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Abstract

We prove that a group has word problem that is a growing context-
sensitive language precisely if its word problem can be solved using
a non-deterministic Cannon’s algorithm (the deterministic algorithms
being defined by Goodman and Shapiro in [6]). We generalise results of
[6] to find many examples of groups not admitting non-deterministic
Cannon’s algorithms. This adds to the examples of Kambites and
Otto in [7] of groups separating context-sensitive and growing context-
sensitive word problems, and provides a new language-theoretic sepa-
ration result.

1 Introduction

The purpose of this note is to extend the results in Sections 6 and 7 of [6].
That article described a linear time algorithm, which we call Cannon’s al-
gorithm, which generalised Dehn’s algorithm for solving the word problem
of a word-hyperbolic group. Many examples of groups that possess such an
algorithm were provided, alongside proofs that various other groups do not.

The Cannon’s algorithms described in [6] are deterministic, but there was
some brief discussion at the end of Section 1.3 of [6] of non-deterministic gen-
eralisations, and the close connections between groups with non-deterministic
Cannon’s algorithms and those with growing context-sensitive word problem.
(Non-deterministic Cannon’s algorithms and growing context-sensitive lan-
guages are defined in Section 2 below.) It was clear that an appropriate
modification of the theorems in Section 7 of [6] should imply that various
groups, including direct products Fm × Fn of free groups with m > 1 and
n ≥ 1 and other examples mentioned below, had word problems that were
context-sensitive but not growing context-sensitive. We provide that modi-
fication in this paper.
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Our examples are not the first to separate context-sensitive and growing
context-sensitive word problem. For Fm × Fn with m,n > 1 has recently
been proved context-sensitive but not growing context-sensitive by Kambites
and Otto in [7], using somewhat different methods; they failed to resolve
this question for Fm × F1 = Fm × Z with m > 1, which is now covered by
our result. And our result has further application, since, according to [7,
Section 7], the fact that F2 × F1 does not have growing context sensitive
word problem implies that the class of growing context-sensitive languages
is properly contained in the language class L(OW−auxPDA(poly, log)). We
refer the reader to [7] for a definition of this class, and for citations.

In Section 2 of this article, we provide definitions of the classes of context-
sensitive and growing context-sensitive languages, and of non-deterministic
Cannon’s algorithms. We then show in Theorem 3 that the set of formal
languages defined by non-deterministic Cannon’s algorithms is the same as
the set of growing context-sensitive languages that contain the empty word.
Hence the word problem for a group can be solved using a non-deterministic
Cannon’s algorithm precisely if it is a growing context-sensitive language.

Two different versions of Cannon’s algorithms, known as incremental and
non-incremental, are defined in [6], and both of these are deterministic. In
[6, Proposition 2.3] it is shown that the language of an incremental Can-
non’s algorithm is also the language of a non-incremental Cannon’s algo-
rithm. In [7, Theorem 3.7], it is shown that the class of languages defined by
non-incremental Cannon’s algorithms is exactly the class of Church-Rosser
languages. It is pointed out in [7] (following Theorems 2.5 and 2.6) that
the class of Church-Rosser languages is contained in the class of growing
context-sensitive languages. It follows that every group with an incremental
or non-incremental Cannon’s algorithm also has a non-deterministic Can-
non’s algorithm. (This is not obvious, because replacing a deterministic
algorithm with a non-deterministic algorithm with the same reduction rules
could conceivably result in extra words reducing to the empty word.) In
particular, all of the examples shown in [6] to have (incremental) Cannon’s
algorithms have growing context-sensitive word problem.

It follows from the (known) fact that the class of growing context-sensitive
languages is closed under inverse homomorphism that the property of a
finitely generated group having growing context-sensitive word problem does
not depend on the choice of finite semigroup generating set of G. Some
other closure properties of the class of growing context-sensitive groups are
mentioned at the end of Section 2.

