Groups of automorphisms of rooted trees II

Marialaura Noce
mnoce@unisa.it
October 2020, NBGGT lectures for postgraduate students
Georg-August-Universität Göttingen

Table of contents

1. Previously, on "Groups of automorphisms of rooted trees I"
2. The Grigorchuk groups
3. The GGS-groups
4. The Basilica group
5. The Hanoi Tower group
6. Conclusions

Previously, on "Groups of
automorphisms of rooted trees I"

Regular rooted trees

Regular rooted trees \mathcal{T}_{d} and automorphisms of \mathcal{T}_{d}

Automorphisms of \mathcal{T}_{d}

Bijections of the vertices that preserve incidence.

Regular rooted trees \mathcal{T}_{d} and automorphisms of \mathcal{T}_{d}

Automorphisms of \mathcal{T}_{d}

Bijections of the vertices that preserve incidence.

Describing elements of Aut \mathcal{T} I

An automorphism $f \in \operatorname{Aut} \mathcal{T}_{d}$ can be represented by writing in each vertex v a permutation $\sigma_{v} \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

Describing elements of Aut \mathcal{T} I

An automorphism $f \in \operatorname{Aut} \mathcal{T}_{d}$ can be represented by writing in each vertex v a permutation $\sigma_{v} \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

Describing elements of Aut \mathcal{T} II

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right) a$, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ.

Describing elements of Aut \mathcal{T} II

Let $f \in$ Aut \mathcal{T}_{d} with $f=\left(f_{1}, f_{2}, \ldots, f_{d}\right)$ a, where $f_{i} \in$ Aut \mathcal{T}_{d} and a is rooted corresponding to σ.

Self-similar groups

We define the isomorphism

Self-similar groups

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \text { Aut } \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

Self-similar groups

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times \stackrel{.}{ }_{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right) .
\end{aligned}
$$

If $G \leq$ Aut \mathcal{T}

$$
\begin{aligned}
\psi_{G}: \operatorname{st}_{G}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \text { Aut } \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

Self-similar groups

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times \stackrel{ }{ }_{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right) .
\end{aligned}
$$

If $G \leq$ Aut \mathcal{T}

$$
\begin{aligned}
\psi_{G}: \operatorname{st}_{G}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

Additionally, if G is self-similar,

$$
\begin{aligned}
\psi_{G}: \operatorname{st}_{G}(1) & \longrightarrow G \times{ }^{d} \cdot \times G \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right) .
\end{aligned}
$$

Self-similar groups

We define the isomorphism

$$
\begin{aligned}
\psi: \operatorname{st}(1) & \longrightarrow \text { Aut } \mathcal{T} \times \stackrel{ }{ }_{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right) .
\end{aligned}
$$

If $G \leq$ Aut \mathcal{T}

$$
\begin{aligned}
\psi_{G}: \operatorname{st}_{G}(1) & \longrightarrow \text { Aut } \mathcal{T} \times{ }^{d} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right)
\end{aligned}
$$

Additionally, if G is self-similar,

$$
\begin{aligned}
\psi_{G}: \operatorname{st}_{G}(1) & \longrightarrow G \times{ }^{d} \times{ }^{\prime} \times G \\
g & \longmapsto\left(g_{1}, \ldots, g_{d}\right) .
\end{aligned}
$$

We denote $\psi=\psi_{G}$, and sometimes, to define automorphisms we omit ψ.

(Regular) Branch groups

Recall that in Aut \mathcal{T}_{d} we have:

$$
\begin{equation*}
\text { Aut } \mathcal{T}_{d} \times \stackrel{d}{.} \times \text { Aut } \mathcal{T}_{d} \cong \operatorname{st}(1) \leq \text { Aut } \mathcal{T}_{d} \tag{1}
\end{equation*}
$$

(Regular) Branch groups

Recall that in Aut \mathcal{T}_{d} we have:

$$
\begin{equation*}
\text { Aut } \mathcal{T}_{d} \times \stackrel{d}{.} \times \text { Aut } \mathcal{T}_{d} \cong \operatorname{st}(1) \leq \text { Aut } \mathcal{T}_{d} \tag{1}
\end{equation*}
$$

- Let $G \leq$ Aut \mathcal{T}_{d} spherically transitive and self-similar.

