentation
if R contains one relation for each pair (s, t) in S × S such that s and t admit a
common right-multiple and this relation has the form sv = tu where both sv and tv
represent the right-lcm s∨t. A left-lcm presentation is defined symmetrically. By [5,
Thm. 4.1], every strongly noetherian gcd-monoid admits a right-lcm presentation
and a left-lcm presentation. For instance, the standard presentation of an Artin-
Tits monoid is an lcm presentation on both sides. The point here is that, if (S,R)
is a right-lcm presentation, then right-reversing computes the right-lcm in 〈S | R〉+

in the following sense:

Lemma 1.16 ([1, Prop. 3.6]). Assume that M is a strongly noetherian gcd-monoid
and (S,R) is a right-lcm presentation for M . Then, for all words u, v in S∗, the
elements [u]+ and [v]+ of M admit a common right-multiple if and only if the right
R-reversing of uv leads to word v′u′ with u′, v′ in S∗ and, in this case, one has
[uv′]+ = [vu′]+ = [u]+ ∨ [v]+.

Of course, if (S,R) is a left-lcm presentation of M , left R-reversing computes
the left-lcm in M in a similar sense.

Our aim from now on is to connect the relation on words in S∪S with partial
reduction of multifractions. The convenient bridge between words and multifrac-
tions is as follows:
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Definition 1.17. Suppose that M = 〈S | R〉+. A word w in S ∪ S is said to
represent a depth n multifraction a on M if there exist words w1, ... , wn in S∗

satisfying w = w1w2w3w4 ··· and [wi]
+ = ai for every i. We say that w sharply

represents a if, in addition, wi is nonempty for 1 < i < n.

A word w in S∪S may represent several multifractions, since the expression of w
as w1w2w3w4 ··· need not be unique if no maximality condition is required, but it
sharply represents a unique multifraction.

Lemma 1.18. Assume that M is a gcd-monoid with lcm presentation (S,R) and
w is a word in S ∪S representing a multifraction a. Then a ⇒split b implies w w′

for some word w′ in S ∪ S representing b.

Proof. Put n = ‖a‖, and let w1, ... , wn satisfy w = w1w2w3w4 ··· and [wi]
+ = ai

for every i. Suppose first a • R trim

i = b with, say, i odd. By hypothesis, we have
ai = 1, which requires wi = ε, because there is no nontrivial invertible element
in M , so the empty word must be the only element of its ≡+-class. Then we
have bi = aiai+2, and w also represents b, as witnessed by the decomposition
w1, ... , wi−1, wiwi+2, wi+3, ... , wn. The argument is similar for i even, replacing
wiwi+2 with wi+2wi.

Suppose now a • Rbreak

i,x,y = b with, say, i even. The assumption that a • Rbreak

i,x,y is
defined implies that y left-divides ai, and x left-divides ai+1. It follows that there
exist words u, v, u′′, v′′ in S satisfying

wi ≡
+ uu′′ and wi+1 ≡+ vv′′ with [u]+ = y and [v]+ = x.

By Lemma 1.16, the assumption that x∨y exists implies that the right-R-reversing
of uv leads to some -word v′u′ with u′, v′ in S∗ such that uv′ and vu′ both repre-
sent x∨y. Put w′

k := wk for k < i, w′
i := u′′, w′

i+1 := v′, w′
i+2 := u′, w′

i+3 := v′′, and

w′
k+2 := wk for k > i+ 1, and w′ := w′

1w
′
2w3w4 ··· . By construction, w′ is obtained

from w using special transformations (namely positive and negative equivalences
and right-reversing) and, by the definition of Rbreak

i,x,y, it represents b. The argument
is similar for i odd, exchanging right- and left-reversings. �

Some care is needed for the other direction, because positive and negative equiv-
alences might cause trouble. This is where sharp representations are useful.