In Section 3, we generalise Theorems 7.1 and 7.2 of [6] to prove that there
does not exist a non-deterministic Cannon’s algorithm for a group satisfying
the hypotheses of those theorems; that is, we prove the following.
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Theorem 1 Let G be a group that is generated as a semigroup by the finite
set G, and suppose that, for each n ≥ 0, there are sets S1(n), S2(n) in G
satisfying

(1) each element of Si(n) can be represented by a word over G of length at
most n,

(2) there are constants α0 > 0, α1 > 1 such that for infinitely many n,
|Si(n)| ≥ α0α

n
1 , and

(3) each element of S1(n) commutes with each element of S2(n).

Then G cannot have a non-deterministic Cannon’s algorithm over any finite
semigroup generating set.

Theorem 2 Let G be a group that is generated as a semigroup by the finite
set G, and suppose that, for each n ≥ 0, there are sets S1(n), S2(n) in G
satisfying

(1) each element of Si(n) can be represented by a word over G of length at
most n,

(2) there are constants α0 > 0, α1 > 1, α2 > 0 such that for all sufficiently
large n, |S1(n)| ≥ α0α

n
1 and |S2(n)| ≥ α2n, and

(3) each element of S1(n) commutes with each element of S2(n).

Then G cannot have a non-deterministic Cannon’s algorithm over any finite
semigroup generating set.

As a corollary we see that a group G satisfying the conditions of Theorem 1
or 2 cannot have word problem that is a growing context-sensitive language.

Theorems 7.1 and 7.2 of [6] are followed by a number of further theorems and
corollaries (numbered 7.3 – 7.12), which provide a wide variety of examples
of groups that satisfy the criteria of Theorems 7.1 or 7.2 and hence have
no deterministic Cannon’s algorithm. These examples include F2 ×Z, braid
groups on three or more strands, Thompson’s group F , Baumslag-Solitar
groups 〈a, t, | tapt−1 = aq〉 with p 6= ±q, and the fundamental groups of
various types of closed 3-manifolds. We can conclude immediately from
our Theorems 1 or 2 that none of these examples have non-deterministic
Cannon’s algorithms or growing context sensitive word problems.
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Note that a number of these examples, such as F2 ×Z and braid groups [5],
are known to be automatic and hence to have context-sensitive word problem
[8].

On the other hand the article [6] gives a wealth of examples of groups that do
have Cannon’s algorithms, and hence have growing context-sensitive word
problems. These include word-hyperbolic, nilpotent and many relatively
hyperbolic groups.

We would like to acknowledge the contribution of Oliver Goodman, many
of whose ideas are visible in the arguments of this paper.

2 Growing context-sensitive languages and non-

deterministic Cannon’s algorithms

We start with the necessary definitions. A phrase-structured grammar is a
quadruple (N,X, σ,P), where N and X are finite sets known respectively
as the non-terminals and terminals, σ ∈ N is the start symbol, and P is the
set of productions. The productions have the form u → v with u ∈ A

+ \X+

and v ∈ A
∗, where A := N ∪ X.

The grammar is context-sensitive if |u| ≤ |v| for all productions u → v. It is
growing context-sensitive if, in addition, for all productions u → v, σ does
not occur in v and either u = σ or |u| < |v|.

As is customary, to allow for the possibility of having the empty word ǫ in
a (growing) context-sensitive language (defined below), we also allow there
to be a production σ → ǫ, provided that σ does not occur in the right hand
side of any production.

For u, v ∈ A∗, we write u →∗ v if we can derive v from u by applying a finite
sequence of productions to the substrings of u. The language of the grammar
is the set of words w ∈ X∗ with σ →∗ w. A growing context-sensitive lan-
guage (GCSL) is a language defined by a growing context-sensitive grammar
(GCSG).

There is some information on this class of languages in [1]. Other possibly
relevant references are [3] and [4]. It is proved in [2] that the GCSLs form an
abstract family of languages which implies, in particular, that they are closed
under inverse homomorphisms and intersection with regular languages. This
in turn implies that the property of the word problem of a finitely generated
group G being a GCSL is independent of the choice of finite generating set
for G, and that this property is inherited by finitely generated subgroups of
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G.