(Regular) Branch groups

Recall that in Aut \mathcal{T}_{d} we have:

$$
\begin{equation*}
\text { Aut } \mathcal{T}_{d} \times \stackrel{d}{.} \times \text { Aut } \mathcal{T}_{d} \cong \operatorname{st}(1) \leq \text { Aut } \mathcal{T}_{d} \tag{1}
\end{equation*}
$$

- Let $G \leq$ Aut \mathcal{T}_{d} spherically transitive and self-similar.
- In this case it is too much to ask that (1) holds.

(Regular) Branch groups

Recall that in Aut \mathcal{T}_{d} we have:

$$
\begin{equation*}
\text { Aut } \mathcal{T}_{d} \times .{ }^{d} \times \operatorname{Aut} \mathcal{T}_{d} \cong \operatorname{st}(1) \leq \operatorname{Aut} \mathcal{T}_{d} \tag{1}
\end{equation*}
$$

- Let $G \leq$ Aut \mathcal{T}_{d} spherically transitive and self-similar.
- In this case it is too much to ask that (1) holds.
- We content ourselves if (1) holds for a (finite index) subgroup K of G :

$$
K \times . d \times K \leq K
$$

(Regular) Branch groups

Recall that in Aut \mathcal{T}_{d} we have:

$$
\begin{equation*}
\text { Aut } \mathcal{T}_{d} \times .{ }^{d} \times \operatorname{Aut} \mathcal{T}_{d} \cong \operatorname{st}(1) \leq \operatorname{Aut} \mathcal{T}_{d} \tag{1}
\end{equation*}
$$

- Let $G \leq$ Aut \mathcal{T}_{d} spherically transitive and self-similar.
- In this case it is too much to ask that (1) holds.
- We content ourselves if (1) holds for a (finite index) subgroup K of G :

$$
K \times .{ }^{d} \times K \leq K
$$

- If this is the case, then G is regular branch over K.

(Regular) Branch groups

Recall that in Aut \mathcal{T}_{d} we have:

$$
\begin{equation*}
\text { Aut } \mathcal{T}_{d} \times .{ }^{d} \times \operatorname{Aut} \mathcal{T}_{d} \cong \operatorname{st}(1) \leq \operatorname{Aut} \mathcal{T}_{d} \tag{1}
\end{equation*}
$$

- Let $G \leq$ Aut \mathcal{T}_{d} spherically transitive and self-similar.
- In this case it is too much to ask that (1) holds.
- We content ourselves if (1) holds for a (finite index) subgroup K of G :

$$
K \times .{ }^{d} \times K \leq K
$$

- If this is the case, then G is regular branch over K.
- If the index of K in G is infinite then G is weakly regular branch over K.

The Grigorchuk groups

The (first) Grigorchuk group

$$
\begin{gathered}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
\end{gathered}
$$

The (first) Grigorchuk group

$$
\begin{gather*}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) \\
(12)
\end{gather*}
$$

The (first) Grigorchuk group

$$
\begin{gathered}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) \\
(12)
\end{gathered}
$$

The (first) Grigorchuk group

$$
\begin{gathered}
\Gamma=\langle a, b, c, d\rangle \\
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b)
\end{gathered}
$$

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that a $\notin \operatorname{str}(1)(\star)$

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that a $\notin \operatorname{str}_{r}(1)(*)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{str}_{\Gamma}(1)\right)\right.$:

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated: \checkmark
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that a $\notin \operatorname{str}_{r}(1)(*)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{str}_{\Gamma}(1)\right)\right.$:

$$
\begin{aligned}
& \rho: \operatorname{st}_{\Gamma}(1) \rightarrow \Gamma \times \Gamma \rightarrow \Gamma \\
& b \rightarrow(a, c) \rightarrow a \\
& d^{a} \rightarrow(b, 1) \rightarrow b \\
& b^{a} \rightarrow(c, a) \rightarrow c \\
& c^{a} \rightarrow(d, a) \rightarrow d
\end{aligned}
$$