Lemma 1.19. Assume that M is a gcd-monoid with lcm presentation (S,R) and
w is a word in S ∪ S sharply representing a multifraction a. Then w w′ implies
a ⇒∗

split
b for some multifraction b sharply represented by w′.

Proof. Put n = ‖a‖, and let w1, ... , wn satisfy w = w1w2w3w4 ··· and [wi]
+ = ai for

every i. Suppose first that w′ is obtained from w by positive equivalence. Because
the representation is sharp, the transformation involves one word wi, with odd i
only. Then we have w′

i ≡
+ wi, and w′

k = wk for k 6= i, so w′ sharply represents a,
and the result is true with b = a. The case when w′ is obtained from w by negative
equivalence is similar.

Suppose now that w′ is obtained from w by one step of right-reversing. This
means that there exists an even integer i, generators s, t in S, words u′, v′ in S∗,
and a relation sv = tu in R satisfying wi = tv′, wi+1 = su′, and such that w′

is obtained from w by replacing the factor wiwi+1, which is v′ tsu′, with v′uvu′.
Now, if we define w′

k := wk for k < i, w′
i := v′, w′

i+1 := u, w′
i+2 := v, w′

i+3 := u′,

and w′
k+2 := wk for k > i + 1, then we have w′ = w′

1w
′
2w

′
3w

′
4 ··· , whereas, by
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very definition, the words w′
1, ... , w

′
n+2 witness that w′ represents the multifraction

a•Rbreak

i,s,t . If all words u, v, u
′, v′ are nonempty, then the representation is sharp, and

taking b := a • Rbreak

i,s,t gives the result. Otherwise, we restore sharpness by inserting

trimming steps. Assume for instance that u is empty, but u′ and vv′ are not. Then
a • Rbreak

i,s,t is eligible for R trim

i , and w′ sharply represents b := a • Rbreak

i,s,tR
trim

i . The
other cases are treated similarly, possibly using several trimmings. Note that free
reduction, which corresponds to s = t and u = v = ε, is not special. Finally, the
argument for left-reversing is similar, with i now necessarily odd. �

We can now complete the argument.

Proof of Proposition 1.14. As said above, it only remains to establish the equiv-
alence of (ii) and (iii). Suppose first that SM is semi-convergent, and let w be a
word in S ∪ S representing 1 in U(M). Let w1, ... , wn be words in S∗ satisfying
w = w1w2w3 ··· , and let a := [w1]

+/ ···/[wn]
+. Then we find

(1.20) ι(a) = ι([w1]
+)ι([w2]

+)−1ι([w3]
+)··· = [w1][w2]

−1[w3] ··· = [w],

so a represents 1 in U(M). By hypothesis, this implies a ⇒split 1. By Lemma 1.18,
we must have w  w′ for some word w′ in S ∪S representing 1. The word w′ must
be the empty word, so we have w  ε. Thus (ii) implies (iii).

Suppose now that Property H is satisfied for (S,R), and let a be a multifraction
satisfying ι(a) = 1. First, by applying as many trim steps R trim

i as possible to a,
we obtain a ⇒∗

split
a′ for some multifraction a′ satisfying a′i 6= 1 for 1 < i < ‖a′‖.

Now let w be a word in S ∪ S representing a′. The conditions a′i 6= 1 imply that w
sharply represents a′. By construction, ι(a′) = 1 holds in U(M), and, therefore, by
the computation of (1.20), w represents 1 in U(M). By Property H, we must have
w  ε. By Lemma 1.19, there exists a multifraction b sharply represented by ε.
The latter is necessarily of the form 1, implying a′ ⇒split b, whence a ⇒split 1. Thus
(iii) implies (ii). �

It was noted in [1] that Property H need not imply the decidability of the word
problem in general; Proposition 1.14 precisely measures the gap between the two
properties: by Proposition 1.6, the decidability of the word problem follows from
the semi-convergence of R-reduction up to a Turing-computable padding, whereas
Property H entails no effective upper bound on the padding that is needed.