A non-deterministic Cannon’s Algorithm (NCA) is defined to be a triple
(X, A,R), where X ⊆ A are finite alphabets, and R is a set of rules of the
form v → u with u, v ∈ A∗ and |v| > |u|. For a non-deterministic Cannon’s
Algorithm, we drop the restriction imposed in [6] for the deterministic case
that no two rules are allowed to have the same left hand sides. We allow
some of the rules v → u to be anchored on the left, on the right, or on both
sides, which means that they can only be applied to the indicated subword
v in words of the form vw, wv, and v, respectively, for words w ∈ A

∗. The
language of the NCA is defined to be the set of words w ∈ X∗ with w →∗ ǫ.

The similarity between GCSGs and NCAs is obvious – replacing the produc-
tions u → v of the former by rules v → u of the latter almost provides
a correspondence between them. Apart from the reversed direction of the
derivations, there are two principal differences. The first is that in a GCSG

the derivations start with σ, whereas with a NCA the significant chains of
substitutions end with the empty word ǫ. The second is that NCAs may
have anchored rules, whereas the definition of a GCSG does not allow for the
possibility of anchored productions.

These differences turn out not to be critical, and in this section we shall
prove the following result.

Theorem 3 Let L be a language over a finite alphabet X with ǫ ∈ L. Then
L is growing context-sensitive if and only it is defined by a non-deterministic
Cannon’s Algorithm.

To handle the anchoring problem, let us define an extended GCSG to be one in
which some of the productions u → v may be left anchored, right anchored,
or left and right anchored, which means that they can only be applied to
the indicated subword u in words of the form uw, wu or u, respectively, for
words w ∈ A

∗. Note that we do not allow productions with u = σ to be
anchored, and neither is there any need to do so, because they can only be
used as the initial productions in derivations of words in the language.

The following proposition tells us that allowing anchored productions does
not augment the class of GCSLs.

Proposition 4 If a language L ⊆ X∗ is the language defined by an extended
GCSG, then L is also defined by a standard GCSG.

Proof: Suppose L is defined by the extended GCSG (N,X, σ,P) and let
A := N ∪ X.
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We first replace the grammar by one in which u ∈ N+ for all productions
u → v. In other words, no terminal occurs in the left hand side of any
production.

To do this, we introduce a new set X̃ of non-terminals in one-one corre-
spondence with X. For a word w ∈ A∗, let w̃ be the result of replacing
every terminal x in w by its corresponding non-terminal x̃. We replace each
production u → v by a collection of productions of the form ũ → v′, where
v′ ranges over all possible words obtained by replacing some of the terminals
x that occur in v by their corresponding non-terminals x̃. This achieves the
desired effect without altering the language of the grammar.

After making that change, we introduce three new sets of non-terminals, ^N ,
N^ and ^N^, each in one-one correspondence with N . For a word w ∈ A

+,
we define ^w as follows. Let w = xv with x ∈ A, v ∈ A

∗. If x ∈ N \ {σ},
then we set ^w = (^x)v, where ^x is the symbol in ^N that corresponds
to x. Otherwise, if x ∈ X ∪ {σ}, we set ^w = w. We define w^ and ^w^
similarly. (Note that the new symbols in ^N^ are only needed here when
|w| = 1.)

Now each production of the grammar of the form σ → v is replaced by
σ → ^v^. For each non-anchored production u → v with u 6= σ, we keep
this production and also introduce new (non-anchored) productions ^u →
^v, u^ → v^, and ^u^ → ^v^. Each left anchored production u → v is
replaced by the two productions ^u → ^v and ^u^ → ^v^, and similarly for
right anchored productions. A left and right anchored production u → v is
replaced by the single production ^u^ → ^v^.

The effect of these changes is that the symbols in ^N can only occur as the
leftmost symbol of a word in a derivation starting from σ and, similarly,
those in N^ can only occur as the rightmost symbol. Conversely, in any
word w 6= σ that occurs in such a derivation, if the leftmost symbol of w is a
non-terminal then it lies in ^N , and similarly for the rightmost symbol. The
symbols in ^N^ can only arise as the result of an initial derivation of the
form σ → ^v^ with |v| = 1. So the productions that were initially anchored
can now only be applied in a production at the left or right hand side of
the word, and so we have effectively replaced anchored productions by non-
anchored ones that behave in the same way. Hence the language defined by
this grammar is the same as that defined by the original grammar. 2

A natural question that arises at this point is whether anchored rules in
a NCA can be dispensed with in a similar fashion. The following simple
example shows that this is not possible. Let X = {x}. Then L := {x} is the
language of the NCA with A = X and the single rule x → ǫ that is left and
right anchored. A NCA without anchored rules recognising L would have
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to contain the rule x → ǫ, but then L would also contain xn for all n > 0.
However, the proof of Theorem 3 that follows shows that we can make do
with non-anchored rules together with left and right anchored rules of the
form v → ǫ.