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated:
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that a $\notin \operatorname{str}_{r}(1)(*)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{str}_{\Gamma}(1)\right)\right.$:

$$
\begin{aligned}
& \rho: \operatorname{st}_{\Gamma}(1) \rightarrow \Gamma \times \Gamma \rightarrow \Gamma \\
& b \rightarrow(a, c) \rightarrow a \\
& d^{a} \rightarrow(b, 1) \rightarrow b \\
& b^{a} \rightarrow(c, a) \rightarrow c \\
& c^{a} \rightarrow(d, a) \rightarrow d
\end{aligned}
$$

- Then $\operatorname{st}_{\Gamma}(1)$ is onto Γ

Γ as a counterexample to the GBP

The group Γ is an infinite 2-group \longrightarrow it is a counterexample to the General Burnside Problem (GBP).

- Proof that Γ is finitely generated:
- Proof that Γ is infinite:
- Idea: find a proper subgroup of Γ that projects surjectively onto Γ
- Note that a $\notin \operatorname{str}_{r}(1)(*)$
- Consider the map $\rho=\pi_{1}\left(\psi\left(\operatorname{str}_{\Gamma}(1)\right)\right.$:

$$
\begin{aligned}
& \rho: \operatorname{st}_{\Gamma}(1) \rightarrow \Gamma \times \Gamma \rightarrow \Gamma \\
& b \rightarrow(a, c) \rightarrow a \\
& d^{a} \rightarrow(b, 1) \rightarrow b \\
& b^{a} \rightarrow(c, a) \rightarrow c \\
& c^{a} \rightarrow(d, a) \rightarrow d
\end{aligned}
$$

- Then $\operatorname{st}_{\Gamma}(1)$ is onto Γ
- $(\star)+(\star)=\Gamma$ is infinite.

Γ as a counterexample to the GBP

- Proof that Γ is torsion:

Γ as a counterexample to the GBP

- Proof that 「 is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.

Γ as a counterexample to the GBP

- Proof that 「 is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.
- $a^{2}=1 \checkmark$

Γ as a counterexample to the GBP

- Proof that 「 is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.
- $a^{2}=1 \checkmark$
- What about b, c and d ?

Γ as a counterexample to the GBP

- Proof that 「 is torsion:
- First step: prove that $a^{2}=b^{2}=c^{2}=d^{2}=1$.
- $a^{2}=1 \checkmark$
- What about b, c and d ?
- General case:more technical.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

- Then the only possibility is that $b^{2}=1$.

Proof that $b^{2}=c^{2}=d^{2}=1$

Let us prove that $b^{2}=1$. Recall that

$$
a=(1,1)(12) \quad b=(a, c) \quad c=(a, d) \quad d=(1, b) .
$$

- We have $b^{2}=\left(a^{2}, c^{2}\right)=\left(1, c^{2}\right)$.
- Also $c^{2}=\left(a^{2}, d^{2}\right)=\left(1, d^{2}\right)$ and $d^{2}=\left(1, b^{2}\right)$.

- Then the only possibility is that $b^{2}=1$.
- As a consequence, $c^{2}=d^{2}=1$.

Summarizing some properties of Γ

- It is a self-similar group.

Summarizing some properties of Γ

- It is a self-similar group.
- It is a torsion 2-group.

Summarizing some properties of Γ

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.

Summarizing some properties of Γ

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.

Summarizing some properties of Γ

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.
- It has intermediate word growth.

Summarizing some properties of Γ

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.
- It has intermediate word growth.
- It is amenable but not elementary amenable.

Summarizing some properties of Γ

- It is a self-similar group.
- It is a torsion 2-group.
- It is just-infinite.
- It is a regular branch group over the subgroup $K=\left\langle(a b)^{2}\right\rangle^{\Gamma}$.
- It has intermediate word growth.
- It is amenable but not elementary amenable.
- Many other exotic properties

Grigorchuk groups

where $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)$.

Grigorchuk groups

where $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)$.
Let $\mathbf{0}, \mathbf{1}, \mathbf{2}$ be the three non-trivial homomorphisms from
$C_{2} \times C_{2}=\{1, b, c, d\}$ to $C_{2}=\{1, \sigma\}$ such that:
0 : $b \mapsto \sigma$
$1: b \mapsto \sigma$
$2: b \mapsto 1$
$c \mapsto 1$
$c \mapsto \sigma$
$c \mapsto \sigma$
$d \mapsto \sigma$
$d \mapsto \sigma$.

