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Abstract

We prove that the generalised word problem of a finitely generated

subgroup of a finitely generated virtually free group is context-free, that a

hyperbolic group must be virtually free if it has a torsion-free quasiconvex

subgroup of infinite index with context-free generalised word problem, and

that, for any hyperbolic group, the generalised word problem of a torsion-

free quasiconvex subgroup is recognised by a real-time Turing machine.
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1 Introduction

Let G = 〈X〉 with |X | < ∞ be a group and H ≤ G. The word problem

WP(G,X) and generalised word problem GWP(G,H,X) are defined to be the
preimages φ−1({1G}) and φ−1(H) respectively, where φ is the natural map from
the set of words over X to G. We are interested in the relationship between the
algebraic properties of G (and H) and the formal language classes containing
WP(G,X) and GWP(G,H,X). These questions have already been well studied
for the word problem, but relatively little for the generalised word problem.
Since, as is well known for WP(G,X), the question of membership of WP(G,X)
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and GWP(G,H,X) in a formal language family F is typically independent of the
choice of X , we shall usually use the simpler notations WP(G) and GWP(G,H).

It is elementary to prove that WP(G) is regular if and only if G is finite, and
well known that WP(G) is context-free if and only if G is virtually free [10].
It is similarly easy to show that GWP(G,H) is regular if and only if |G : H |
is finite, but conditions for GWP(G,H) to be context-free have not been much
studied. Our first two results address this.

Theorem 1. Let G be finitely generated and virtually free, and let H be a finitely

generated subgroup of G. Then GWP(G,H) is deterministic context-free

The conclusion of Theorem 1 may or may not hold if we drop the condition
that H is finitely generated. Suppose that G is the free group on two generators
a, b. For H1 = [G,G], the set GWP(G,H1) consists of all words whose exponent
sums in both a and b are zero, and is not context-free, but for the subgroup H2

of words whose exponent sum in a is zero, the set GWP(G,H2) is context-free.

We would like to know to what extent this result is best possible when H is
finitely generated. We observe that, where HG := ∩g∈GH

g is the core of H in
G, the set GWP(G,H,X) is the same set of words as GWP(G/HG, H/HG, X).
We know of no examples for which H is finitely generated with trivial core, and
GWP(G,H) is context-free but G is not virtually free.

The following theorem is an attempt at a converse to Theorem 1.

Theorem 2. Let G be a hyperbolic group, and let H be a quasiconvex subgroup

of infinite index in G such that |CG(h) : CH(h)| is finite for all 1 6= h ∈ H. If

GWP(G,H) is context-free then G is virtually free.

Our proof is dependent on the quasiconvexity of H (which implies its finite
generation), and on the condition on centralisers, but we conjecture that neither
condition is necessary for the result to hold. Note that the centraliser condition
holds whenever H is torsion-free.

It is proved in [6] that the word problem of a hyperbolic group is the language
of a real-time Turing machine. We prove an analogous result for the generalised
word problem.

Theorem 3. Let G be a hyperbolic group, and let H be a quasiconvex subgroup

such that |CG(h) : CH(h)| is finite for all 1 6= h ∈ H. Then GWP(G,H) is the

language of a real-time Turing machine.

In this case too we conjecture that the condition on centralisers is not necessary
for the conclusion of the theorem. However the necessity of quasiconvexity is
demonstrated by a construction found in [11], as follows. Let Q be a finitely
presented group, and choose λ > 0. We can define a finitely presented group
G and a normal 2-generated subgroup H of G, such that G/H ∼= Q, and G
satisfies the small cancellation condition C′(λ); in particular we can choose Q
with insoluble word problem, and choose λ ≤ 1/6 to ensure G hyperbolic, and
in that case GWP(G,H) is not even recursive.
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2 Proof of Theorem 1

Let F be a free subgroup of G with |G : F | finite, and let Y be a free generating
set for F . Let A = X ∪X−1, B = Y ∪ Y −1, and let K = F ∩H . The subgroup
K, like H , is finitely generated. Let {t1, . . . , tm} be a right transversal of K in
H and extend this to a right transversal T = {t1, . . . , tn} of F in G. Then any
word w in A∗ can be expressed (in G) as a word in C∗T , where C is the set of
Schreier generators u(i, a) for F defined by the equations tia = u(i, a)tj , and
hence as a word vt in B∗T .

