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September 23rd 2009, Newcastle

Abstract

The conjugacy problem and the inverse conjugacy problem of a finitely
generated group are defined, from a language theoretic point of view,
as sets of pairs of words. An automaton might be obliged to read the
two input words synchronously, or could have the option to read asyn-
chronously. Hence each class of languages gives rise to four classes of
groups; groups whose (inverse) conjugacy problem is an (a)synchronous
language in the given class. For regular languages all these classes are
identical with the class of finite groups. We show that finitely gener-
ated groups with asynchronously context-free inverse conjugacy prob-
lem are precisely the virtually free groups. Moreover, the other three
classes arising from context-free languages are shown all to coincide
with the class of virtually cyclic groups, which is precisely the class of
groups with synchronously one-counter (inverse) conjugacy problem.
It is also proved that for a δ-hyperbolic group the intersection of the
inverse conjugacy problem with the set of pairs of quasi-geodesics is
context-free.

1 Introduction

The relationship between the complexity of the word problem of a group as a
formal language and the algebraic characteristics of the group has been well
studied; it is well known that the word problem of a group is regular precisely
when the group is finite [3] and context-free precisely when the group is
virtually-free [9]; and in fact when the word problem is context-free it is
even deterministic context-free. The purpose of this article is to investigate
the relationship between the complexity of the conjugacy problem of a group
as a formal language and the algebraic characteristics of the group.

Throughout this paper we assume that all group generating sets are finite
and symmetric; that is, they are closed under taking inverses. For a group
G generated by a set X, we define the conjugacy problem of G to be the set
of ordered pairs of words (u, v) such that u and v are conjugate in G.
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We will consider machines that read pairs of words synchronously as strings
over an alphabet X×X as well as machines that read inputs asynchronously
from two strings. For synchronous reading, in any reading move of the
machine (as opposed to a non-reading or ε-move), a single symbol from each
of the two input words is read, where the shorter of the two words is padded
at the end with a padding symbol that maps onto the identity element of
the group. For asynchronous reading, in each move of the machine, zero or
one symbols from each of the two input words may be read, so there are four
types of moves altogether. Observe that synchronous reading is a special
case of asynchronous reading.

Using additional states as necessary, we can clearly assume that a 2-variable
asynchronous machine M never reads from both input strings in a single
move. . This allows us to define a corresponding one variable machine M1

with alphabet the union XL ∪XR of two disjoint copies of X. Define ρL :
XL∪XR → X∗ by ρL(xL) = x where xL is the element of XL corresponding
to x ∈ X and ρL(xR) = ε for all xR ∈ XR, and extend ρL to (XL ∪XR)∗.
Define ρR similarly. Then, the automaton M1 that simulates M should
accept w precisely when M accepts (ρL(w), ρR(w)) by reading the inputs in
the order encoded in w. Such an M1 can obviously be constructed.

We will call a language of pairs of strings synchronously or asynchronously
regular if it is accepted by a finite state automaton reading the two input
words synchronously or asynchronously. We define synchronously and asyn-
chronously context-free similarly, with finite state automaton replaced by
pushdown automaton. If the pushdown automaton has only one work sym-
bol besides the bottom of stack marker, then it and the accepted language
are called synchronously or asynchronously one-counter.

Note that the word problem for G is the restriction of the conjugacy problem
to pairs (u, ε), where ε is the empty string, and hence the conjugacy problem
is never easier than the word problem.

It is straightforward to prove that the conjugacy problem for G is regular if
and only if G is finite, and we include a proof in Section 2. Our first main
result classifies groups whose conjugacy problem is context-free.

Theorem A Let G be a finitely generated group. The following are equiv-
alent.

(i) The conjugacy problem of G is synchronously one-counter.

(ii) The conjugacy problem of G is asynchronously context-free.

(iii) G is virtually cyclic.

Theorem A is proved in Section 3, where it is broken down into Theorems
5, 8 and 10.
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By reversing the order of one of the input words we can deal with a wider
class of groups, but only with asynchronous automata. We call the set of
all pairs of words (u, v) for which u and v−1 are conjugate in G, the inverse
conjugacy problem for G. Our second main result classifies groups whose
inverse conjugacy problem is context-free.

Theorem B Let G be a finitely generated group. Then the inverse conju-
gacy problem of G is

(i) synchronously context-free if and only if G is virtually cyclic;

(ii) asynchronously context-free if and only if G is virtually free.

Theorem B is broken down into Theorems 5, 8, 18 and 19, and is the subject
of Section 4. Theorem 19 is of independent interest, showing that, for any
λ ≥ 1 and ǫ ≥ 0 the restriction of the inverse conjugacy problem of a
word hyperbolic group to pairs of (λ, ǫ)-quasi-geodesics is asynchronously
context-free.

In Section 5 we sketch the following result which implies that with respect to
conjugacy problems indexed languages are more powerful than context-free
languages.

Theorem C The conjugacy problem of a finitely generated virtually free
group is asynchronously indexed.

This should be compared to the still open problems of whether indexed
languages lead to larger classes of groups than context-free languages in the
realms of word and coword problems; see [6].

2 Preliminaries

Let us begin by showing that the choice of generating set makes no difference
and hence that we are dealing with group theoretic properties. In a way this
justifies our terminology introduced and used before.

Theorem 1 If the conjugacy problem or inverse conjugacy problem for a
group is synchronously or asynchronously context-free with respect to one
generating set then the same is true with respect to any other generating set.

Proof: Suppose first that the conjugacy or inverse conjugacy problem for
the groupG is asynchronously context-free with respect toX. Given another
generating set Y , for each y ∈ Y , we choose a word wy in X∗ that represents
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the element y, and hence define a homomorphism from Y ∗ to X∗. Given
any pair of input words (u, v) over Y , the automaton to solve the (inverse)
conjugacy problem first rewrites over X using that homomorphism and then
operates as the machine solving the (inverse) conjugacy problem over X.

This part of the argument works for any class of languages closed under
inverse homomorphisms.

Now suppose that the (inverse) conjugacy problem for G is synchronously
context-free with respect to X. Given another generating set Y , define the
words wy just as above. If the words wy all had the same length, we could
proceed as above. Otherwise by padding as necessary, as we rewrite, with
words of the form xx−1 we can ensure that the rewrites of the prefixes of
u, v which we have read so far differ in length by at most 1 at any stage.
Hence using some additional memory to deal with that small shift we can
adapt our solution to the problem over X to give a solution over Y .

This part of the argument has made some small assumptions about the
power of the machine, and hence it is not immediately clear that it works
for any class of language closed under inverse homomorphism. �

We include the following elementary result for completeness.

Theorem 2 A group has asynchronously regular conjugacy problem if and
only if it is finite, in which case the problem is synchronously regular.

Proof: If the conjugacy problem is (synchronously or asynchronously) reg-
ular, then so is the word problem as the intersection of the conjugacy prob-
lem with the regular set X∗×{ε}, and hence a group with regular conjugacy
problem must be finite.

Conversely suppose thatG is finite, in which case we may store the conjugacy
classes of its elements. Using a finite state automaton based on the Cayley
graph for G×G, we can identify the elements of G represented by two input
words u, v and hence decide their conjugacy. �

Of course the same result holds for the inverse conjugacy problem.