Proof of Theorem 3: Suppose that L ⊆ X∗ is the language defined by
the GCSG (N,X, σ,P) and that ǫ ∈ L. We define a NCA (X, A,R) with
A = X ∪ N \ {σ}, where the rules R are derived from the productions P
as follows. Productions of the form σ → v with v 6= ǫ are replaced by rules
v → ǫ anchored on both sides. All productions u → v with u 6= σ are
replaced by the rule v → u. It is easily seen that derivations of words in L
using P correspond exactly, but in reverse order, to reductions of words to
ǫ using R, so the language of (X, A,R) is equal to L.

Conversely, suppose that L is the language of the NCA (X, A,R). Then we
define an extended GCSG (N,X, σ,P) as follows. We introduce σ as a new
symbol and put N := (A \ X) ∪ X̃ ∪ {σ} where X̃ is a set of non-terminals
in one-one correspondence with X. Given a rule, v → u ∈ R, we will want
to consider a collection of productions ũ → ṽ, where ũ and ṽ range over
all words gotten by replacing X letters with X̃ letters subject only to the
requirement that ũ /∈ X∗. We refer to this collection of rules by u → v.

We produce the set of productions P as follows. We make σ → ǫ a produc-
tion of P, and the remaining productions are derived from the rules R as
follows. Rules of the form v → u with u 6= ǫ are replaced by productions
u → v, where anchored rules are replaced by correspondingly anchored pro-
ductions.

For a non-anchored rule v → ǫ, we introduce non-anchored productions
x → xv and x → vx for all x ∈ A, together with the productions σ → v. For
a left-anchored rule v → ǫ, we introduce left-anchored productions x → vx
for all x ∈ A together with the productions σ → v. Right-anchored rules of
this form are handled similarly. Finally, for a left and right anchored rule
v → ǫ, we introduce the productions σ → v.

By choosing the correct version of these rules at each step (i.e., including
the correct set of X̃ letters), each reduction to ǫ using R can be turned
into a derivation using P. Similarly, each derivation using P determines
a corresponding reduction using R. Thus the language of this grammar is
equal to L and, by Proposition 4, we may replace it by a standard GCSG

with language L. 2

We saw earlier that the property of a group G having growing context word
problem is independent of the chosen semigroup generating set of G, and
is closed under passing to finitely generated subgroups. It is proved in [6,
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Theorems 2.11,2.13] that the property of G having a deterministic Cannon’s
Algorithm is preserved under taking free products and under passing to over-
groups of finite index. These proofs work equally well for non-deterministic
Cannon’s algorithms, and so having growing context sensitive word problem
is also closed under these operations. But we shall see in the next section
that F2 × F2 does not have growing context sensitive word problem. Hence
we see that the class of groups with growing context sensitive word problem
is not closed under direct products.

3 Groups without non-deterministic Cannon’s al-

gorithm

This section is devoted to the proofs of Theorems 1 and 2, which extend
Theorems 7.1 and 7.2 of [6].

Our proofs of Theorems 1 and 2 are modifications of the original proofs
in [6]. We assume the reader is familiar with that work and has it available
for reference. We will show how to modify those arguments so that they can
be extended to the non-deterministic case.