The first step to recognise whether w ∈ H is to rewrite it to the form vt, as
above, using a transducer. Then w ∈ H if and only if t ∈ {t1, . . . , tm} and
v ∈ K. It remains for us to describe the operation of a deterministic pushdown
automaton (pda) N to recognise those words over Y ∗ that lie in the subgroup
K of the free group F . Note that this machine operates simultaneously, rather
than sequentially, with the transducer, and it follows from the fact that context-
free languages are closed under inverse gsms [8, Example 11.1, Theorem 11.2]
that the combination of the two machines is a pda.

By [1] or [4, Proposition 4.1], any finitely generated subgroup K of a free group
is L-rational, where L is the set of freely reduced words over a free generating
set; that is, the set L ∩K is a regular language.

We shall build our pda N out of a finite state automaton (fsa) M for which
L(M) ∩ L = K ∩ L, which is (in effect) described in the proof of [4, Theorem
2.2] that K is L-quasiconvex.

The fsa M has the following properties.

(i) The states of M are denoted by σ1, . . . , σm, σ̂.

(ii) σ1, . . . , σm are the elements of a finite subset S of the set of right cosets
Kgi of K in F , including σ1 = K = Kg1 with g1 = 1, and σ1 is the
start state and the single accepting state.

(iii) For 1 ≤ i, j ≤ m and a ∈ A, there is a transition σa
i = σj if and only if

Kgia = Kgj. It follows from this that σa
i = σj if and only if σa−1

j = σi.

(iv) σ̂ is a failure state, and is the target of all transitions that are not defined
in (iii), including those from σ̂.

(v) A word w ∈ L lies in K if and only if it is in L(M).

So M \ {σ̂} is a finite subgraph of the Schreier graph of K in F . The L-
quasiconvexity condition is equivalent to the property that all prefixes of reduced
words that represent elements of K lie within a bounded distance of K in the
Schreier graph. It is a consequence of this that a word in L is accepted by M if
and only if it represents an element of K. Note that L(M) may contain some
words not in L, but only contains words that represent elements of K.

Our pda N has the same states σ1, . . . , σn, σ̂ as M , with σ1 as the start state
and sole accepting state. The transitions from the states σi are as in M . We
need however to describe the operation of the stack, and transitions from the
state σ̂, which is non-accepting, but no longer a failure state.
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The stack alphabet is the set A∪ (A×S). The second component of an element
of A × S is used to record the state M is in immediately before it enters the
state σ̂. In addition, we use the stack to store the free reduction of the prefix
of w that has been read so far.

The operations of the pda N that correspond to the various transitions of M are
described in the following table. The absence of an entry in the ‘push’ column
indicates that nothing is pushed.

Transition Input Input Pop Push Output
of M state symbol state
σa
i = σj σi a a−1 σj

σi a b 6= a−1 ba σj

σa
i = σ̂ σi a b b(a, σi) σ̂

σ̂a = σ̂ σ̂ a (a−1, σi) σi

σ̂ a (b, σi), b 6= a−1 (b, σi)a σ̂
σ̂ a a−1 σ̂
σ̂ a b 6= a−1 ba σ̂

Note that we have not specified that b 6= a−1 in line 3, but in fact the condition
b = a−1 does not arise in this situation. Since there can be a symbol in A × S
on the stack only when N is in state σ̂, it is not possible to pop such a symbol
when N is in state σi, so there are no such entries in the table.

The fact that L(N) = GWP(F,K) follows from the fact that w ∈ L(N) if and
only if w̄ ∈ L(M), where w̄ is the free reduction in L of w. We prove this by
induction on the number k of reductions of the form w1aa

−1w2 → w1w2 with
a ∈ A that we need to apply to reduce w to w̄.