3 Conjugacy Problems

In this section we begin by solving the conjugacy and inverse conjugacy
problem for virtually cyclic groups on a one-counter automaton Then we
show that these are the only groups with synchronously context-free conju-
gacy or inverse conjugacy problem. This is an application of the classical
pumping lemma for context-free languages.
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Lemma 3 (Pumping Lemma [5]) Add exact lemma reference Let L
be a context-free language. Then there exists a constant N > 0 such that if
w ∈ L with |w| > N , then w = υφχψω where |φχψ| ≤ N , |φψ| ≥ 1, and
υφnχψnω ∈ L for all n ≥ 0.

Finally we prove that groups with asynchronous context-free conjugacy
problem must also be virtually cyclic, making use of Ogden’s generalisa-
tion of the pumping lemma.

Lemma 4 (Ogden’s Lemma [5, Lemma 6.2]) Let L be a context-free
language. Then there exists a constant N > 0 such that if w ∈ L, with
at least N letters in w marked, then w = υφχψω where at most N letters in
φχψ are marked, and at least one in φψ, and υφnχψnω ∈ L for all n ≥ 0.

3.1 Virtually Infinite Cyclic Groups

Theorem 5 Every virtually cyclic group has synchronously one-counter con-
jugacy problem, and synchronously one-counter inverse conjugacy problem.

Proof: Since regular languages are also one-counter, we may and will as-
sume that G = 〈X〉 is virtually infinite cyclic. Let z be a generator of a
normal cyclic subgroup of finite index in G, and let T be a set of coset rep-
resentatives for 〈z〉 in G. Then every element of G is uniquely representable
by a word zkt for k ∈ Z, t ∈ T , and we refer to this word as its normal form.

Since T and X are finite we may assume that the machine knows the normal
forms for all rt, r−1 and rx, for r, t ∈ T and x ∈ X.

First we consider the conjugacy problem. The conjugate of zir by zkt,
(zkt)−1zirzkt, can take one of four forms:

(a) zirt, when r, t both centralise z
(b) z−irt, when r centralises but t inverts z
(c) zi−2krt, when t centralises but r inverts z
(d) z2k−irt, when r, t both invert z.

We are now ready to describe the operation of our machine.

Suppose words u, v over X are input, and that u and v have normal forms
zir and zjs with r, s ∈ T . Before starting to read, the machine will guess one
of the four cases above as well as a specific choice of t, and attempt to verify
that v is a conjugate of u of that type. On a one-counter automaton, one
can rewrite a single input word into normal form using the states to store
the coset representative and the stack to store the exponent of z. But for
a pair of words we cannot compute both exponents using a single stack. In
fact, we compute both coset representatives r, s using the states. In addition
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we compute either i− j in case (a), i + j in case (b), or the parity of i− j
in cases (c) or (d); we only need to use the stack in the first two cases.

After reading u and v, the machine knows r and s. It checks that rt and s
are in the same coset of 〈z〉, and also whether each of r, t centralise or invert
z, as specified by the selected case (a), (b), (c) or (d). If either of these
checks fails then the computation is abandoned.

Otherwise, rt = zls, for some l ∈ Z. It remains to check the value of l
against the information we have computed for i and j. To verify that u,
v are conjugate by an element of the form zkt, we check in case (a) that
i− j = −l, in case (b) that i+ j = l and in cases (c) and (d) that the parity
of i− j matches that of l.

The machine recognising the inverse conjugacy problem operates very sim-
ilarly. We assume as above that u, v are on the two tapes, and that u and
v have normal forms zir and zjs. We aim to verify that u is conjugate to
v−1. We have v−1 = z−ǫjs−1, where ǫ is −1 or 1 depending on whether or
not conjugation by s inverts z. Let s−1 = zms′, where s′ ∈ T . Note that if
u and v−1 are indeed conjugate, then r, s, s′ either all centralise or all invert
z. So ǫ is equal to 1 in cases (a) and (b), and −1 in cases (c) and (d).

In all cases rt and s−1 must be in the same coset of 〈z〉; otherwise we abandon
the computation. This time we check in case (a) that i+ j = m− l, in case
(b) that j−i = m− l and in cases (c) and (d) that the parity of i−j matches
that of m− l. �

3.2 Cancellation Lemmas and Transversals

We recall that a reduced word x1x2 · · · xr is said to be cyclically reduced if
x1 6= x−1

r . So the free reduction of any word has the form α−1βα with β
cyclically reduced, and we shall call β the cyclic reduction of the original
word. By [8, Theorem 1.3] two words over a free generating set of a free
group are conjugate in the group if and only if their cyclic reductions are
cyclic conjugates of each other.

For the remainder of the article, u ≡ v will mean that u and v are equal
as words, and u =G v means that u and v are G-equivalent; that is, they
represent the same element of the group G. We denote the length of a word
w by |w|.

Lemma 6 Let u and v be cyclically reduced words over a free generating set
of a free group, such that u 6= v−1 and neither u nor v is a proper power. Let
m = max(|u|, |v|). Then, for k, l ≥ 1, the cancelled suffix of uk and prefix of
vl in the free reduction of the product ukvl each have length less than 2m,
and hence the freely reduced length of ukvl is greater than k|u| + l|v| − 4m.
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Proof: Suppose without loss of generality that m = |v| ≥ |u|. The result
is clear if l = 1, so suppose that l > 1 and assume for a contradiction that
the prefix v2 of vl is cancelled in the product ukvl. Then v ≡ u−rw for some
r ≥ 1 with |w| < |u| and, since v 6= u−1 and v is not a proper power, we
have |w| > 0. But now, v2 ≡ u−rwu−rw, and since its subwords wu−r and v
have equal length and each is completely cancelled when multiplied on the
left by uk+r, we must have wu−r ≡ v. So v is a nontrivial cyclic conjugate
of itself, and hence must be a proper power, which is a contradiction. �

We use the following technical lemma in the proofs of both Theorem 8 and
Theorem 10.

Lemma 7 Suppose that G has a non-abelian free normal subgroup F of
finite index, and that a, b are part of a free basis Y for F . Then there exists
a transversal T for F in G such that for each t ∈ T

(i) the word over Y for at := t−1at is a cyclically reduced word α,

(ii) the word over Y for bt has the form ρ−1βρ where β is cyclically reduced,
and |ρ| is as small as possible.

For all such t there is no cancellation in the products αρ−1 or ρα.

Proof: Each coset Ft contains representatives for which (i) is satisfied. For
if at is not cyclically reduced, then it has the form σ−1ασ with α cyclically
reduced, σ ∈ F , and tσ−1 satisfies (i). From amongst all those representa-
tives of Ft satisfying (i) we choose one satisfying (ii).

Now if there were cancellation in forming either of the products αρ−1 or ρα,
then we could replace α by a cyclic conjugate and reduce the length of ρ. �

3.3 Synchronous (Inverse) Conjugacy Problems

Theorem 8 A finitely generated group with synchronously context-free con-
jugacy problem or inverse conjugacy problem is virtually cyclic.

Proof: First suppose that the group G has synchronously context-free
conjugacy problem. Then the word problem for G is context-free, and hence
G is virtually free [9]. Suppose that G is not virtually cyclic. Then G has
a finite index free normal subgroup F of rank at least 2. Let a, b be part
of a free generating set Y for F , and let A = a−1, B = b−1. We choose a
generating set X for G that contains Y . So, by Theorem 1, the conjugacy
problem of G is synchronously context-free with this generating set.