Remark 1.21. As stated above, Property H makes sense only for those gcd-
monoids that admit a presentation that is both a right-lcm and a left-lcm presenta-
tion—as is the case for the standard presentation of Artin–Tits groups. If M is
a strongly noetherian gcd-monoid with atom set S, then M admits a right-lcm

presentation (S,R) and a left-lcm presentation (S, R̃) which need not coincide.

Then Property H can be stated for the double presentation (S,R, R̃), using R for

right-reversing and R̃ for left-reversing, and all results stated above extend without
change to this general version.

2. Artin–Tits groups of sufficiently large type

We now investigate a special family of gcd-monoids, namely Artin–Tits monoids
of sufficiently large type, for which we establish the padded semi-convergence result
stated as Theorem 1.
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A presentation (S,R) of a monoid M is an Artin–Tits presentation if, for each
pair (s, t) in S × S with s 6= t, the set R contains at most one relation, and that
relation has the form st ··· = ts ··· , relating two alternating products of length mst,
for some integer mst ≥ 2. If mst = 2, then (s, t) is called a commuting pair, and
if there is no such relation between s and t, then (s, t) is called a free pair, and
we define mst = ∞. The associated Coxeter diagram is a complete graph with
vertex set S, and a label mst on the edge joining s and t. A monoid M is called an
Artin–Tits monoid if it possesses an Artin–Tits presentation (S,R). We say that
M and its enveloping group U(M) are of sufficiently large type if, in any triangle in
the associated Coxeter diagram, either no edge has label 2, or all three edges have
label 2, or at least one edge has label ∞.

Since all relations in R have the form u = v, where u and v are positive words of
the same length, we see that the word-length map λ induces a well-defined map on
the presented monoid, verifying strong noetherianity. We use λ also to denote the
induced map on the monoid and, for a ∈ M , we call λ(a) the word-length of a. We
extend λ to multifractions by λ(a) :=

∑
i λ(ai), and call λ(a) the word-length of a.

2.1. The result. The main result that we shall prove is:

Proposition 2.1. If M is an Artin–Tits monoid of sufficiently large type and a is
a multifraction of word-length ℓ that represents 1 in U(M), then we have 12p/a ⇒∗ 1
with p = 3ℓ(ℓ+ 2)/4.

Note that, since all of the defining relators of the Artin-Tits groups have even
length, a word in S ∪ S that represents the identity must have even length, so ℓ
must be even in the above proposition.

So, R-reduction is semi-convergent for every Artin–Tits monoid of sufficiently
large type up to a quadratic padding. As the square of word-length is obviously
Turing-computable, Proposition 2.1 verifies that M satisfies Conjecture Apadded, and
therefore that the word problem of the associated Artin–Tits group is decidable (as
was known already). By Proposition 1.14, we also obtain an alternative proof to
the main result of [8], namely that the standard presentation of Artin-Tits groups
of sufficiently large type satisfies Property H.

Proposition 2.1 follows from directly the following technical result. We say that
a multifraction a is geodesic if its word-length is minimal over all multifractions
that represent the same group element.

Proposition 2.2. If M is an Artin–Tits monoid of sufficiently large type and a is
a multifraction of word-length ℓ that is not geodesic, then 16ℓ/a is R-reducible to a
multifraction of word-length ℓ− 2.

The proof makes use of the existence of an effective rewrite system for Artin–
Tits groups of sufficiently large type that is defined and explored in [9, 10], most
of whose rules involve two generators only. We show that appropriate sequences of
rules from that system can be simulated within multifraction reduction to reduce
16ℓ/a as required.

The following subsection, Subsection 2.2, explains our strategy. Further technical
results are established in Subsection 2.3, and then the proof given in Subsection 2.4.