The case k = 0 of our induction follows from Property (v) of M and the obser-
vation that, if w is freely reduced, then w leads to the same state of M as it
does of N . For in that case the only possible transitions as we read w are of the
types described in lines 2,3,5,7 of the table.

For k > 0 it is enough to prove the statement

(∗): if wa ∈ L, then the configuration of N after reading waa−1 is
identical to the configuration after reading w.

It follows from (∗) that a word w1aa
−1w2 in which aa−1 is the leftmost cancelling

pair is in L(N) if and only if w1w2 is in L(N), and hence we have the inductive
step we need.

We can check the statement (∗) with reference to the table. There are up to
seven possibilities for the type of transition of N as the final symbol a of wa is
read.

For the first two of these, N is in state σi after reading w, and moves to a state
σj . Since wa is in L, the top stack symbol after reading w is not a−1. Hence the
transition must be of the type described in line 2 of the table, and not as in line
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1. That is, b 6= a−1 is popped, and then ba is pushed. Recalling that σa
i = σj

in M if and only if σa−1

j = σi, we see that the next transition of N , from wa

on a−1, is of the type described in line 1. Then the symbol a is popped, the
symbol b is again on the top of the stack. and N returns to the state σi

We consider similarly the remaining five possibilities for the transition from w
on a, and the subsequent transitions on a−1, and verify (∗) for each of those
configurations. This completes the proof of Theorem 1.

3 Proof of Theorem 2

For a finite generating set X of a group G, we define an X-graph to be a graph
with directed edges labelled by elements of A := X ∪ X−1, in which, for each
vertex p and each a ∈ A, there is a single edge labelled a with source p and,
if this edge has target q, then there is an edge labelled a−1 from q to p. So
Cayley and Schreier graphs G(G,X) and S(G,H,X) are examples of X-graphs.
We shall denote the base points of Cayley and Schreier graphs by 1C and 1S
respectively.

Following [3, Chapter 4], for k ∈ N, We define the condition GIB(k) for S :=
S(G,H,X) as follows.

GIB(k): there exists K ∈ N such that, for any vertex p of S with
d(1S , p) ≥ K, the closed k-ball Bk(p) of S is X-graph isomorphic to
the k-ball Bk(1C) of G(G,X).

We say that S has GIB(∞) if it has GIB(k) for all k ≥ 0. The following result
is proved in [3, Theorem 4.3.1.1].

Proposition 3.1. Let H be a quasiconvex subgroup of the hyperbolic group G.

Then S(G,H,X) has GIB(∞) if and only if, for all 1 6= h ∈ H, the index

|CG(h) : CH(h)| is finite.

This applies to groups G,H satisfying the hypotheses of Theorem 2. Since its
proof may not be readily available, we shall sketch its proof in the final section
of the paper.

Our proof of Theorem 2 has the same structure as the proof in [10] that groups
with WP(G) context-free are virtually free, and it would be helpful for the
reader to be familiar with that proof.

The first step is to prove that G has more than one end. Assuming that,
we use Stalling’s theorem [12] to conclude that G has a decomposition as an
amalgamated free product G = G1 ∗K G2, or as an HNN-extension G = G1∗K,t,
over a finite subgroup K. Since G1 (and G2) are easily seen to be quasiconvex
subgroups of G, it is not hard to show that the hypotheses of the theorem are
inherited by the subgroup H ∩ G1 of G1 (and H ∩ G2 of G2), and so they too
have more than one end, and we can apply the Dunwoody accessibility result
to conclude that G is virtually free.
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So we just need to prove that G has more than one end. Fix a finite generating
set X of G. Then, as in [10], we consider a grammar in Chomsky normal form
with no useless variables that derives WP(G,H,X). That is, each rule has the
form S → ε (where S is the start symbol), z → z′z′′ or z → a, where z, z′, z′′

are variables, and a is terminal, and we assume that S does not occur on the
right hand side of any derivation. When a word w′ can be derived from a word
w by application of a single grammatical rule we write w ⇒ w′, and when a
sequence of such rules is needed we write w ⇒∗ w′.

