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Previously, on “Groups of

automorphisms of rooted trees I”



Regular rooted trees
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Regular rooted trees Td and automorphisms of Td

Automorphisms of Td
Bijections of the vertices that preserve incidence.
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Describing elements of Aut T I

An automorphism f ∈ Aut Td can be represented by writing in each

vertex v a permutation σv ∈ Sym(d) which represents the action of f on

the descendants of v .
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Describing elements of Aut T II

Let f ∈ Aut Td with f = (f1, f2, . . . , fd)a, where fi ∈ Aut Td and a is

rooted corresponding to σ.
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Self-similar groups

We define the isomorphism

ψ : st(1) −→ Aut T × d· · · × Aut T
g 7−→ (g1, . . . , gd).

If G ≤ Aut T

ψG : stG (1) −→ Aut T × d· · · × Aut T
g 7−→ (g1, . . . , gd)

Additionally, if G is self-similar,

ψG : stG (1) −→ G × d· · · × G

g 7−→ (g1, . . . , gd).

We denote ψ = ψG , and sometimes, to define automorphisms we omit ψ.
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(Regular) Branch groups

Recall that in Aut Td we have:

Aut Td × d. . .× Aut Td ∼= st(1) ≤ Aut Td . (1)

• Let G ≤ Aut Td spherically transitive and self-similar.

• In this case it is too much to ask that (1) holds.

• We content ourselves if (1) holds for a (finite index) subgroup K of

G :

K × d. . .× K ≤ K .

• If this is the case, then G is regular branch over K .

• If the index of K in G is infinite then G is weakly regular branch

over K .
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The Grigorchuk groups



The (first) Grigorchuk group

Γ = 〈a, b, c , d〉
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Γ as a counterexample to the GBP

The group Γ is an infinite 2-group −→ it is a counterexample to the

General Burnside Problem (GBP).

• Proof that Γ is finitely generated: X
• Proof that Γ is infinite:

• Idea: find a proper subgroup of Γ that projects surjectively onto Γ

• Note that a /∈ stΓ(1) (?)

• Consider the map ρ = π1(ψ(stΓ(1)):

ρ : stΓ(1)→ Γ× Γ→ Γ

b → (a, c)→ a

da → (b, 1)→ b

ba → (c, a)→ c

ca → (d , a)→ d

• Then stΓ(1) is onto Γ (?)

• (?) + (?) = Γ is infinite.
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Γ as a counterexample to the GBP

• Proof that Γ is torsion:

• First step: prove that a2 = b2 = c2 = d2 = 1.

• a2 = 1 X
• What about b, c and d?

• General case: . . . more technical.
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Proof that b2 = c2 = d2 = 1

Let us prove that b2 = 1. Recall that

a = (1, 1)(12) b = (a, c) c = (a, d) d = (1, b).

• We have b2 = (a2, c2) = (1, c2).

• Also c2 = (a2, d2) = (1, d2) and d2 = (1, b2).

1

1 c2

1

1 1

1 d2

1

1 1

1 1

1 b2

• Then the only possibility is that b2 = 1.

• As a consequence, c2 = d2 = 1.
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Summarizing some properties of Γ

• It is a self-similar group.

• It is a torsion 2-group.

• It is just-infinite.

• It is a regular branch group over the subgroup K = 〈(ab)2〉Γ.

• It has intermediate word growth.

• It is amenable but not elementary amenable.

• Many other exotic properties . . . .
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Grigorchuk groups

b

σ c

σ d

1 b

σ c...

c

σ d

1 b

σ c

σ d...

d

1 b

σ c

σ d

1 b...

where σ = (1 2).

Let 0, 1, 2 be the three non-trivial homomorphisms from

C2 × C2 = {1, b, c , d} to C2 = {1, σ} such that:

0 : b 7→ σ 1 : b 7→ σ 2 : b 7→ 1

c 7→ σ c 7→ 1 c 7→ σ

d 7→ 1 d 7→ σ d 7→ σ.
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Grigorchuk groups

Example 1: 0 , 1 , 1 , 0 . . .

b

σ c

σ d

σ b

σ c...

c

σ d

1 b

1 c

σ d...

d

1 b

σ c

σ d

1 b...
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Grigorchuk groups

Example 2: 0 , 2 , 2 , 2 . . .

b

σ c

1 d

1 b

1 c...

c

σ d

σ b

σ c

σ d...

d

1 b

σ c

σ d

σ b...
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Grigorchuk groups

b

σ c

σ d

1 b

σ c...

c

σ d

1 b

σ c

σ d...

d

1 b

σ c

σ d

1 b...

• Let Ω = {0, 1, 2}∞ be the space of infinite sequences over letters

{0, 1, 2}.

Given ω ∈ Ω the Grigorchuk group is Gω = 〈a, bω, cω, dω〉.
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Grigorchuk groups: properties

• The first Grigorchuk group corresponds to the periodic sequence

ω = 012012 . . . .

• If ω is eventually constant then Gω is virtually abelian.

• Otherwise, Gω is of intermediate growth.

• The group Gω is periodic if and only if ω contains all three letters 0,

1, 2 infinitely often.
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The GGS-groups



The GGS-groups

Let p be an odd prime and Tp the p-adic tree.