2.2. Strategy for the proof of Proposition 2.2. For the rest of this section, we
assume that M is an Artin–Tits monoid of sufficiently large type, and that (S,R)
is the associated presentation.
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We shall refer to the elements of S as generators and to those of S ∪S as letters.
For s ∈ S, we call s the name of both of the letters s and s. We use f[w] and l[w]
to denote the first and last letter of a word w in S ∪ S. Furthermore, in situations
where an element a of M is represented by a unique word w in S, we use f[a] and
l[a] also to denote the first and last letters of w.

The rewrite system described in [9, 10] is based on two kinds of length preserving
rules relating words, τ -moves and κ-moves, together with free reduction. By defini-
tion, a τ -move rewrites a certain type of 2-generator subword w on non-commuting
non-free generators to another word τ(w) on the same two generators, where w and
τ(w) have the same length and represent the same group element. A κ-move applies
commutation relations to subwords on two or more generators. In this article, in
order to simplify the exposition, we choose to break κ-moves down as sequences
of κ-moves on 2-generator subwords, and we introduce the term τ+-move to mean
either a τ -move or a κ-move applied to a 2-generator subword.

So τ+-moves can be applied only to certain geodesic 2-generator words, which
we call critical words. When v is critical, then τ+(v) is also critical, on the same
set of generators. In all cases, f[v] and f[τ+(v)] have distinct names, as do l[v] and
l[τ+(v)]. Furthermore, if v is neither a positive nor a negative word, then exactly
one of f[v] and f[τ+(v)] lies in S, and the same is true for l[v] and l[τ+(v)].

Suppose that w is a freely reduced non-geodesic word in S ∪ S. Then, by [10,
Proposition 3.2], w admits a so-called leftward length reducing critical sequence.
This consists of a certain type of factorisation (see [10] for a precise definition) w =
αw1w2 ···wkβ for some k > 1, where w1, ... , wk are geodesic 2-generator subwords
of w, and wk is critical. We can locate such a decomposition, if it exists, by a finite
search.

To perform the length reduction, as described in [10], we first replace wk by
τ+(wk). Then, if k > 1, we replacew′

k−1 by τ
+(w′

k−1), where w
′
k−1 := wk−1f[τ

+(wk)].

We continue in this manner, finally replacing w′
1 by τ

+(w′
1), where w

′
1 := w1f[τ

+(w2)].

At that stage, we have l[α] = f[τ+(w′
1)], and we can freely cancel these two adjacent

letters.
To mimic the length reduction summarised above, we need to simulate the re-

placement of wk by τ+(wk). If wk is a positive or a negative word then, by def-
inition, τ+(wk) is another such word representing the same group element, with
f[τ+(wk)] 6= f[wk]. In that case, the only multifraction operations that we may
need to carry out are moves that ensure that the part of the multifraction that is
represented by wk occupies a single component.

When wk is neither a positive nor a negative word, the simulation of the replace-
ment of wk by τ+(wk) is generally carried out in several stages. Initially, a certain
part of the multifraction, which may be spread across several components, is repre-
sented by the word wk. We use R-reduction (if necessary) to adjust that part of the
multifraction so that it occupies exactly two adjacent components, numbered i and
i+1 for some i, and represents a word vk with [w] = [vk]. Furthermore, if f[wk] ∈ S
(i.e. wk starts with a positive letter), then i is odd and vk is a concatenation of
nonempty positive and negative words, whereas if f[wk] ∈ S, then i is even and vk
is a concatenation of nonempty negative and positive words. We then carry out a
single R-reduction, after which the part of the multifraction in question occupies
components i − 1 and i − 2, and represents a word u′

k with [u′
k] = [vk], which is a
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concatenation of negative and positive words in the first case, and of positive and
negative words in the second.

Let uk be the maximal proper suffix of u′
k. We shall show later in Lemma 2.6 that

f[u′
k] = f[τ+(wk)], so uk represents the same group element as f[τ+(wk)]

−1τ+(wk).
Then, for k > 1, we adjoin f[u′

k] to wk−1 to give the word w′
k−1 defined above.