The argument of [6] starts by examining the reduction of a word w0 to wn

by repeated applications of the length-reducing rules, which are referred
to as the history to time n of w0. These words are then displayed laid
out in successive rows in a rectangle. The place in each row where a rule
is to be applied is marked with a substitution line. The letters resulting
from the substitution occupy the space on the next row below this line
and are each given equal width. The authors introduce the notion of a
splitting path which is a decomposition of such a rectangle into a right and left
piece, together with combinatorial information on that decomposition. Two
splitting paths are defined to be equivalent if they are labelled with the same
combinatorial information. Given two histories, v0, . . . , vr and w0, . . . , ws, if
these have equivalent splitting paths, then the left half of the first rectangle
can be spliced together with the right half of the second rectangle in a way
which produces the history of the reduction starting with v−

0
w+

0
and ending

with v−r w+
s . (The super-scripts denote the left and right halves of these

words.) The combinatorics of splitting paths are such that in certain key
situations, exponentially many cases are forced to share only polynomially
many equivalence classes of splitting paths. The hypotheses of Theorems 7.1
and 7.2 of [6] assure a supply of exponentially many commutators, each of
which must reduce to the empty word. One shows that two of these can be
spliced together to produce a word which does not represent the identity,
but which also reduces to the empty word. This is a contradiction.
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Essentially we are able to work with the same definitions of histories, split-
ting paths and their details, and equivalence of splitting paths as [6], but
need to introduce a definition of equivalence of histories, and re-word and
re-prove some of the technical results involving these concepts. With those
revisions, we shall see that minor variations of the original proofs verify the
non-deterministic versions of the theorem.

We now describe how to modify the proofs of Theorems 7.1 and 7.2 of [6] to
prove Theorems 1 and 2.

Given a non-deterministic Cannon’s algorithm and a word w0, there is no
longer a unique history to time n of w0. We can call any sequence of words
w0, w1, . . . wn produced as the algorithm makes n substitutions on w0 a
history, although it is no longer valid to call it the history.

The definitions of a “diagram”, a “substitution line”, and the “width” of a
letter need no modification, nor do Lemmas 6.1 and 6.2 of [6] which relate
the width of a letter to its generation.

The definition of a “splitting path” needs no modification. Lemma 6.4 of [6]
states that a letter of generation g has a splitting path ending next to it of
length at most 2g + 2. This remains true if we choose the history appropri-
ately. We now show that we can do this.

Observe that in the non-deterministic case if a word w contains as disjoint
substrings two left-hand sides, say u and u′ of the rules u → v and u′ → v′,
then these two substitutions can be carried out in either order, i.e., either
as

xuyu′z → xvyu′z → xvyv′z

or as
xuyu′z → xuyv′z → xvyv′z.

Now consider two histories,

h1 = w0, . . . , xuyu′z, xvyu′z, xvyv′z, . . . , wn

and
h2 = w0, . . . , xuyu′z, xuyv′z, xvyv′z, . . . , wn.

(Corresponding ellipses stand for identical sequences.) We will say that
these are equivalent reductions1 and this generates an equivalence relation
on reductions starting with w0 and ending with wn. We can then speak
of corresponding substitutions in equivalent reductions. Notice that corre-
sponding substitution lines in equivalent reductions have the same width,

1The notion of equivalent reductions is not to be confused with the notion of equivalent

histories defined below. Accordingly, we will briefly refer to histories as reductions to

distinguish these equivalence relations.
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occur at the same position horizontally, consume the same letters with the
same widths and generations and produce the same letters with the same
width and generation.

Given a history w0, . . . , wn, there is a partial ordering of its substitutions
which is generated by the relation s1 ≺ s2 if s2 consumes a letter produced
by s1. The relationship ≺ is visible in the diagram of the history in that
s1 ≺ s2 if and only if there is a sequence of substitution lines with horizon-
tally overlapping segents starting at s1 and ending at s2. In particular, ≺-
incomparable substitution lines do not overlap in horizontal position, except
possibly at their endpoints. (We will omit further mention of this possible
exception.) Because of this, given two ≺-incomparable substitutions s1 and
s2 we either have s1 lying to the left of s2 or vice versa. Notice that if s1 lies
to the left of s2, then this is so for the corresponding substitutions in any
equivalent reduction.

Lemma 5 Suppose that h1 = w0, . . . , wn is a reduction containing the sub-
stitutions s1 and s2 in which s1 takes place before s2 and s1 and s2 are
≺-incomparable. Then there is an equivalent reduction h2 in which the sub-
stitution corresponding to s1 takes place after that corresponding to s2.

Proof: Note that s1 and s2 do not overlap horizontally. Thus, if these two
substitutions take place at successive words of h1, we are done.