We choose a transversal T for F in G satisfying the conditions of Lemma 7.
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Now, for some suitably large k, let u = akbkakBk and v = bkakBkak. Then
u and v are conjugate in F , and so w = (a, b)k(b, a)k(a,B)k(B, a)k is in the
conjugacy problem. According to the pumping lemma (Lemma 3), we can
write w in the form υφχψω where |φχψ| ≤ N , |φψ| ≥ 1, and for all n ≥ 0,
(un, vn) := υφnχψnω is in the language, and hence must also represent a
conjugate pair in G. In particular this is true of (u0, v0) := υχω. Our aim
is to establish a contradiction by showing that u0 and v0 are not conjugate.

Provided that k > N , the subword φχψ must be contained within one of the
three subwords (a, b)k(b, a)k, (b, a)k(a,B)k or (a,B)k(B, a)k of w. We shall
only deal with the first of these three possibilities; the arguments dealing
with the other two cases are similar.

In this first case we have u0 ≡ ak−rbk−sakBk, v0 ≡ bk−rak−sBkak, where at
least one of r, s is greater than 0, and r+ s ≤ N < k. It is clear that u0 and
v0 are not cyclically conjugate, and hence are not conjugate within F ; we
still need to verify that they are not conjugate within the larger group G.

Suppose g ∈ G with g−1u0g = v0. Then g = tx for some t ∈ T and
x ∈ F , so the cyclically reduced length of t−1u0t is equal to |v0| = |u0|. By
choice of the transversal T , we have t−1at =G α and t−1bt =G ρ−1βρ, as
described in Lemma 7. If ρ is nonempty then, since there is no cancellation in
the products αρ−1 and ρα, t−1u0t =G αk−rρ−1βk−sραkρ−1β−kρ is clearly
cyclically reduced, with length greater than |u0|. Hence ρ is empty and
α =G t−1at and β =G t−1bt are both cyclically reduced words. Furthermore,
since α and β form part of a free basis of F , we cannot have α = β±1 and
neither α nor β is a proper power.

Now by Lemma 6 at most 4max{|α|, |β|} generators cancel in any product
αiβj or βjαi, and hence the length of the cyclic reduction of t−1u0t =G

αk−rβk−sαkβ−k is at least (2k− r)|α|+ (2k − s)|β| − 16max{|α|, |β|}. Pro-
vided that k is sufficiently large, this can only be equal to |v0| = 4k − r − s
if |α| = |β| = 1. In that case, t−1u0t is a cyclic conjugate in F of v0, so we
must have α, β ∈ {a, b,A,B}. (We can calculate how large k needs to be for
this purpose after the choice of the transversal T , which determines all the
words α and β that can arise.)

But it is easily seen that no word formed by substituting any of a, b,A,B for
a and b in u0 is a cyclic conjugate of v0. So u0 is not conjugate to v0 and we
have our contradiction. Once the other two cases have been similarly dealt
with we conclude that G must be virtually cyclic.

The proof of the fact that groups with synchronously context-free inverse
conjugacy problem are virtually free is very similar. We suppose that G
has context-free inverse conjugacy problem, and that F is a free finite index
normal subgroup of rank at least two with generators a, b, . . .. But now we
choose u = akbkakBk and v = AkbkAkBk. Then u and v−1 are conjugate in
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F , so (u, v) is in the inverse conjugacy problem. From then on the argument
is the same. �

3.4 Asynchronous Conjugacy Problems

We now proceed to generalise Theorem 8 to groups with asynchronously
context-free conjugacy problem. The proof is similar to that of Theorem 8,
but considerably more difficult technically. In particular, we need a further
lemma along the lines of Lemma 6.

Lemma 9 Let u and v be cyclically reduced words over a free generating
set Y of a free group F , such that neither u nor v is a proper power. Let
m = max(|u|, |v|), and let w be any freely reduced word over Y . Let k, l ≥ 1.
Suppose that either

(a) u is not a cyclic conjugate of v−1, or

(b) u =F v−1 and w is not a power of u.

Then the freely reduced length of ukwvl is greater than k|u|+ l|v|− |w|−4m.

Proof: If the whole of the word w is not cancelled in the product ukwvl,
then the reduced length of the product is at least k|u| + l|v| − |w|.

Otherwise, after cancelling just w, the resulting word has length k|u| +
l|v| − |w| and is of the form uk′

u1v2v
l′ where 0 ≤ k′ ≤ k, 0 ≤ l′ ≤ l,

u = u1u2, v = v1v2. But this word can also be written as u1(u
′)k

′

(v′)l
′

v2,
where u′ = u2u1 and v′ = v2v1 are cyclic conjugates of u and v. In this case,
we observe that w =F u−k+k′+1u−1

2 v−1
1 v−l+l′+1.

Now the result clearly follows from Lemma 6 if u′v′ 6=F 1.

In case (a) we certainly have u′v′ 6=F 1.

In case (b), we have uv =F 1. Suppose that we also have u′v′ =F 1, with
u′, v′ as above. Then u−1

2 v−1
1 centralises u and so is a power of u, and it

follows that w a power of u, contradicting our assumption. Hence also in
this case u′v′ 6=F 1, and the result follows. �

Theorem 10 If a group has asynchronously context-free conjugacy problem
then it is virtually cyclic.

Proof: Let G have asynchronously context-free conjugacy problem. As in
Theorem 8, G is virtually free. Suppose that G is not virtually cyclic. Then
G has a finite index free normal subgroup F of rank at least three. Let a, b, c
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be part of a free generating set Y for F , and let A = a−1, B = b−1, C = c−1.
Again, we choose a generating set X for G that contains Y .

This time, we use Lemma 7 to choose two transversals Tb and Tc of F in G,
such that:

(i) for all t ∈ Tb ∪ Tc, the reduced word α over Y for t−1at is cyclically
reduced;

(ii) for all t ∈ Tb, the reduced word over Y for t−1bt has the form ρ−1βρ
with β cyclically reduced and |ρ| as small as possible; and

(iii) for all t ∈ Tc, the reduced word over Y for t−1ct has the form τ−1γτ
with τ cyclically reduced and |τ | as small as possible.

(iv) there is no cancellation in the words ρα or αρ−1 for t ∈ Tb or in the
words τα or ατ−1 for t ∈ Tc.

From our earlier discussion on page 2, there is a context-free language L1

with alphabet XL ∪ XR of two disjoint copies of X such that two words
u and v are conjugate in G if and only if there is a word w ∈ L1 with
ρL(w) = u and ρR(w) = v.

We choose some suitably large k and l with k 6= l and put

ζ = bkalbkalBk, η = clakclakC l, u = ζη, v = ηζ.

Then u, v are conjugate in F (hence in G), and we let w ∈ L1 be as above.
In other words, w is a shuffle of uL and vR, copies of u and v over XL

respectively XR. It is clear that either all of ζL occurs before ζR or all of
ηR occurs entirely before ηL.

We shall suppose that the first of these possibilities occurs. We omit the
other case, for which the argument is similar, the main difference being that
where we use the transversal Tb in the arguments below, we use Tc in the
other case.

So w ≡ w1w2, where ζL occurs in w1 and ζR within w2.

We now apply Ogden’s Lemma, stated as Lemma 4, to w. We shall assume
that k and l have been chosen to be larger than the constant N of the lemma.
We mark all the symbols of ζL in w1 and all the symbols of ζR in w2, and
no other symbols. (In the case we are omitting, η plays the role of ζ here.)