We repeat the above procedure on w′
k−1 to define words u′

k−1, uk−1 and then,
provided that k > 2, to define w′

k−2, u
′
k−2, uk−2, ..., w

′
1, u

′
1, u1. Then the first

letter f[u′
1] of u

′
1 freely reduces with the final letter l[α] of α, and this cancellation

can be effected by a single R-reduction.
So the word has effectively been transformed to α′u1 ···ukβ, where α′ is the

maximal prefix of α. Now we use R-reduction to simulate the replacement of
each ui by a 2-generator geodesic vi. The resulting word v = α′v1 ···vkβ, where
|α′| = |α|− 1, |vk| = |wk|− 1 and, for 1 6 i < k, |vi| = |wi|, is the same as the word
resulting from the application of sequence of τ+-moves to w followed by the free
cancellation. So we have successfully used R-reduction to simulate the reduction
resulting from the leftward critical sequence, and reduce the length of the word
by 2.

2.3. Technical results for two-generator Artin–Tits monoids. In order to
simulate the τ+ transformations, we need a few preliminary results. By definition,
the elements involved in the transformations belong to a non-free two-generator
submonoid of the ambient monoid, and we establish here various technical state-
ments involving the elements of such submonoids and their enveloping groups.

The first point is that every element in the group admits distinguished fractional
decompositions.

Proposition 2.3. If M0 is a non-free two-generator Artin–Tits monoid, then every
element of U(M0) admits a unique expression ab−1 with a, b in M0 and a ∧̃ b = 1,
and a unique expression c−1d with c, d in M0 and c ∧ d = 1.

Proof. The lcm ∆ of the two generators is a Garside element in M0 and, as a
consequence, any two elements of M0 admit a common right-multiple and a com-
mon left-multiple. By the classical Ore’s theorem, this implies that every element
of U(M0) can be expressed as a right fraction ab−1 and as a left fraction c−1d. As
any two elements of M0 admit a left gcd and a right gcd, dividing the numerator
and the denominator of a right (resp. left) fraction by their right gcd (resp. left gcd)
yields irreducible fractions. Uniqueness follows from the fact that, if the right gcd
of a and b is trivial, then ca is the right lcm of c and d whenever we have ca = db
(see for instance [7, Lemma 9.3.5]). �

In the above situation, we shall call ab−1 and c−1d the right and left fractional
normal forms of the associated element.

The next point is that, under mild assumptions, the numerator and the denom-
inator of these fractional normal forms are represented by unique words in the
generators:

Lemma 2.4. If M0 is a non-free two-generator Artin–Tits monoid, and ab−1 and
c−1d are the fractional normal forms of an element g of U(M0) and, moreover, a
and b (or c and d) are both 6= 1, then none of a, b, c or d is divisible by the Garside
element ∆, and there are unique positive words in M0 representing each of them.
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Proof. If, for example, a were divisible by ∆ then it would have a representative
word with the same last letter as a representative word for b, which would violate
the condition that a and b have no common right divisor. The uniqueness of the
word representing a is proved in [11, Proposition 4.3]. �

In this situation, we shall unambiguously write f[a] and l[a] for the first and
last letters of the unique 2-generator word that represents a, and similarly for b, c,
and d.

Next, the generators occurring at the ends of the numerators and denominators
obey some constraints:

Lemma 2.5. If M0 is a non-free two-generator Artin–Tits monoid, and ab−1 and
c−1d are the fractional normal forms of an element g of U(M0) and, moreover, a
and b (or c and d) are both 6= 1, then we have f[a] 6= l[c] and f[b] 6= l[d].