Let z1, . . . , zn be the variables of the grammar other than S, and for each zi let
ui be a shortest word in A∗ with zi ⇒

∗ ui. Let L be the maximum length of
the words ui.

Let w ∈ WP(G,H,X) with |w| > 3, and fix a derivation of w in the grammar.
We shall define a planarX-graph ∆ with an associatedX-graph homomorphism
φ : ∆ → S(G,H,X). We start with a simple plane polygon with a base point,
and edges labelled by the letters of w, and with φ mapping the base-point of ∆
to 1S . Note that φ is not necessarily injective.

If zi occurs in the chosen derivation of w, then we have w = vviv
′ with zi ⇒

∗ vi;
two such words vi and vj are either disjoint as subwords of w or related by
containment. Since zi ⇒

∗ ui, we also have vuiv
′ ∈ WP(G,H,X). So we can

draw a chord labelled ui in the interior of ∆ between the two ends of the subpath
labelled vi, and φ extends to this extension of ∆. If we do this for each such
zi for which 1 < |vi| < |w| − 1 then, as in [10, Theorem 1], we get a ‘diagonal
triangulation’ of ∆, in which the sides are either boundary edges of ∆ or internal
chords of length at most L. (But note that, for the first derivation S → z1z2,
say, if |v1| > 1 and |v2| > 1 then, to avoid an internal bigon, we omit the chord
labelled u2.)

Suppose, for a contradiction, that G has just one end; that is, for any R, the
complement in G(G,X) of any ball of radius R is connected. Then, for any R,
we can find a word w1w2w3 over X with w1w2w3 =G 1 which, starting at 1C,
labels a simple closed path in G(G,X), where |w1| = |w3| = R, w3w1 is geodesic,
and no vertex in the path labelled w2 is at distance less than R from 1C.

Choose such a path with R = 3L+1. Choose k′ such that the whole of the path
lies in the ball Bk′(1C) of G(G,X), and let k = k′ + L. Then, since S(G,H,X)
satisfies GIB(k), there exists K such that, for any vertex p of S(G,H,X) with
d(1S , p) ≥ K, the ball Bk(p) of S(G,H,X) is X-graph isomorphic to the ball
Bk(1C) of G(G,X). Choose such a vertex p, and consider the path labelled
w1w2w3 of S(G,H,X) that is based at p.

Choose a vertex q on the path labelled w1w2w3 with d(1S , q) minimal, and let
w4 be the label of a geodesic path in S(G,H,X) from 1S to q. Then, for some
cyclic permutation w′ of w1w2w3, we have a closed path in S(G,H,X) based
at 1S and labelled w4w

′w−1

4

We apply the above triangulation process to a planar X-graph ∆ for w4w
′w−1

4
.

Since q is the closest vertex to 1S on the loop labelled by w′, and the path from
1S to q in the Cayley graph labelled by w4 is geodesic, every vertex on that
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path is as close to q as to any other vertex of w′, and so any vertex of w4 that
can be connected by the image of a chord of ∆′ to a vertex of w′ must be within
distance at most L of q. Let r be the first such vertex on w4 (as we move from
1S to q), and let w5 be the suffix of w4 that labels the path along w4 from r to
q. Then |w5| ≤ L.

So we can derive from our triangulation of ∆ a triangulation of a planar diagram
∆′ for the word w5w

′w−1

5
, and there is an associated X-graph homomorphism

φ′ that maps this to the corresponding subpath in S(G,H,X). (Note that the
images of w5 and w−1

5
under φ′ are equal, but that φ′ is injective when restricted

to w′.) By our choice of k = k′ + L, the image of φ′ lies entirely within Bk(p),
which is X-graph isomorphic to Bk(1C). So the distances in S(G,H,X) between
vertices in this image are the same as in any path with the same label in G(G,X).