Suppose now that no ≺-ancestor of s2 takes place later than s1. In that
case, s1 can be interchanged with the immediately preceding substitution,
thus reducing by 1 the number of substitutions occurring between s1 and
s2. Continuing this in this way produces the previous case.

Finally, suppose there is s3 ≺ s2 with s3 occurring later than s1. Let us
suppose that s3 is the earliest such. Then s1 and s3 are ≺-incomparable,
for otherwise we would have s1 ≺ s2. Applying the previous case allows us
to move s3 prior to s1, thus reducing by 1 the number of ≺-ancestors of s2

lying between s1 and s2. Continuing in this way produces the previous case.
2

Corollary 6 Suppose that h1 = w0, . . . , wn is a reduction and that Σ1 and
Σ2 are disjoint sets of substitutions in h1 with the property that no substi-
tution of Σ1 is ≺-comparable with any substitution of Σ2. Then there is an
equivalent reduction h2 in which every substitution of Σ1 takes place before
every substitution of Σ2. 2

In view of this, by passing to an equivalent reduction, we may assume that
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if s1 and s2 are ≺-incomparable and s1 takes place to the left of s2, then s1

takes place prior to s2.

Using this assumption on our choice of history justifies the statement in
the proof of Lemma 6.4 that, “When this happens it can only be with
substitutions to the left in the upper half and to the right in the lower.”
The proof now goes through as before.

The definitions of “details” and equivalence of splitting paths need no mod-
ification. Remark 6.5 of [6] gives a bound on the number of equivalence
classes of length n. This remains valid. (However, we could simplify the
details by ceasing to record the W − 1 letters to the left/right in a right/left
segment as part of the details. These are only needed to ensure that substi-
tutions take place in the intended order in the deterministic case in Lemma
6.6.)

Lemma 6.6 of [6] states that if two histories, v0, . . . , vr and w0, . . . , ws have
equivalent splitting paths then these can be spliced to form the history
starting with v−

0
w+

0
and ending with v−r w+

s . In our case, we need to modify
the statement of Lemma 6.6 of [6] to say “Then a history of v−

0
w+

0
up to a

suitable time ...” rather then “the history”, because this history may not be
unique. With that change, Lemma 6.6 remains true.

The paragraph after the proof of Lemma 6.6 no longer applies at all; that
is, vr is not necessarily determined even in a weak sense by v0.

Section 6.1 adapts these methods to respect subword boundaries. Given a
reduction of v0 to vt, and a subword w0 of v0, this gives us a diagram for
the reduction of w0 to the subword wt of vt. This subdiagram lies within
the diagram for the reduction of v0 to vt and shows wt on the side opposite
w0. Lemma 6.7 of [6] says that if w0 is a subword of v0 of length N and wt

has length at least 2W − 1, then the reduction of w0 to wt (and hence the
reduction of v0 to vt) has a splitting path in one of at most C1N

C2 classes.
The results of this section up to and including this Lemma remain valid.

Lemma 6.8 of [6] discusses the way that the choice of u0 affects the subword
reduction of v0 in the word u0v0. This does not make sense as stated for
a non-deterministic algorithm, because reduction of u0v0 to utvt no longer
gives the word vt as a function of u0.

In order to state an analogous result, we need an appropriate notion of
equivalence of histories. For fixed v0 and variable u0, we define two histories
u0v0 → utvt and u′

0v0 → u′

tv
′

t to be equivalent if either:

(i) l(vt) < W and vt = v′t; or
(ii) l(vt), l(v

′

t) ≥ W , the first W −1 letters of vt and v′t are the same, and the
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two histories have equivalent splitting paths that begin at the same place in
v0 and end immediately after the first W − 1 letters of vt and v′t.

Then it follows from Lemma 6.6 of [6] that, if u0v0 → utvt and u′

0v0 → u′

tv
′

t

are equivalent histories, then there is also a history u′

0v0 → u′

tvt, to which
both are equivalent. (Note: this notation may seem to imply that all of
these histories have the same length t, but of course they need not. All
three lengths might be different!)

Then the proof of Lemma 6.8 of [6] shows that, for fixed v0 of length N ,
there are at most C0N

C equivalence classes of histories u0v0 → utvt for
variable u0.