Proof. We proved in Lemma 2.4 that none of a, b, c, d is divisible by the Garside
element ∆ of M0. Now, from the equality ca = db and the fact that c and d have
no nontrivial common left divisor, we have f[c] 6= f[d], and so the element ca of M0

is represented by more than one word in the generators. By [11, Proposition 4.3]
again, any such word must admit ∆ as a subword. Since neither c nor a is divisible
by ∆, we have ∆ = c′a′, where c′ and a′ are nontrivial left and right divisors of c
and a. But the two words representing ∆ consist of alternating letters, and so we
have f[a] 6= l[c] and similarly f[b] 6= l[d]. �

Using the previous result, we obtain some control about the first (or the last)
generator occurring in the fractional normal form of an arbitrary geodesic word.

Lemma 2.6. Assume that M0 is a non-free two-generator Artin–Tits monoid, and
ab−1 and c−1d are the fractional normal forms of an element g of U(M0) lying
neither in M0 nor in M−1

0 . Then, if w is a geodesic word representing g, we have

f[a] = f[w] if f[w] is positive, and l[c] = f[w] if f[w] is negative.

Proof. The proof is by induction on the length n of w. In this proof, for a generator
x ∈ S, we shall write x± to mean either x or x. Suppose that w = x±

i1
···x±

in
. There

is nothing to prove for n 6 1. Let us assume that that f[w] = xi1 , that is, f[w] is
positive; the other case, when f[w] is negative, is similar. Let v be the maximal prefix
xi1x

±
i2
···x±

in−1
of w. If v is a positive word, then ab−1 with a = [v] and b = [xin ]

is a fractional normal form of [w], so f[a] = xi1 . Otherwise, let a′b′−1 be the right
fractional normal form of [v]. Then by induction we have f[a′] = f[v] = f[w].

Suppose first l[w] = xin . Now [a′] and [xinb
′] may have a nontrivial greatest

common right divisor a′′ but, since w is not a negative element, this cannot be the
whole of a′. By Lemma 2.4, a′ is represented by a unique positive word. Hence
a′ = aa′′ and so f[a] = f[a′] = f[w].

Otherwise we have l[w] = xin . If xin = f[b′] then xin simply cancels with l[b′−1]
and we are done. Otherwise the left fractional normal form of [b′−1xin ] is [b

′]−1[xin ]
and, since l[a′] 6= l[b′], it follows from Lemma 2.5 that the right fractional normal
form a′′b′′−1 of [b′−1xin ] has f[a′′] 6= l[b′] and hence f[a′′] = l[a′]. So a′a′′ is not
divisible by ∆. Hence a′a′′ has a unique geodesic representative and so, if a′a′′ and
b′′ had a nontrivial common right divisor, then so would a′′ and b′′, which is not
the case. So a′a′′b′′−1 is the right fractional normal form of [w], with f[a′] = f[w],
and we are done. �
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We now establish a series of results involving reduction of multifractions, still in
the non-free two-generator case. Although very easy, the following result will be
crucial.

Lemma 2.7. If M0 is a non-free two-generator Artin–Tits monoid, and ab−1 and
c−1d are the fractional normal forms of an element of U(M0), then we have

···/s/c/dt/ ··· ⇒Ri,d ···/sa/b/t/ ··· when i is even
···/s/a/tb/ ··· ⇒Ri,b ···/cs/d/t/ ··· when i is odd,

where the multifractions are of depth at least 3, and the entries shown are in posi-
tions i− 1, i, i+ 1.In particular, for s = 1, we have

···/1/c/dt/ ··· ⇒Ri,d ···/a/b/t/ ··· when i is even
···/1/a/tb/ ··· ⇒Ri,b ···/c/d/t/ ··· when i is odd,

Proof. The diagrams provide a proof.

sa
b

u

s
c

du

a d

cs
d

u

s
a

ub

c b

�

Using Lemma 2.7 repeatedly, we deduce that R-reduction can be used to go from
a fractional normal form to a geodesic expression.

In the sequel, 1m stands for 1/ ···/1, m terms. Note that, for a, b in M , the
multifraction 1m/a/b represents the element ab−1 of U(M) when m is even, and
the element a−1b when m is odd.