Grigorchuk groups

Example 1: $\mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0} \ldots$

Grigorchuk groups

Example 2: 0, 2, 2, 2...

Grigorchuk groups

Grigorchuk groups

- Let $\Omega=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}^{\infty}$ be the space of infinite sequences over letters $\{0,1,2\}$.

Given $\omega \in \Omega$ the Grigorchuk group is $G_{\omega}=\left\langle a, b_{\omega}, c_{\omega}, d_{\omega}\right\rangle$.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$
- If ω is eventually constant then G_{ω} is virtually abelian.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$
- If ω is eventually constant then G_{ω} is virtually abelian.
- Otherwise, G_{ω} is of intermediate growth.

Grigorchuk groups: properties

- The first Grigorchuk group corresponds to the periodic sequence $\omega=012012 \ldots$
- If ω is eventually constant then G_{ω} is virtually abelian.
- Otherwise, G_{ω} is of intermediate growth.
- The group G_{ω} is periodic if and only if ω contains all three letters $\mathbf{0}$, 1, 2 infinitely often.

The GGS-groups

The GGS-groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

The GGS-groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$

The GGS-groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right)$
where $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in(\mathbb{Z} / p \mathbb{Z})^{p-1}$ is its defining vector.

The GGS-groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right)$
where $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in(\mathbb{Z} / p \mathbb{Z})^{p-1}$ is its defining vector.

The group $G_{\mathrm{e}}=\langle a, b\rangle$ is the GGS-group corresponding to the defining vector e.

The GGS-groups

Let p be an odd prime and \mathcal{T}_{p} the p-adic tree.
The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right)$
where $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in(\mathbb{Z} / p \mathbb{Z})^{p-1}$ is its defining vector.

The group $G_{\mathrm{e}}=\langle a, b\rangle$ is the GGS-group corresponding to the defining vector e.

A GGS-group is torsion if and only if $\sum_{i=1}^{p-1} e_{i} \equiv 0 \bmod p$.

When a GGS-group is a branch group?

Note that any GGS-group is spherically transitive a self-similar group.

When a GGS-group is a branch group?

Note that any GGS-group is spherically transitive a self-similar group.

- If \mathbf{e} is the constant vector, then G is weakly regular branch over $\left(\left\langle b a^{-1}\right\rangle^{G}\right)^{\prime}$.

When a GGS-group is a branch group?

Note that any GGS-group is spherically transitive a self-similar group.

- If \mathbf{e} is the constant vector, then G is weakly regular branch over $\left(\left\langle b a^{-1}\right\rangle^{G}\right)^{\prime}$.
- If \mathbf{e} is non-constant then G is regular branch over $\gamma_{3}(G)$.

When a GGS-group is a branch group?

Note that any GGS-group is spherically transitive a self-similar group.

- If \mathbf{e} is the constant vector, then G is weakly regular branch over $\left(\left\langle b a^{-1}\right\rangle^{G}\right)^{\prime}$.
- If \mathbf{e} is non-constant then G is regular branch over $\gamma_{3}(G)$.
- Moreover, if the defining vector is non-symmetric (symmetric means that $e_{i}=e_{p-i}$ for all $i=1, \ldots p-1$) then G is regular branch over its derived subgroup G^{\prime}.

A specific example: the Gupta-Sidki p-group

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

A specific example: the Gupta-Sidki p-group

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$

A specific example: the Gupta-Sidki p-group

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a, a^{-1}, 1, \ldots, 1, b\right)$

A specific example: the Gupta-Sidki p-group

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a, a^{-1}, 1, \ldots, 1, b\right)$

A specific example: the Gupta-Sidki p-group

Let $\mathbf{e}=(1,-1,0, \ldots, 0)$. The Gupta-Sidki group $\mathcal{G}=G_{(1,-1,0, \ldots, 0)}$ is generated by a, b, where

- $a=(1, \ldots, 1)(12 \ldots p)$
- $b=\left(a, a^{-1}, 1, \ldots, 1, b\right)$

- Can you prove that this group is infinite and generated by elements of order p ? And that is a p-group?.