We turn now to the proof of our Theorem 1. As we have already seen,
the equivalent properties of having growing context sensitive word problem
and having non-deterministic Cannon’s algorithms hold independently of
the finite semigroup generating set G, so we only need to prove the non-
existence of the Cannon’s algorithm over G. We can further assume that
1 ∈ G so that any element which is represented by a word of length less than
or equal to n is also represented by a word of length n. (It is also easily
seen directly that the hypotheses of Theorems 1 and 2 do not depend on
the choice of generators.) Assume for a contradiction that the hypotheses
of that theorem hold and that there exists a non-deterministic Cannon’s
algorithm over a working alphabet A that contains G.

First we choose a specific value of n > 3W that is large enough for this
stronger version of condition (2) of Theorems 1 and 2 to apply, |Si(n)| ≥
α0α

n
1 , and also such that n is big enough so that that this exponential

function is larger than a particular polynomial function that comes out of
some of our technical lemmas. More precisely, we require

1

2
α0α

n
1 > C1n

C2+2|A|6W C0n
C ,

where C,C0, C1 and C2 are the constants defined in Lemmas 6.7 and 6.8.

For i = 1, 2, let Ti be a set of words of length at least 3W and at most n
representing the elements of Si(n). Since each element of S1(n) commutes
with each element of S2(n), we have u0v0u

−1

0
v−1

0
=G 1 for all u0 ∈ T1 and

v0 ∈ T2, and hence this word can be reduced, not necessarily uniquely, to
the empty word by means of the Cannon’s algorithm. For ease of notation
we write x0 for u−1

0
and y0 for v−1

0
. For each such u0 and v0, we choose

some sequence of substitutions that reduces u0v0x0y0 to the empty word
and let utvtxtyt be the word that we get after applying t substitutions in
this sequence.

For such a commutator, we run the algorithm to the point where for the
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first time vt and xt both have length less than 3W . At that time the longer
one has length in the range [2W, 3W −1]. Note that t depends on u0 and v0,
and where it is used below it should seen that way, and not as a constant.

First we assume that for at least half of the pairs (u0, v0) ∈ T1×T2, we have
l(vt) ≥ l(xt). We shall deal with the opposite case later.

Step 1. Now we fix a v0 ∈ T2, chosen such that l(vt) ≥ l(xt) for at least
half of the words u0 ∈ T1, and we let U be the set of all words u0 with this
property. Then |U | ≥ 1

2
α0α

n
1 .

Step 2. Since we have l(vt) ≥ 2W , we can apply Lemma 6.7, which says
that we can choose a splitting path for the subword history v0, v1, . . . vt in
one of polynomially many equivalence classes (C1n

C2, to be precise). That
is to say there are polynomially many sets of details that can describe such
a splitting path. This remains true (with the number increased to C1n

C2+2)
if we add to the detail the information that tells us where within v0 the
splitting path begins and where within vt the splitting path ends. We call
that the extended detail.

Step 3. Now since v0 is fixed we have a well defined map u0 7→ vtxtyt.
(Recall that, although there may be many possible reduction sequences for
u0v0x0y0, we arbitrarily chose some fixed sequence for each u0.) Now we
apply our amended version of Lemma 6.8 with u0v0x0 in place of u0 and y0 in
place of v0. This tells us there are at most polynomially (C0n

C in fact) many
equivalence classes of histories u0v0x0y0 → utvtxtyt. But u0 comes from a
set of exponential size (at least 1

2
α0α

n
1 ), which we have chosen to be bigger

than the appropriate polynomial, through our choice of n. So we have a large
set (of size more than C1n

C2+2) of u0 ∈ U that give rise to the same words vt

and xt, and with the property that the histories u0v0x0y0 → ut(u0)vtxtyt(u0)
(where vt and xt are fixed, but ut and yt depend on u0) are all equivalent,
in the sense defined above in our comments about the amended Lemma 6.8.