Lemma 2.8. Assume that M0 is a non-free two-generator Artin–Tits monoid, and
ab−1 and c−1d are the fractional normal forms of an element g of U(M0) lying
neither in M0 nor in M−1

0 . Let v be a geodesic word representing g. Then, using
R-reduction, we can transform each of the multifractions 14|v|/a/b and 14|v|−1/c/d
to a multifraction that is represented by v.

Proof. The proof is by induction on |v|. Since we are assuming that v is not positive
or negative, there is nothing to prove when |v| 6 1.

Let x = f[v] and let v′ be the maximal proper suffix of v (of geodesic length
|v| − 1). By Lemma 2.6, x is equal to either f[a] or to f[c−1]. If x = f[a] then
we use Lemma 2.7 to transform 14|v|−1/c/d to 14|v|−2/a/b/1, and if x = f[c−1],

then we transform 14|v|/a/b to 14|v|−1/c/d/1. In either case, from the fractional
normal form for g whose representative word does not start with x, we derive a
multifraction represented by a word beginning with x, and this is equal to the
multifraction representing the other fractional normal form of g (or that minus two
initial entries containing 1). We apply Lemma 1.9 with t = 1 to move the letter x
left to the first or second entry of the multifraction.

In the first case we have identified reductions

14|v|/a/b ⇒
∗ [x]/14|v|−1/a

′/b, 14|v|−1/c/d ⇒∗ [x]/14|v|−3/a
′/b/1,

and in the second case we have identified reductions

14|v|/a/b ⇒
∗ 1/[x]/14|v|−3/c

′/d/1, 14|v|−1/c/d ⇒∗ 1/[x]/14|v|−3/c
′/d.

If a′ or c′ is equal to the identity, then b or d is a positive or negative element
of G′ and hence by Lemma 2.4 is represented by the unique geodesic word v′, and
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we are done. Otherwise, by induction, we can apply sequences of R-reductions to
transform each of 14|v|−4/a

′/b and 14|v|−5/c
′/d to multifractions represented by v′.

Hence there are sequences of R-reductions that transform each of 14|v|/a/b and

14|v|−1/c/d to multifractions represented by v. �

2.4. Proof of Proposition 2.2. Using the results of Section 2.3, we now describe
how the steps outlined in Subsection 2.2 can be executed using R-reduction. As in
Subsection 2.2 and for the rest of this section, M is a fixed Artin–Tits monoid of
sufficiently large type.

Let w be a non-geodesic word representing the multifraction a = a1/a2/ ···/an
on M . Then w has a leftward length reducing critical factorisation w = αw1 ···wkβ.
Suppose that the subword wi starts within the entry aji of the multifraction a, that
is, that we have

aji =

{
[yizi] for ji odd
[ziyi] for ji even

for positive words zi, yi, where wi shares a prefix with zi or zi. Specifically, unless
wi is a positive or negative word, one of zi or zi is a proper prefix of wi, but if wi

is positive or negative, then wi might instead be a prefix of zi or zi.
It follows from Lemma 1.9 applied with t = 1 that, via an application of the

sequence of moves R2k,a1
R2k+1,a2

···R2k+j1−1,aj1−1
, we have

12k/a1/ ···/an ⇒∗ 12k−2/a1/a2/ ···/aj1−1/1/1/aj1/ ···/an

and then application of R2k+j1,[zi] transforms this to

12k−2/a1/a2/ ···/aj1−1/[y1]/1/[z1]/aj1+1/ ···/an.

Hence we see that a sequence of such reductions transforms the multifraction
12k/a1/ ···/an to a multifraction

a′ := a1/a2/ ···/aj1−1/[y1]/1/[z1]/aj1+1/ ···/1/[z2]/ ··· ···/1/[zk]/ ···/an

for which [zi] is an entry of a′ for each of the subwords zi. Let us redefine ji to
denote the index of the entry of a′ in which [zi] now lies.