We conclude that we can write w ≡ υφχψω, where φχψ has at most N
marked symbols, φψ has at least 1 marked symbol, and υφnχψnω ∈ L1 for
all n ≥ 0. In particular, putting n = 0, we have υχω ∈ L1, which means
that u0 = ρL(υχω) and v0 = ρR(υχω) must be conjugate in G. Our aim is
to establish a contradiction by showing that u0 and v0 are not conjugate in
G.
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The situation is more complicated than in Theorem 8, because we have no
information about how many of the unmarked symbols are involved in φ
and ψ. We distinguish between two cases, the first of which splits into two
(similar) subcases.

Case 1a. The substring φχψ ends before the final marked symbol in w1.
Then, since k, l > N and φχψ has at most N marked symbols, ρL(φχψ) can
only involve letters from within 2 neighbouring blocks of the prefix ζ of u,
and hence

u0 ≡















bk−ral−sbkalBkη, or
bkal−rbk−salBkη, or
bkalbk−ral−sBkη, or
bkalbkal−rBk−sη,

and
v0 ≡ cl1ak1cl2ak2C l3ζ,

where 0 < r + s ≤ N , and 0 ≤ ki ≤ k, 0 ≤ li ≤ l for the relevant i.

Case 1b. The substring φχψ begins after the first marked symbol in w2.
This is similar to Case 1a, after inverting u0 and v0 and interchanging their
rôles, which we are allowed to do, as we only need to show that they are not
conjugate.

Case 2. The substring φχψ includes the final marked symbol in w1 or the
first marked symbol in w2 or both. Then

u0 ≡ bkalbkalBk−rcl4ak3cl5ak4C l6 and v0 ≡ cl1ak1cl2ak2C l3bk−salbkalBk

where again 0 < r + s ≤ N and 0 ≤ ki ≤ k, 0 ≤ li ≤ l for the relevant i.

Case 2 is the more difficult, and we shall discuss it first. Let v′0 be the cyclic
reduction of the word v0. Then

v′0 ≡















v0 provided k2 6= 0
cl1ak1cl2−l3bk−salbkalBk if k2 = 0, k1 6= 0
cl1+l2−l3bk−salbkalBk if k1 = k2 = 0, l1 + l2 6= l3
albkalBs if k1 = k2 = 0, l1 + l2 = l3.

Let g ∈ G with g−1u0g =G v0. Then g =G tx for some t ∈ Tb and x ∈ F ,
and t−1u0t is conjugate to v′0 within F . So the cyclic reduction u′0 of t−1u0t
must be a cyclic conjugate of v′0. We proceed to show that this is impossible.

Let the reduced word in F for t−1ct be σ−1γσ with γ cyclically reduced.

Then

t−1u0t ≡ ρ−1βk
1ρα

l
1ρ

−1βk
2ρα

l
2ρ

−1β
−(k−r)
3 ρσ−1γl4σαk3σ−1γl5σαk4σ−1γ−l6σ,

with α1 ≡ α2 ≡ α and β1 ≡ β2 ≡ β3 ≡ β; The subscripts are there to enable
us to refer unambiguously to the subwords. Note that property (iv) of the
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transversal Tb ensures that the underlined prefix is freely reduced. We call
the non-underlined part θ.

First note that, since α, β and γ are conjugates of the images of the free
generators a, b and c, none of them is a cyclic conjugate of any of the others
or their inverses. And, for the same reason, none of them is a proper power.
Hence any two of them satisfy the conditions of Lemma 9. We shall also use
the fact that β cannot be in the normal closure of 〈α, γ〉.

The free reduction of θ either involves some high powers of some or all of
α, γ or γ−1, or can be considered to be short.

In the first case, we apply case (a) of Lemma 9 twice to show that there can

be only limited cancellation between β
−(k−r)
3 and whatever is the first high

power surviving in the free reduction of θ, and between whatever is the last
high power surviving in the free reduction of θ and βk

1 .

In the second case, we first note that the fact that β cannot be in the normal
closure of 〈α, γ〉 excludes the possibility that ρθρ−1 is a non-trivial power of
β. If ρθρ−1 is non-trivial, then we apply case (b) of Lemma 9 to see that

there can be only limited cancellation involving β
−(k−r)
3 and βk

1 .

Therefore, precisely one of the following holds.

(A) The free reduction of ρθρ−1 is empty; or

(B) Only a small fraction of βk
1 and β

−(k−r)
3 are cancelled.

Since the underlined prefix of t−1u0t is freely reduced, in either situation
the powers αl

1, β
k
2 and αl

2 survive in their entirety in u′0.

Now we can deduce that |α| = |β| = 1 as follows. First, as part of a free
basis of F neither α nor β can be a proper power. Then if either has length
greater than 1, the number of syllables in u′0 must be at least min{2l, 2k},
which is larger than 10, the number of syllables in v′0, so long as k and l are
sufficiently large. This contradicts the fact that u′0 is a cyclic conjugate of
v′0.

In Situation (A), u′0 ≡ βrραlρ−1βkραlρ−1 (or αlρ−1βkραl if r = 0) and so
u′0 contains only three high powers of generators. Clearly, this means that
v′0 ≡ albkalBs, in which case ρ must be empty and, since r + s > 0, we
find that there are no possibilities for α and β that make u′0 and v′0 cyclic
conjugates.

So it remains to consider Situation (B). Since the underlined subword is
freely reduced, in this case ρ and ρ−1 each appear twice in u′0. But the only
negative powers of generators that occur in v′0 occur as a unique power of
C and a unique power of B, so ρ must be empty. Hence

t−1u0t =G βkαlβkαlβ−(k−r)θ

12



and u′0 must contain a subword of the form βk′

αlβkαlβ−k′′

, where k′, k′′ > 0.

We now consider the possibilities for α and β, assuming that u′0 is a cyclic
conjugate of v′0. Since both β and β−1 occur in u′0 and A does not occur
in v0, β cannot be a or A. Since there are unique powers of B and of C in
v′0 but two disjoint powers of β in u′0, we cannot have β = C or β = B. If
β = c, then we would necessarily have α = a and αlβkαl ≡ ak1cl2ak3 and
hence k1 = k3 = l, l2 = k, which is impossible, since k1 ≤ k, l2 ≤ l and
k 6= l. So the only possibility is that β = b which implies immediately that
α = a.

Now the subwords albkal of u′0 and v′0 must correspond, so we have

albkalBkcl1ak1cl2ak2C l3bk−s =F albkalB(k−r)θbk (1)

and hence

cl1ak1cl2ak2C l3 =F brθbs =F brσ−1γl4σak3σ−1γl5σak4σ−1γ−l6σbs.

Now, working modulo [F,F ], we have

ak1+k2cl1+l2−l3 =F/[F,F ] a
k3+k4br+sγl4+l5−l6 .

Since the exponent of b on the right hand side must be zero, but r+s > 0, we
must have l4 + l5 − l6 6= 0. So modulo [F,F ], γ must be a product of powers
of a, b and c. But the automorphism of F/[F,F ] induced by conjugation by
t has finite order and fixes a and b, and this is only possible if γ =F/[F,F ] c

±1,
and hence the exponent of b on the right hand side is non-zero. So Situation
(A) is also impossible and hence Case 2 cannot occur.