But, as we also noted above, Lemma 6.6 implies that these histories are
also all equivalent to histories u0v0x0y0 → ut(u0)vtxtyt for the same fixed
yt. Note that in these two equivalent histories u0v0x0y0 → ut(u0)vtxtyt(u0)
and u0v0x0y0 → ut(u0)vtxtyt, the parts of the two histories to the left of
the splitting line are the same except for the number of steps in which the
words remain constant. So we can use essentially the same splitting paths
as we chose in Step 2 for the second history.

Step 4. Since the number of u0 giving rise to equivalent histories in Step 3 is
greater than the number of equivalence classes of positioned splitting paths
for vt in Step 2, we can choose u0, u

′

0 ∈ U such that u0v0x0y0 → utvtxtyt and
u′

0v0x0y0 → u′

tv
′

tx
′

ty
′

t are equivalent histories with v′t = vt and x′

t = xt, and

13



such that the subhistories v0 → vt and v0 → v′t in the two histories contain
equivalent splitting paths, which start at the same position in v0 and end in
the same position in vt = v′t.

By the remark above, the second of these histories (and hence also the
first!) is equivalent to a history u′

0v0x0y0 → u′

tv
′

tx
′

tyt, which still contains an
equivalent splitting path through v0 → v′t. Now we can do our splicing, and
apply Lemma 6.6 of [6] to produce a history u0v

−

0
v′+
0

x′

0y
′

0 → utv
−

t v′+t x′

tyt =
utvtxtyt.

But utvtxtyt is part of the originally chosen history that reduces the com-
mutator u0v0x0y0 to the empty word, so there exists a history that reduces
u0v

−

0
v′+
0

x′

0y
′

0 to the empty word, a contradiction, because this is not the
identity element of the group.

In the second case (not considered in detail in Section 7 of [6]) where l(xt) ≥
l(vt) for at least half the pairs (u0, v0) ∈ T1 × T2, rather than fix v0 ∈
T2 we fix u0 ∈ T1 in a similar way, and let V be the possible v0 from
which, together with the chosen u0, we get l(xt) ≥ l(vt). Then we apply
Lemma 6.7 to the subword histories x1, . . . xt. Now we look at the map
v0 7→ utvtxt. The analogue of Lemma 6.8 applied to utvt tells us that ut

can take polynomially many values, and we see that we get a large set of
possible v0 ∈ V corresponding to a single utvtxt. Hence we can choose
v′0 mapping such that utvtxt = u′

tv
′

tx
′

t and such that the subword histories
x1, . . . xt and x′

1, . . . x
′

t have the same extended details, and we can splice.
Hence we see that the algorithm should rewrite u0v0x

−

0
x′+

0
y′0 to utvtx

−

t x′+
t y′t.

Since x0 = x′

0, the first of these two words is equal to u0v0x0y
′

0, equal in the
group to v0v

′−1

0
, so non-trivial. But the second word is equal to u′

tv
′

tx
′

ty
′

t,
which rewrites to the trivial word. Hence again we get our contradiction.

Modifying the proof of Theorem 7.2 from [6] in the same way, we arrive at
a proof of Theorem 2.

Basically we choose n1, n2 with

1

2
α0α

n1

1
> C1n

C2+2

2
|A|6W C0n

C
2 ,

1

2
α2n2 > C1n

C2+2

1
|A|6W C0n

C
1

which we can do, for example, by first setting n2 equal to some polynomial
function in n1 so that (2) is satisfied for all n1, and then choosing n1 big
enough so that (1) holds. (But notice that we need Hypothesis (2) in the
statement of the theorem to be satisfied for these particular values of n1

and n2, which is why we have assumed this hypothesis for all integers n > 0
rather than for infinitely many such n, which was sufficient for Theorem 1.)

As in the proof of Theorem 1, for i = 1, 2, we choose Ti to be a set of words of
length at least 3W and at most n that represent the elements of Si. Those
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conditions will now ensure each 1

2
|Ti| (i = 1, 2) is bounded below by the

appropriate polynomial function of n2, n1 which allows us to find u0, u
′

0. So
in the case where vt is longer than ut we can do just what we did in the first
case of Theorem 1, since T1 is big enough we can find a big enough set of
elements of U mapping to the same vtxtyt.

And in the second case we have T2 big enough, and so we can follow the
argument used in the second case of the proof of Theorem 1
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