✇1S✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂

✍

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✍

w4

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✌

✇

q

✍ w5

✇

r

PPPPPP✐

✐
w3 PPPq

✇

p

✐
w1

PPPPPPPPPPPPPPPPPPPPPPPPPPP

❘
w2
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As in [10], we colour, using three colours, the vertices of the boundary paths
of ∆′ that are labelled w1, w2, w3 (where vertices on two of these subwords get
both associated colours), and we colour the vertices on w5 and w−1

5
with the

same colour (or colours) as q. As in [10, Lemma 5], we conclude that there is a
triangle in the triangulation whose vertices use all three colours between them.
One (or even two) of these vertices could be on the subpath labelled w5, and
two 2-coloured vertices in the triangle might coincide, but, since any vertex on
w5 is within distance L of q, replacing vertices on w5 by q as necessary, we end
up with a triangle of three (not necessarily distinct) vertices p1, p2, p3 with pi on
wi, and with d(pi, pj) ≤ 2L for each i, j. At least one of p1, p3 must be within
distance L of p. But then d(p, p2) ≤ 3L, contradicting our assumption that w2

is outside B3L(p). This completes the proof of Theorem 2.

4 Proof of Theorem 3

We prove Theorem 3 by constructing a generalised Dehn algorithm over the
alphabet A ∪ {H} to solve GWP(G,H,X), where A = X ∪ X−1. We define
such an algorithm to be a system of length reducing rewrite rules for strings
over that alphabet which, for any word w over A, rewrites the string Hw to H
precisely when w represents an element of H . We verify that the conditions of
[7, Theorem 4.1] hold, and hence that the algorithm can be programmed on a
real-time Turing machine.

We observe that both [7, Theorem 4.1] and [6, Proposition 2.1] (which we shall
use to deduce the conditions we need) were originally stated and proved for word
problems of groups, but in fact their proofs remain valid for generalised word
problems. Similarly, generalised Dehn algorithms, also known as Cannon’s al-
gorithms, were defined in [5] in relation to word problems, but here we are using
the concept a little more generally, so that it can be applied to the generalised
word problem.

Suppose that G,H satisfy the hypotheses of Theorem 3. By [3, Theorem 4.1.3.3]
or [9], the Schreier graph S := S(G,H,X) is δ-hyperbolic for some δ > 0 (that
is, geodesic triangles in S are δ-thin). Let k be an integer with k ≥ 4δ. By
Proposition 3.1, S satisfies GIB(k). Let K be an integer that satisfies the
condition in the definition of GIB(k), and let R = 2K. We can assume that
K ≥ max(k, 2). We define our rewrite system to consist of all rules of the
following two forms:

Hv1 → Hv2, |v2| < |v1| ≤ R,

u1 → u2, |u2| < |u1| ≤ k,

where v1, v2, u1, u2 ∈ A∗, v1v
−1

2
∈ H,u1 =G u2.

In order to apply [7, Theorem 4.1] we need to verify that, whenever w ∈ A∗

and Hw is reduced according to the above algorithm, the length of the shortest
string v over A with Hv = Hw is bounded below by a linear function of |w|.

We shall use [6, Proposition 2.1]: if u (of length > 1) is a k-local geodesic in a

8



δ-hyperbolic graph, with k ≥ 4δ, then the distance between the endpoints of u
is at least |u|/2 + 1.

So suppose that Hw is reduced according to the above algorithm. If w has
length at most R, then Hw is geodesic, and so there is nothing to prove. So
suppose that |w| > R, and let w1 be the prefix of length R of w. We aim to
show that every vertex of S that comes after w1 on the path from 1S labelled
w lies outside of BK(1S). Choose w2 so that w1w2 is maximal as a prefix of w
subject to all vertices of w2 lying outside of BK(1S). Then, since w1 is geodesic
of length R = 2K, we have |w2| ≥ K − 1, and so |w1w2| ≥ 3K − 1. Since w1 is
geodesic in S, and that part of the path labelled w1w2 that lies outside of the
K-ball is a k-local geodesic in S (because it is isometric to part of the Cayley
graph), we see that the whole of the path labelled w1w2 is a k-local geodesic in
S. So we can apply [6, Proposition 2.1] to deduce from the δ-hyperbolicity of S
that

dS(1S , Hw1w2) ≥ (|w1w2|+ 1)/2 ≥ (3K + 1)/2 > K + 1.