Case 1 can be ruled out by similar reasoning, which we shall now describe
briefly. In Case 1a, we have

u0 ≡ bk−r1al−s1bk−r2al−s2Bk−r3η

where 0 < r1 + s1 + r2 + s2 + r3 ≤ N, and either just one term, or two
adjacent terms of the sequence r1, s1, r2, s2, r3 are nonzero. As in Case 2,
we let v′0 be the cyclic reduction of v0, and we can find t ∈ Tb such that the
cyclic reduction u′0 of t−1u0t is a cyclic conjugate of v′0. Again as in Case 2,
we can use a syllable count to show that |α| = |β| = 1 and then that ρ must
be empty.

It follows as before that β cannot be a, A, C or B. If β = c, then we get
α = a and αl−s1βk−r2αl−s2 ≡ ak1cl2ak3, so l−s1 = k1, k−r2 = l2, l−s2 = k3,
with ki ≤ k and li ≤ l. This is impossible provided that |k − l| > N , and
we can assume that k and l have been chosen with this property. So, as in
Case 2, we must have α = a, β = b.

13



Still proceeding as before, Equation (1) above becomes

albkalBkcl1ak1cl2ak2C l3bk =F

al−s1bk−r2al−s2Bk−r3σ−1γlσakσ−1γlσakσ−1γ−lσbk−r1

This implies immediately that s1 = r2 = s2 = 0, so exactly one of r1 and r3
must be nonzero, in which case we get the same contradiction as in Case 2
by working modulo [F,F ]. �

4 Inverse Conjugacy Problems

We turn now to the inverse conjugacy problem. The following theorem is a
special case of the later result Theorem 18, but we include it here because
its proof is more straightforward, and gives an indication of the proof of
Theorem 18.

Theorem 11 A finitely generated free group has asynchronously context-
free inverse conjugacy problem.

Proof: We use a free generating set for the free group. Then, by [8,
Theorem 1.3], the inverse conjugacy problem consists of all pairs of words
(u, v) for which the cyclic reduction of u has the form αβ while the cyclic
reduction of v has the form α−1β−1. That is, the free reduction of u has
the form γαβγ−1, while the free reduction of v has the form δα−1β−1δ−1.
In other words u itself can be written as a concatenation of (not necessarily
freely reduced) subwords u1u2u3u4, and v as a concatenation of subwords
v1v2v3v4, where each of u1u4, v1v4, u2v2 and u3v3 freely reduces to the empty
word.

We can recognise a pair of words of this form non-deterministically on a
machine with a single stack which guesses the endpoints of each of the
subwords. We read the subwords in the order u1, v1, u2, v2, u3, v3, v4, u4. We
use the stack to freely reduce and so put onto it the free reduction of u1,
followed by a marker, then the free reduction of v1, followed by a marker.
Then we use the stack above this to verify that u2v2 freely reduces to the
empty word (and otherwise abort the computation), and then that u3v3
freely reduces to the empty word (and otherwise abort). At this point, if the
calculation has not been aborted, then the stack contains the free reduction
of u1, followed by a marker, and then the free reduction of v1 followed by a
marker. Deleting those markers as we read on we can check first whether or
not v1v4 reduces freely to the empty word, and second whether or not u1u4

reduces to the empty word. �
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Our main aim in this section is to prove that the inverse conjugacy problem
of a virtually free group is asynchronously context-free. The method em-
ployed will be basically similar to that used in the proof of Theorem 11, but
will involve several additional complications.

We need to start by reviewing some basic material from geometric group the-
ory, particularly from the theory of (word-)hyperbolic groups. The following
definition and discussion is from [4, Definition I.8.14].

A (λ, ǫ)-quasi-isometric embedding with λ ≥ 1 and ǫ ≥ 0 is a map φ :
(X1, d1) → (X2, d2) between two metric spaces such that, for all x, y ∈ X1,
we have

d1(x, y)

λ
− ǫ ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ǫ.

The map φ is called a quasi-isometry if, in addition, there is a constant C ≥ 0
such that for all y ∈ X2 there exists x ∈ X1 with d2(y, f(x)) ≤ C. The two
spaces are called quasi-isometric if there is a quasi-isometry between them;
being quasi-isometric is an equivalence relation on metric spaces.

The Cayley graphs of a finitely generated group G with respect to different
finite generating sets are quasi-isometric. So we can unambiguously define
two finitely generated groups to be quasi-isometric if their Cayley graphs
are quasi-isometric. Furthermore, it is easily seen that if H has finite index
in G then the embedding of the Cayley graph of H into that of G, using a
finite generating set of G that contains one of H, is a quasi-isometry, and
hence G and H are quasi-isometric.

For a word w over X with G = 〈X〉, |w|G will denote the geodesic length of
w as an element of G; that is, the length of a shortest word v over X with
v =G w. We say that w is a geodesic word in G if |w| = |w|G.

A (λ, ǫ)-quasigeodesic in a metric space (X , d) is a (λ, ǫ)-quasi-isometric em-
bedding c : I → X from a (bounded or unbounded) interval I of the real line
to X. In particular, a path of length n in the Cayley graph ΓX of a group
G = 〈X〉 is a (λ, ǫ)-quasigeodesic if the standard mapping from the interval
[0, n] to the path is, and a word x1x2 · · · xn over X is a (λ, ǫ)-quasigeodesic
word in G if the path that it labels is. Assuming that λ ≥ 1 and ǫ ≥ 0,
this is equivalent to the property that any subword of length k has geodesic
length at least k/λ− ǫ.

To simplify some of the technicalities, we shall assume when convenient that
λ and ǫ are both integers.

Lemma 12 Let φ : G→ H be a (λ′, ǫ′)-quasi-isometry (with respect to some
word metrics on G and H) and C, κ ≥ 1 constants. Let g0, g1, . . . , gn ∈ G
and, for 0 ≤ i ≤ n, let hi ∈ H with |h−1

i φ(gi)|H ≤ C. Suppose that hi 6= hi+1

for 0 ≤ i < n and that there exists a (λ′′, ǫ′′)-quasigeodesic in H through
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h0, h1, . . . , hn (in that order). Then every path u = ξ1 · · · ξn in G through
g0, g1, . . . , gn in which each segment ξi from gi−1 to gi satisfies |ξi| ≤ κ is a
(λ, ǫ)-quasigeodesic in G, where λ = κλ′λ′′ and ǫ = (ǫ′+ǫ′′+2C+2/λ′′)/λ′+
2κ.

Proof: There is nothing to show if there is no such path u. Otherwise, let
v be a subword of u and gj , gj+1, . . . , gj+k be the gi on v. Since |ξi| ≤ κ, we
have

k ≥ |v|/κ − 2 and |v|G ≥ |ξj+1 · · · ξj+k|G − 2κ.

The hypotheses hi 6= hi+1 and |h−1
i φ(gi)|H ≤ C together with the existence

of a (λ′′, ǫ′′)-quasigeodesic through hj , . . . , hj+k (which must have length at
least k) imply that

|φ(gj)
−1φ(gj+k)|H + 2C ≥ |h−1

j hj+k|H ≥ k/λ′′ − ǫ′′.

Finally, the fact that φ is a (λ′, ǫ′)-quasi-isometry guarantees that

|φ(gj)
−1φ(gj+k)|H/λ

′ − ǫ′/λ′ ≤ |g−1
j gj+k|G = |ξj · · · ξj+k|G.