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

- As $\mathcal{G}=\langle a, b\rangle$, then $\mathcal{G}^{\prime}=\left\langle[a, b]^{m} \mid m \in \mathcal{G}\right\rangle$.
- Take

$$
b=\left(a, a^{-1}, 1, \ldots, 1, b\right) \quad b^{a}=\left(b, a, a^{-1}, 1, \ldots, 1\right)
$$

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

- As $\mathcal{G}=\langle a, b\rangle$, then $\mathcal{G}^{\prime}=\left\langle[a, b]^{m} \mid m \in \mathcal{G}\right\rangle$.
- Take

$$
b=\left(a, a^{-1}, 1, \ldots, 1, b\right) \quad b^{a}=\left(b, a, a^{-1}, 1, \ldots, 1\right)
$$

- Then $\left[b, b^{a}\right]=([a, b], 1, \ldots, 1)$.

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

- As $\mathcal{G}=\langle a, b\rangle$, then $\mathcal{G}^{\prime}=\left\langle[a, b]^{m} \mid m \in \mathcal{G}\right\rangle$.
- Take

$$
b=\left(a, a^{-1}, 1, \ldots, 1, b\right) \quad b^{a}=\left(b, a, a^{-1}, 1, \ldots, 1\right)
$$

- Then $\left[b, b^{a}\right]=([a, b], 1, \ldots, 1)$.
- Since \mathcal{G} is fractal, for any $h \in \mathcal{G}$ there exists $g \in \operatorname{st}_{\mathcal{G}}(1)$ such that $g=(h, \star, \ldots, \star)$.

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

- As $\mathcal{G}=\langle a, b\rangle$, then $\mathcal{G}^{\prime}=\left\langle[a, b]^{m} \mid m \in \mathcal{G}\right\rangle$.
- Take

$$
b=\left(a, a^{-1}, 1, \ldots, 1, b\right) \quad b^{a}=\left(b, a, a^{-1}, 1, \ldots, 1\right)
$$

- Then $\left[b, b^{a}\right]=([a, b], 1, \ldots, 1)$.
- Since \mathcal{G} is fractal, for any $h \in \mathcal{G}$ there exists $g \in \operatorname{st}_{\mathcal{G}}(1)$ such that $g=(h, \star, \ldots, \star)$.
- Then $\left[b, b^{a}\right]^{g}=\left([a, b]^{h}, 1, \ldots, 1\right)$.

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

- As $\mathcal{G}=\langle a, b\rangle$, then $\mathcal{G}^{\prime}=\left\langle[a, b]^{m} \mid m \in \mathcal{G}\right\rangle$.
- Take

$$
b=\left(a, a^{-1}, 1, \ldots, 1, b\right) \quad b^{a}=\left(b, a, a^{-1}, 1, \ldots, 1\right)
$$

- Then $\left[b, b^{a}\right]=([a, b], 1, \ldots, 1)$.
- Since \mathcal{G} is fractal, for any $h \in \mathcal{G}$ there exists $g \in \operatorname{st}_{\mathcal{G}}(1)$ such that $g=(h, \star, \ldots, \star)$.
- Then $\left[b, b^{a}\right]^{g}=\left([a, b]^{h}, 1, \ldots, 1\right)$.
- This implies that $\mathcal{G}^{\prime} \times\{1\} \times \cdots \times\{1\} \subseteq \mathcal{G}^{\prime} \cap \operatorname{st}_{\mathcal{G}}(1)=\operatorname{st}_{\mathcal{G}^{\prime}}(1) \subseteq \mathcal{G}^{\prime}$.

Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let $p \geq 5$.

- As $\mathcal{G}=\langle a, b\rangle$, then $\mathcal{G}^{\prime}=\left\langle[a, b]^{m} \mid m \in \mathcal{G}\right\rangle$.
- Take

$$
b=\left(a, a^{-1}, 1, \ldots, 1, b\right) \quad b^{a}=\left(b, a, a^{-1}, 1, \ldots, 1\right)
$$

- Then $\left[b, b^{a}\right]=([a, b], 1, \ldots, 1)$.
- Since \mathcal{G} is fractal, for any $h \in \mathcal{G}$ there exists $g \in \operatorname{st}_{\mathcal{G}}(1)$ such that $g=(h, \star, \ldots, \star)$.
- Then $\left[b, b^{a}\right]^{g}=\left([a, b]^{h}, 1, \ldots, 1\right)$.
- This implies that $\mathcal{G}^{\prime} \times\{1\} \times \cdots \times\{1\} \subseteq \mathcal{G}^{\prime} \cap \operatorname{st}_{\mathcal{G}}(1)=\operatorname{st}_{\mathcal{G}^{\prime}}(1) \subseteq \mathcal{G}^{\prime}$.
- For level transitivity we can have \mathcal{G}^{\prime} in each component.