Let us assume that jk is odd, and hence that wk has a positive prefix - the other
case is similar.

Suppose first that wk is a positive word. Then wk might be distributed over more
than one entry of a′ as a prefix of a multifraction b := [zk]/1/ajk+2/1/ ···/ajk+2s.
But then a sequence of reductionsRjk+2s−1,ajk+2s

···Rjk+1,ajk+2 ···ajk+2s
would trans-

form b to b′ := [zk]ajk+2 ···ajk+2s/12s. So we can assume that wk lies within a single
multifraction entry, as a prefix of zk. The required τ+-move on wk can then be
executed just by choosing a different representative word for wk, which does not
change b′.

Otherwise, wk is distributed over more than one entry of a′, and has a positive
prefix. Suppose that wk occupies s > 2 such entries. So it has a suffix xk (or xk)
which defines a left (resp. right) divisor of the (jk + s− 1)-th entry of a′. Then, by
Lemma 2.7, we can apply a reduction Rj+k+s−2,[xk ], which effectively replaces wk

by a word representing the same group element that occupies occupies at most s−1
multifraction entries. A sequence of at most two s−2 such reductions transforms wk

into a word occupying two entries, which represents the fractional normal form ab−1

of [wk], with a the jk-th entry and b a right divisor of the (jk + 1)-th entry of the
new multifraction a′′. (Since wk is not a positive or negative element of the group,
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it could not be transformed to a word that occupies fewer than two multifraction
entries.) By Lemma 2.6 we have f[a] = f[zk]. Now we apply Lemma 2.7, with i = jk
and t = 1, to transform a′′ into a multifraction in which ab−1 is represented by its
other fractional normal form, c−1d, where now c is the (jk − 1)-th entry and d the
jk-th entry.

Let u′
k be a product of geodesic words representing c−1 and d. Then, from

Lemma 2.5, we have l[c] 6= f[a] = f[wk], and so c−1 and hence also u′
k begins with

the first letter that we wish to append to wk−1 to give w′
k−1.

We can repeat this process on w′
k−1, w

′
k−2, ... , w

′
1 in turn. Then we can carry

out the free reduction between the first letter of u′
1 and the final letter of α using a

single R-reduction. Denote the multifraction after the free reduction by b. Then a
word representing b contains each of the words u1, ... , uk as a subword, where each
ui is either a positive or negative word within a single entry of b, or else it is a word
in fractional normal form ab−1 or c−1d, where the entries of b in position ji− 1 and
ji are a and b, or c and d, respectively.

We complete the proof by describing R-reductions that transform the multifrac-
tion 1N/b into one that is represented by the word α′v1 ···vkβ, for an appropriately
chosen integer N . In the case where ui is a positive or a negative word, ui and vi
are geodesic words with [ui]

+ = [vi]
+, so no change is needed to the multifraction.

We can apply Lemma 2.8 to deal with those ui that are neither positive nor nega-
tive words. We deduce that we can find a sequence of R-reductions that transform
1N+2k/a via 1N/b to a multifraction that is represented by the word α′v1 ···vkβ

provided that N > 4
∑k

i=1 |vi|. Since clearly both k and
∑k

i=1 |vi| are bounded
above by |w|, the proof of the Proposition 2.2 is completed using Lemma 2.8. This
completes also the proof of Proposition 2.1. �

The results of the current paper leaves the question of whether Artin–Tits
monoids of sufficiently large type satisfy Conjecture A open, but, at least, we
know now that R-reduction is relevant for them. In view of this result, and those
of [2], which settle the case of type FC, the “first” case for which nothing is known
in terms of reduction (nor of the word problem) is the Artin–Tits monoid with
exponents 3, 3, 3, 3, 3, 2, that is, the monoid

〈a, b, c, d | aba = bab, aca = cac, bcb = cbc, ada = dad, bdb = dbd, cd = dc〉+.

We hope that further progress will arise soon
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P.D., Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, Université
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