These four inequalities immediately imply |v|/λ − ǫ ≤ |v|G, whence u is a
(λ, ǫ)-quasigeodesic by the remark above. �

Theorem 13 Let G = 〈X〉 be a finitely generated virtually free group. Then
there exist constants λ ≥ 1, ǫ, κ ≥ 0 with the following property: for any
word w = x1x2 · · · xn over X, there is a G-equivalent (λ, ǫ)-quasigeodesic
word w′, obtained from w by replacing some of its subwords by G-equivalent
words of length at most κ.

Proof: By assumption, G has a subgroup H of finite index that is free on
some generating set Y and, by the remarks above, for some λ′ ≥ 1, ǫ′ ≥ 0,
there is a (λ′, ǫ′)-quasi-isometry φ from G to H with respect to the word
metrics |.|G and |.|H induced by X and Y respectively. Let w = x1x2 · · · xn

be a word over X, and let 1 = g0, g1, . . . , gn =G w be the vertices on the
path from the identity vertex in ΓX that is labelled by w, with xi labelling
the edge joining gi−1 to gi.

Since φ is a (λ′, ǫ′)-quasi-isometry, |φ(gi−1)
−1φ(gi)|H ≤ λ′+ǫ′ for each i. Let

ξi be the (unique) freely reduced word over Y that labels the geodesic from
φ(gi−1) to φ(gi); so |ξi| ≤ λ′ + ǫ′. The free reduction ξ̄ of ξ := ξ1ξ2 · · · ξn is
the geodesic from φ(g0) to φ(gn) in H. There may be more than one way of
freely reducing ξ by cancelling inverse pairs of generators, but we choose one
such method arbitrarily. Then we define ξ̄i to be the subsequence of those
letters of ξi which remain in ξ̄; this is well defined since a free reduction is
simply deletion of a subword.
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Let I = { i | ξ̄i 6≡ ε} = {i1, i2, . . . , ik}, and put i0 = 0. Then ξ̄ ≡
ξ̄i1 ξ̄i2 · · · ξ̄ik and ξi ≡ ξ′iξ̄iξ

′′
i , as ξi is freely reduced. Put h0 = φ(g0) and

hj = h0ξ̄i1 ξ̄i2 · · · ξ̄ij and observe that hk =H φ(gn). For ease of notation, let
us redefine ik to be n without changing hk.

Since the ξi have length at most C := λ′ + ǫ′ and φ(gij ) =H h0ξ̄i1 ξ̄i2 · · · ξ̄ijξ
′′
ij

for 1 ≤ j ≤ k − 1, we have |h−1
j hj+1|H ≤ C and |φ(gij )

−1φ(gij+1
)|H ≤ 2C

for 0 ≤ j < k and |h−1
j φ(gij )|H ≤ C for 0 ≤ j ≤ k. Since φ is a (λ′, ǫ′)-quasi-

isometry, it now follows that |g−1
ij
gij+1

|G ≤ κ := 2Cλ′ + λ′ǫ′.

Consequently, it is possible to replace each subword xij+1 · · · xij+1
of w

(which labels the segment between gij and gij+1
) by a G-equivalent word

of length at most κ and the result is a (λ, ǫ)-quasigeodesic, by Lemma 12;
hj−1 6= hj because ξ̄j 6= ε, and λ′′ = 1, ǫ′′ = 0 as ξ̄ is a geodesic. �

A geodesic metric space is δ-hyperbolic if all of its geodesic triangles are
δ-thin; see [4, Definition III.H.1.16]. We recall that a triangle with sides
A,B,C is δ-thin if there are three points, one on each of the three sides,
called the meeting points, with the properties that the two meeting points on
the sides adjacent to any of the three vertices of the triangle are equidistant
from that vertex, and two points moving synchronously between a vertex
and the two meeting points on the sides through it remain a distance at
most δ apart. The group G = 〈X〉 is defined to be δ-hyperbolic if its Cayley
graph ΓX is.

Lemma 14 (Proposition 3.1 in [7]) If u, v are words in a δ-hyperbolic
group G = 〈X〉 with u =G v, u a geodesic, and v a (λ, ǫ)-quasigeodesic for
some λ, ǫ, then u and v boundedly asynchronously K-fellow-travel for some
constant K and some asynchronicity bound M , where K and M depend only
on λ, ǫ and δ.

To simplify some of the technicalities, we shall assume that δ,M,K are all
integers with δ ≥ 1, and that each vertex on u or v is at distance at most
K from a vertex on v or u, respectively.

A word w over X with G = 〈X〉 is said to be fully reduced if w and all
of its cyclic conjugates are geodesic words in G. Lemma III.Γ.2.9 of [4]
says that if the group G is δ-hyperbolic and the fully reduced words u and
v represent conjugate elements of G, then either max(|u|, |v|) ≤ 8δ + 1 or
there exist cyclic conjugates u′ and v′ of u and v and a word α over X with
αu′α−1 =G v′ and |α| ≤ 2δ + 1.

Define w to be (λ, ǫ)-quasi fully reduced if w and all of its cyclic conjugates
are (λ, ǫ)-quasigeodesic words in G. We can use a similar argument to
that employed in the proof of Lemma III.Γ.2.9 of [4] to show (assuming
for simplicity that λ and ǫ are integers):
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Lemma 15 If u and v are (λ, ǫ)-quasi fully reduced words representing con-
jugate elements of a δ-hyperbolic group, then either max(|u|, |v|) ≤ λ(8δ +
2K + ǫ+ 1) or there exist cyclic conjugates u′ and v′ of u and v and a word
α over X with αu′α−1 =G v′ and |α| ≤ 2(δ +K), where K is the constant
of Lemma 14.

Proof: Suppose that max(|u|, |v|) > λ(8δ+2K+ǫ+1), and without loss of
generality assume that |u| > λ(8δ+2K+ ǫ+1). Choose a word α that is as
short as possible such that there exist cyclic conjugates u′ and v′ of u and v
with αu′α−1 =G v′. Let u′′ and v′′ denote geodesic words with u′′ =G u′ and
v′′ =G v′. Then, since u′ and v′ are by assumption (λ, ǫ)-quasigeodesics, by
Lemma 14 they are at a uniform distance at most K from u′′ and v′′, and
|u′′| > 8δ + 2K + 1.

Consider a geodesic quadrilateral Q in the Cayley graph of G whose sides,
read in order from a vertex, trace out edge paths labelled α, u′′, α−1, (v′′)−1.
We shall refer to the sides of Q that are labelled α±1 as the vertical sides
and to the sides labelled u′′ and (v′′)−1 as the top and the bottom sides,
respectively. We also adjoin paths labelled u′ and (v′)−1 to Q having the
same first and last vertices as the top and bottom sides of Q. Since |u′′| ≥
8δ+2K+2, we can choose a vertex p on the top side of Q (labelled u′′) that
is at distance at least 4δ+K+ 1 from both ends of this side. Then p is at a
distance at most 2δ from a vertex on one of the other three sides of Q. If it
were within 2δ of a point p′ on the bottom side (labelled (v′′)−1), then there
would be vertices q, q′ on the paths labelled u′ and v′ with d(q, q′) ≤ 2δ+2K.
But then, if α′ is a word labelling a geodesic path from q′ to q, α′ conjugates
a cyclic conjugate of u to a cyclic conjugate of v and hence, by choice of α,
we have |α| ≤ |α′| ≤ 2(δ +K), as required.