...continue: do you remember the general "picture"?

- Also, $\left|\mathcal{G} / \mathcal{G}^{\prime}\right|=p^{2}$.
(Can you prove it?)

...continue: do you remember the general "picture"?

- Also, $\left|\mathcal{G} / \mathcal{G}^{\prime}\right|=p^{2}$. (Can you prove it?)
- The Gupta-Sidki p-group \mathcal{G} is regular branch over its derived subgroup \mathcal{G}^{\prime}.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
- What if $p=2$?

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
- What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
- What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .
- Either G is a finite dihedral group or the infinite dihedral group.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
- What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .
- Either G is a finite dihedral group or the infinite dihedral group.
- In both cases G is not a counterexample to the GBP.

Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

- GGS-groups: $G=\langle a, b\rangle$, with a, b of order p, with p odd.
- What if $p=2$?
- $G=\langle a, b\rangle$ is generated by elements of order 2 .
- Either G is a finite dihedral group or the infinite dihedral group.
- In both cases G is not a counterexample to the GBP.
- Then if you want a group generated by elements of order 2 , you must add generators: $\Gamma=\langle a, b, c, d\rangle$.

The Basilica group

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?
- $a=(,) \epsilon \quad b=(,) \sigma$

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?
- $a=(1, b)$

The Basilica group

Let \mathcal{T}_{2} be the binary tree. Define a and b as follows:

- Can you define a and b from their portraits above?
- $a=(1, b) \quad b=(1, a) \sigma$

A curiosity about the name

First: the Basilica group is $B=\langle a, b\rangle$.

A curiosity about the name

First: the Basilica group is $B=\langle a, b\rangle$.

A curiosity about the name

First: the Basilica group is $B=\langle a, b\rangle$.

Some properties of the Basilica group

- It is torsion-free (Can you prove that a and b have infinite order?)
- It is weakly regular branch over its derived subgroup B^{\prime}.

Some properties of the Basilica group

- It is torsion-free (Can you prove that a and b have infinite order?)
- It is weakly regular branch over its derived subgroup B^{\prime}.
- It has exponential word growth.

Some properties of the Basilica group

- It is torsion-free (Can you prove that a and b have infinite order?)
- It is weakly regular branch over its derived subgroup B^{\prime}.
- It has exponential word growth.
- Basilica the first example of an amenable but not subexponentially amenable group.

The Hanoi Tower group

The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.

The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:

The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:
- One disk can be moved at a time;

The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:
- One disk can be moved at a time;
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another or on an empty peg;

The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard Lucas in the 19th century.

- The goal: to move the entire stack to another peg.
- The rules:
- One disk can be moved at a time;
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another or on an empty peg;
- No disk may be placed on top of a smaller disk.

The Hanoi towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.

The Hanoi towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lie.

The Hanoi towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lie.
- We "read" from the smallest to the bigger disk.

The Hanoi towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lie.
- We "read" from the smallest to the bigger disk.
- Example:

$$
23112
$$

The Hanoi towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lie.
- We "read" from the smallest to the bigger disk.
- Example:

$$
23112
$$

- The length of the word above is $6 \longrightarrow 6$ disks.

The Hanoi towers game

- Let 3 be the number of pegs, then consider $X=\{1,2,3\}$. A word in X is a configuration of the disks and the length of the word is the number of disks.
- Each number represents the peg in which the disk lie.
- We "read" from the smallest to the bigger disk.
- Example:

$$
23112
$$

- The length of the word above is $6 \longrightarrow 6$ disks.
- This means that the smaller disk is in the 2 nd position, the second smaller disk is in the 3rd position, the third smaller disk is in the 1st position, and so on.