It follows that, if w1w2 were not already equal to w, then it would be extendible
to a longer prefix of w. So w1w2 = w, and the above inequality gives us the
linear lower bound dS(1S , Hw) ≥ (|w| + 1)/2 on dS(1S , Hw). Since, for any
w ∈ H , the coset Hw is equal to 1S , the existence of this lower bound ensures
that, for such w, the string Hw is reduced by the algorithm to H , and so
the algorithm that we have described is correct. And it allows us to apply [7,
Theorem 4.1] and deduce that the algorithm can be programmed on a real-time
Turing machine. This completes the proof of Theorem 3.

5 Sketch of proof of Proposition 3.1

Suppose first that |CG(h) : CH(h)| is infinite for some 1 6= h ∈ H , and let w
be a word representing h. Then, for any K > 0, there exists a word v ∈ CG(h)
labelling a path in S := S(G,H,X) from 1S to a vertex p with d(1S , p) > K,
and there is a loop labelled w based at p in S, but no such loop based at 1C in
G := G(G,X). So GIB(|w|) fails in S.

Suppose conversely that GIB(k) fails in S for some k. Then there are vertices
p of S at arbitrarily large distance from 1S such that Bk(p) is not X-graph
isomorphic to the ball Bk(1C) in G; at any such vertex p there is at least one
loop, based at p, within Bk(p), and labelled by a word which is not equal to the
identity of G, and so cannot label a loop in G. Since the number of words that
can label loops in a ball of radius k in S is finite, some such word w appears
infinitely often in this situation, and we can choose it to be geodesic over X .
Now for any integer N , there is a word v of length greater that N , labelling a
geodesic in S from 1S to a vertex p, from which there is a loop in S labelled by
w.

For such a word v, we have hvw = v for some h ∈ H . Let u be a geodesic word
labelling h. Then we have a geodesic quadrilateral vertices A = 1C, B, C,D in
G(G,X) with sides AB, BC, CD, AD labelled u, v, w, v, respectively, as shown
in the figure.
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tAtB

✛u

✻v ✻v

tC tD

✲
w

By the hyperbolicity of G, each vertex of AB lies within a distance 2δ of some
vertex onBC, CD orDA, where δ is the constant of hyperbolicity. Furthermore,
since H is quasiconvex in G, there is a constant λ, such that each vertex of AB
is within a distance λ of a vertex of G representing an element of H . Since each
vertex of w lies at distance at least |v| − k from any vertex in H , by choosing
|v| > k+2δ+λ we can ensure that none of the vertices of AB is 2δ-close to any
vertex of CD. So the vertices of AB must all be 2δ-close to vertices in BC or
DA. But, since v labels a geodesic path from 1S in S, at most 2δ + γ vertices
on BC or on DA can be within 2δ+γ of a vertex in H . So each vertex of AB is
at distance at most 2δ from one of at most 4δ+ 2γ vertices and, since the total
number of vertices in G with that property is bounded, we see that |AB| = |u|
is bounded by some expression in |X |, δ and λ.

By hyperbolicity of G, the two paths BC and AD labelled v must synchronously
L-fellow travel for some L (which depends on the upper bounds on |w| and |u|).
Let m > 0. Then, by choosing v sufficiently long, we can ensure that some word
u′ appears as a word-difference between BC and AD at least m times. That
is, v has consecutive subwords v0, . . . , vm, v′, such that v = v0v1v2 · · · vmv′, and
hv0v1v2 · · · viu

′ =G v0v1v2 · · · vi for each i with 0 ≤ i ≤ m. The case i = 0
gives u′ = v−1

0
h−1v0, and it follows from this that gi := v0(v1v2 · · · vi)v

−1

0
∈

CG(h) for 1 ≤ i ≤ m. Also, since v labels a geodesic in S, the elements
v0v1, v0v1v2, . . . v0v1v2 · · · vm lie in distinct cosets of H and hence so do the
gi. Since we can choose m arbitrarily large, this contradicts the finiteness of
|CG(h) : CH(h)|.
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