So suppose that p is within a distance 2δ from one of the vertical sides
of Q. Let x and y be respectively the top and bottom vertices of the side
containing q. Then the choice of α implies that |α| ≤ d(p, y)+K, and clearly
d(p, y) ≤ 2δ+d(q, y) with |α| = d(q, x)+d(q, y), so we have d(q, x) ≤ 2δ+K
and therefore d(p, x) ≤ d(p, x) + d(q, x) ≤ 4δ +K, contrary to the choice of
p. �

In the second case of this lemma (|α| ≤ 2(δ + K)), by considering the
quadrilateral with sides labelled α, u′, α−1, (v′)−1, we see that every vertex
p′ on u′ is either at distance at most 2(δ + K) from a vertex on the side
labelled v′−1, or it is at distance at most 2δ + K from a vertex on a side
labelled α or α−1. So it is in any case at distance at most 4δ + 3K from a
vertex on the side labelled v′−1. By choosing the vertex on u′ to correspond
to the beginning of the original word u, we conclude that there exists a word
β with |β| ≤ 4δ + 3K and β−1uβ = v′′ for some cyclic conjugate v′′ of v.

By a similar argument applied to the quadrilateral with sides labelled β,
u, β−1 and (v′′)−1, we find that the vertex on the side labelled (v′′)−1 that
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corresponds to the beginning of the word v−1 is at distance at most 6δ+4K
from the side labelled u. Hence (see diagram below) we have the following
result.

6 66

- -

- -

β γ β

u1 u2

v2 v1

u

v′′

Proposition 16 Suppose that u and v are (λ, ǫ)-quasi fully reduced words
representing conjugate elements of a δ-hyperbolic group G. Then either
max(|u|, |v|) ≤ λ(8δ+ 2K+ ǫ+ 1), or we have u ≡ u1u2 and v ≡ v1v2 where
there exist β, γ ∈ X∗ with |β| ≤ 4δ+ 3K, |γ| ≤ 6δ+ 4K, βu1γ

−1 =G v2 and
γu2β

−1 =G v1.

Proposition 17 Let u be a geodesic word in a δ-hyperbolic group G with
δ ≥ 1. Then we have u ≡ u1u2u3, where u3u1 =G α for some word α with
|α| ≤ δ, and u2α is (1, 3δ + 1)-quasi fully reduced.
In other words, the word u′ ≡ u1u2αα

−1u3 obtained by insertion of αα−1

into u, can be split as u′1u
′
2u

′
3 such that u′3u

′
1 =G 1 and u′2 ≡ u2α is (1, 3δ+1)-

quasi fully reduced.

Proof: Let w be a geodesic word representing u2, and consider the geodesic
triangle with sides A, B and C, labelled by u, u, and w−1, respectively. For
simplicity, we shall assume that the meeting points of this triangle coincide
with vertices in the Cayley graph. The argument in the other case, in which
the meeting points lie midway between two vertices, is similar, and gives
rise to the 3δ + 1 rather than 3δ in the proposition statement.

Let u3 be the suffix of u that labels the part of the side A after the meeting
point of the triangle on A, and let u1 be the prefix of u that labels the part
of the side B before the meeting point of the triangle on B. See diagram
below.
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By definition of meeting points, we have |u1| = |u3|. By δ-hyperbolicity, we
have u3u1 =G α with |α| ≤ δ. Suppose first that |u1| ≥ |u|/2. Then we
replace u1 and u3 respectively by the prefix and suffix of u of length |u|/2 or
(|u| − 1)/2, and we still have u3u1 =G α with |α| ≤ δ, and also u ≡ u1u2u3

with |u2| ≤ 1. Since δ ≥ 1, we have |u2α| ≤ 3δ, so u2α is (1, 3δ)-quasi fully
reduced.

Hence we assume that |u1| < |u|/2, and we can write u ≡ u1u2u3 with
|u2| > 0, and we need to show that u2α is (1, 3δ)-quasi fully reduced. To do
this, we must show that the length of any subword σ of any cyclic conjugate
of u2α exceeds the geodesic length |σ|G of σ in G by at most 3δ. We shall
denote prefixes and suffixes of α and of u2 by αp, αs, up, us, respectively. If
σ has one of the forms αsup, usαp, or αsu2αp then, since u2 (as a subword
of u) is geodesic and |αs| + |αp| ≤ |α| ≤ δ, we see that |σ|G ≥ |σ| − 2δ.
Otherwise, we have σ ≡ usαup with |us|, |up| > 0. Referring again to the
diagram above, by δ-hyperbolicity, the first point a on the path labelled
us on A is at distance at most δ from the point a′ on C at distance |us|
from the meeting point on C and coming before the meeting point on C.
Similarly, the last point b on the path labelled up on B is at distance at
most δ from the point b′ on C at distance |up| from the meeting point on C
and coming after that meeting point. So the geodesic distance between a′

and b′ is |us| + |up| and hence |us| + |up| ≤ 2δ + |σ|G, and so

|σ| = |us| + |up| + |α| ≤ |us| + |up| + δ ≤ |σ|G + 3δ,

as required. �

Following these preparations, we are now ready to embark upon the proof
that virtually free groups have asynchronously context-free inverse conju-
gacy problem. We start by describing some aspects of the proof. The push-
down automaton will be non-deterministic, it will never return a negative
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answer, and will only return a positive answer when it has verified that the
two input words are conjugate in G; so it cannot return an incorrect answer.

It will perform various transformations on the input words as it reads them.
For example it may insert words of bounded length at various points, or it
may replace an input symbol that it has read by a word of bounded length.
It can do these things by using its states as memory. Similarly it can read
ahead a bounded number of symbols and memorise the result. The purpose
of doing this is to replace the input words by other words that satisfy various
desirable properties. The automaton will not in general attempt to verify
that these replacement words really do have these properties. But provided
that we know theoretically that such replacements are possible, together
with the fact that the automaton is non-deterministic and will never return
an incorrect answer, we can effectively assume that these properties really
are satisfied, and we shall do that during the proof.

Here is a summary of the proof. We suppose that words u, v are given as
input.

1. Modify u, v to get (λ, ǫ)-quasigeodesics, for some fixed λ, ǫ.

2. Modify u, v to get geodesics.

3. Modify u, v as in Proposition 17, inserting into each a short word of the
form αα−1, so that u ≡ u1u2u3, v ≡ v1v2v1 where u1u3 =G v1v3 =G 1
and u2, v2 are (1, 3δ + 1)-quasi fully reduced words for some fixed δ.

4. Using Proposition 16 verify that u2 and v−1
2 are conjugate in G.

5. Verify that u1u3 =G v1v3 =G 1.

We emphasise that these are the steps in the proof of the theorem. In reality,
the modifications of the input words described in the first three steps all take
place together as the input words are read by the pushdown automaton. The
reader will need to convince themselves that this is possible after studying
the details of how these steps are carried out.

The constants λ, ǫ, δ depend only on G and its generating set X, so we may
assume that they are known to the pushdown automaton. Only the first step
in this proof makes use of the fact that the group is virtually free, rather
than just being δ-hyperbolic for some δ, so we shall restate the remaining
steps as a separate result that says essentially that the inverse conjugacy
problem is solvable for hyperbolic groups on the assumption that the input
words are (λ, ǫ)-quasigeodesics, for some fixed λ and ǫ.