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

1

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

13

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

$$
131
$$

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

1311

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

13112.

The Hanoi towers game II

- Other example: can you guess how to write the configuration below?

- The configuration is:

13112.

- Goal: to send $11 \ldots 1$ to $33 \ldots 3$.

The Hanoi towers game

- Configurations (sequences of length n of $1,2,3$) can be seen as vertices on the n-th level in a rooted ternary tree.

- Any move takes one vertex on the n-th level on the tree to another vertex on the n-th level. Then each move can be thought of as an automorphism of the rooted ternary tree.

The Hanoi towers game

The Hanoi towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration

The Hanoi towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them

The Hanoi towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity

The Hanoi towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3

The Hanoi towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=(31322)$.

The Hanoi towers game

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: a(21322) $=(31322)$.

One can define elements a, b and c acting on the whole ternary tree.

The Hanoi towers game group

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=(31322)$.

One can define elements a, b and c acting on the whole ternary tree.

$$
\mathcal{H}=\langle a, b, c\rangle
$$

The Hanoi towers game group

Move a:

- Search for the first time a 2 or 3 appears in the configuration
- Switch them
- Apply the identity
- This means that a does the only movement we are allowed to do between pegs 2 and 3
- Example: $a(21322)=(31322)$.

One can define elements a, b and c acting on the whole ternary tree.

$$
\mathcal{H}=\langle a, b, c\rangle
$$

where $a=(a, 1,1)(23), b=(1, b, 1)(13), c=(1,1, c)(12)$

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in \operatorname{Aut} \mathcal{T}$.

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u.

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in$ Aut \mathcal{T} and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in$ Aut \mathcal{T} and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in$ Aut \mathcal{T} and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in$ Aut \mathcal{T} and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Example: since $a=(a, 1,1)(23)$, we have

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in$ Aut \mathcal{T} and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Example: since $a=(a, 1,1)(23)$, we have

- $a(21322)=a(2) a_{2}(1322)=31322$

Do you remember the section of an automorphism?

Let u be a vertex of \mathcal{T}, and $g \in$ Aut \mathcal{T}. We denote with g_{u} the section of g at the vertex u, that is the action of g on the subtree \mathcal{T}_{u} that hangs from the vertex u. If $f \in$ Aut \mathcal{T} and u, v are vertices of the tree, we can define the section f_{u} by the formula $f(u v)=f(u) f_{u}(v)$.

Example: since $a=(a, 1,1)(23)$, we have

- $a(21322)=a(2) a_{2}(1322)=31322$
- $a(1321)=a(1) a_{1}(321)=1 a(321)=1 a(3) a_{3}(211)=1211$

Conclusions

Groups of automorphisms of rooted trees play an important role in group theory.

Groups of automorphisms of rooted trees play an important role in group theory.
Some questions:

Groups of automorphisms of rooted trees play an important role in group theory.
Some questions:

- What is your favourite group...? :)

To conclude . . .

Groups of automorphisms of rooted trees play an important role in group theory.
Some questions:

- What is your favourite group...? :)
- What is the word growth of the GGS-groups?

To conclude . . .

Groups of automorphisms of rooted trees play an important role in group theory.
Some questions:

- What is your favourite group...? :)
- What is the word growth of the GGS-groups?
- Nice topic: study algorithmic problems in branch groups.

To conclude . . .

Groups of automorphisms of rooted trees play an important role in group theory.
Some questions:

- What is your favourite group...? :)
- What is the word growth of the GGS-groups?
- Nice topic: study algorithmic problems in branch groups.
- Do there exist finitely presented branch groups?

References

[1] G. Baumslag Topics in combinatorial group theory - Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1993).
[2] L. Bartholdi, R.I. Grigorchuk, Z. Sunik Branch groups - Handbook of Algebra, Volume 3, North-Holland (2003), 989-1112.
[3] R.I. Grigorchuk Just infinite branch groups - New Horizons in pro-p Groups, Progress in Mathematics, Volume 184 (2000), 121-179.
[4] P. de la Harpe Topics in Geometric Group Theory - Chicago Lectures in Mathematics (2000).

Thank you :)
Stay safe!