Theorem 18 The inverse conjugacy problem for a virtually free group is
asynchronously context-free.
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Proof: Let G = 〈X〉 be a virtually free group. We first demonstrate that
Theorem 13 allows us to assume that, for some fixed λ ≥ 1 and ǫ ≥ 0, our
two input words are (λ, ǫ)-geodesics. Let w be one of the input words u,
v−1. By Theorem 13, we can replace certain subwords w1, . . . wk of w by G-
equivalent words α1, α2, . . . , αk of length at most K, such that the resulting
word is a (λ, ǫ)-quasigeodesic. The pushdown automaton M guesses non-
deterministically which subwords should be replaced by which short words
αi. When it reaches the beginning of a subword wi that is to be replaced
by αi, then it puts a marker on the stack followed by α−1

i . It then reads wi

and behaves like a pushdown automaton that accepts the word problem for
G by empty stack. If, after reading wi, the marker is at the top of the stack,
then it has verified that wi =G αi; otherwise it aborts. If the verification is
successful, then M behaves as though it had read the input αi which, since
|αi| is bounded, is possible by using states of M as memory.

This completes the first step of the summary of the proof presented above,
and the result follows from the next theorem, which handles the remaining
steps in the more general context of hyperbolic groups for which the input
words are assumed to be quasigeodesics. It is a standard (and elementary)
result that every virtually free group is δ-hyperbolic for some δ. �

Theorem 19 Let G = 〈X〉 be a δ-hyperbolic group and let λ ≥ 1 and ǫ ≥ 0
be fixed. Then there is an asynchronous 2-variable pushdown automaton M
over X that satisfies

{ (u, v) | u, v (λ, ǫ)-quasigeodesics, u, v−1 conjugate in G } ⊆ L(M)

⊆ { (u, v) | u, v−1 conjugate in G }.

Proof: The pushdown automaton M to be constructed attempts to replace
the input words u and v by G-equivalent geodesic words. Let K and M be
the constants from Lemma 14, such that a (λ, ǫ)-geodesic u and a geodesic w
with u =G w asynchronously K-fellow-travel with asynchronicity bound M .
Now, M will maintain (by means of its states) a group element g of geodesic
length at most K with g =G (u′)−1w′, where u′ is the prefix of u read so
far, and w′ is the prefix of the word w with which it is being replaced. On
reading the next input letter x of u, M replaces x by a random word α of
length at most M , and replaces g by x−1gα if that group element has length
at most K; otherwise the computation is aborted. If g =G 1 after reading
all of u, then we know that u =G w; otherwise the computation is aborted.
So, by means of this replacement, we can assume that the input word u
is geodesic. The other input word v is similarly replaced by an equivalent
word, which we shall assume to be geodesic.

From now on we shall use u and v to denote the equivalent words with
which the actual input words have been replaced, and assume that they are
geodesics. So this completes the second step of the proof summary above.
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By Proposition 17, we have u ≡ u1u2u3 where u3u1 =G α (and hence
u1α

−1u3 =G 1) with |α| ≤ δ, and u2α is (1, 3δ+ 1)-quasi fully reduced. Our
automaton M splits the input word non-deterministically into three parts
u1, u2, u3. It also replaces u2 by u2α and u3 by α−1u3 for some arbitrarily
chosen word α with |α| ≤ δ. So Proposition 17 says that it is possible to do
this such that the replaced word u2 is (1, 3δ + 1)-quasi fully reduced, and
u1u3 =G 1.

The input word v will be similarly split up and modified into v1v2v3, where
we know that it is possible to do this such that v2 is (1, 3δ + 1)-quasi fully
reduced, and v1v3 =G 1. This completes the third step of the proof summary.

As in the proof of Theorem 11, M starts by putting u1 on the stack followed
by a marker µ1, and then it puts v1 on the stack followed by a marker µ2.
Now if u and v−1 are conjugate in G then so are u2 and v−1

2 , and if our
constructions of u1, u2, u3, v1, v2, v3 were successful, then u2, v2 and v−1

2

are (1, 3δ + 1)-quasi fully reduced words. So in that case we can apply
Proposition 16 to u2 and v−1

2 . Note that the constant K in the statement
of Proposition 16 depends only on δ.

Since λ(8δ+2K+ǫ+1) = 11δ+2K+2 is a constant, M can read ahead and
memorise up to 11δ+2K+2 symbols of u2 and v2 and thereby test whether
max(|u2|, |v2|) ≤ 11δ + 2K + 2. As there are only finitely many pairs of
words satisfying this condition, we can assume that M knows already which
of the pairs (u2, v

−1
2 ) represent conjugate elements of G. If it finds that

max(|u2|, |v2|) ≤ 11δ + 2K + 2 with u2 and v−1
2 conjugate, then it removes

the marker µ2 from the top of the stack and reads v3 to verify (by empty
stack) that v1v3 =G 1. If so, then the marker µ1 is now at the top of the
stack, and M removes it and reads u3 to verify that u1u3 =G 1. If so, then
it has proved that the two input words are conjugate and can return true.
If any of these verifications fail, then the computation is aborted.

So assume that max(|u2|, |v2|) > 11δ + 2K + 2, and we are in the second
case of Proposition 16. The automaton M now guesses words β, γ with
|β| ≤ 4δ+ 3K and |γ| ≤ 6δ+ 4K. As M reads the words u2 and v2 it splits
them arbitrarily into two subwords u2 ≡ u21u22, v2 ≡ v21v22. It first reads
u21, but puts βu21γ

−1 on the stack. It then reads v21 and tests (by empty
stack) whether βu21γ

−1v21 =G 1. If so, then it reads u22, but puts γu22β
−1

on the stack. Then it reads v22 and tests whether γu22β
−1v22 =G 1. If so,

then βu2β
−1 =G v−1

21 v
−1
22 , which is conjugate in G to v−1

2 ≡ v−1
22 v

−1
21 , so M

has verified that u2 and v−1
2 are conjugate in G. Furthermore, the marker

µ2 is now at the top of the stack, and M proceeds to verify that v1v3 =G 1
and that u1u3 =G 1, in the same way as above. �
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5 Indexed Languages are Richer

Here we shall only give the crucial idea for the proof of Theorem C, leaving
the details to the reader.

Recall that an indexed language is accepted by a nested stack automaton
which is a generalisation of a pushdown automaton, introduced by Aho
in [1, 2]. More precisely, such a machine may move through the stack in
read only mode and at any point it can open a nested stack. The top
part of the previous (outer) stack is not accessible until this new stack is
empty again. This enables checking whether two input words u and v define
the same element of a free group as follows. The free reduction of u is
read onto the stack and then the read-write head is moved down to the
beginning of u (which is marked). The read-write head then moves back up
through the stack letter by letter as v is read and freely reduced, comparing
the free reduction of v with the freely reduced word that is on the stack.
The reduction of v, as it is being read, is achieved on nested stacks that
are inserted next to the symbol currently being read on the main stack.
Since such a nested stack will necessarily be empty after verifying that a
subword reduces freely to the empty word, the computation will continue
as if this subword was missing. Using additional states this procedure also
works in a virtually free group. Hence, for a virtually free group, one can
adapt the strategy of the previous Section, after observing that all necessary
replacements can be justified before they are carried out on a nested stack
which will be empty after an affirmative check.
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