The Grigorchuk-Gupta-Sidki group (GGS for short) is defined by

• a = (1, . . . , 1)(1 2 . . . p)

• b = (ae1 , ae2 , . . . , aep−1 , b)

where e = (e1, . . . , ep−1) ∈ (Z/pZ)p−1 is its defining vector.

The group Ge = 〈a, b〉 is the GGS-group corresponding to the

defining vector e.

A GGS-group is torsion if and only if
∑p−1

i=1 ei ≡ 0 mod p.
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When a GGS-group is a branch group?

Note that any GGS-group is spherically transitive a self-similar group.

• If e is the constant vector, then G is weakly regular branch over

(〈ba−1〉G )′.

• If e is non-constant then G is regular branch over γ3(G ).

• Moreover, if the defining vector is non-symmetric (symmetric means

that ei = ep−i for all i = 1, . . . p − 1) then G is regular branch over

its derived subgroup G ′.
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A specific example: the Gupta-Sidki p-group

Let e = (1,−1, 0, . . . , 0). The Gupta-Sidki group G = G(1,−1,0,...,0) is

generated by a, b, where

• a = (1, . . . , 1)(1 2 . . . p)

• b = (a, a−1, 1, . . . , 1, b)

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

1

1a a−1

a a−1 b

· · ·

• Can you prove that this group is infinite and generated by elements

of order p? And that is a p-group?.
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Gupta-Sidki is regular branch over its derived subgroup

For simplicity, let p ≥ 5.

• As G = 〈a, b〉, then G′ = 〈[a, b]m | m ∈ G〉.
• Take

b = (a, a−1, 1, . . . , 1, b) ba = (b, a, a−1, 1, . . . , 1)

• Then [b, ba] = ([a, b], 1, . . . , 1).

• Since G is fractal, for any h ∈ G there exists g ∈ stG(1) such that

g = (h, ?, . . . , ?).

• Then [b, ba]g = ([a, b]h, 1, . . . , 1).

• This implies that G′ × {1} × · · · × {1} ⊆ G′ ∩ stG(1) = stG′(1) ⊆ G′.
• For level transitivity we can have G′ in each component.
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...continue: do you remember the general “picture”?

G G × p. . .× G

stG(1)
ψ
// ψ(stG(1))

G′ ψ
// ψ(G′)

G′ × p. . .× G′

• Also, |G/G′| = p2.

(Can you prove it?)

• The Gupta-Sidki p-group G is regular branch over its derived

subgroup G′.
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Grigorchuk group vs GGS-groups

Counterexamples to the General Burnside Problem (GBP):

• GGS-groups: G = 〈a, b〉, with a, b of order p, with p odd.

• What if p = 2?

• G = 〈a, b〉 is generated by elements of order 2.

• Either G is a finite dihedral group or the infinite dihedral group.

• In both cases G is not a counterexample to the GBP.

• Then if you want a group generated by elements of order 2, you

must add generators: Γ = 〈a, b, c , d〉.
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The Basilica group



The Basilica group

Let T2 be the binary tree. Define a and b as follows:

a 1

1 σ

1 1

1 σ

1 1...

b σ

1 1

1 σ

1 1

1 σ...

• Can you define a and b from their portraits above?

•
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A curiosity about the name

First: the Basilica group is B = 〈a, b〉.
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Some properties of the Basilica group

• It is torsion-free (Can you prove that a and b have infinite order?)

• It is weakly regular branch over its derived subgroup B ′.

• It has exponential word growth.

• Basilica the first example of an amenable but not subexponentially

amenable group.
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The Hanoi Tower group



The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard

Lucas in the 19th century.

• The goal: to move the entire stack to another peg.

• The rules:

• One disk can be moved at a time;

• Each move consists of taking the upper disk from one of the stacks

and placing it on top of another or on an empty peg;

• No disk may be placed on top of a smaller disk.
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Lucas in the 19th century.

• The goal: to move the entire stack to another peg.

• The rules:

• One disk can be moved at a time;

• Each move consists of taking the upper disk from one of the stacks

and placing it on top of another or on an empty peg;

• No disk may be placed on top of a smaller disk.

27



The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard
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Lucas in the 19th century.

• The goal: to move the entire stack to another peg.

• The rules:

• One disk can be moved at a time;

• Each move consists of taking the upper disk from one of the stacks

and placing it on top of another or on an empty peg;

• No disk may be placed on top of a smaller disk.

27



The Hanoi tower game

The tower of Hanoi was invented by a French mathematician Édouard
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The Hanoi towers game

• Let 3 be the number of pegs, then consider X = {1, 2, 3}. A word in

X is a configuration of the disks and the length of the word is the

number of disks.

• Each number represents the peg in which the disk lie.

• We “read” from the smallest to the bigger disk.

• Example:

23112.

• The length of the word above is 6 −→ 6 disks.

• This means that the smaller disk is in the 2nd position, the second

smaller disk is in the 3rd position, the third smaller disk is in the 1st

position, and so on.
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The Hanoi towers game II

• Other example: can you guess how to write the configuration below?

• The configuration is:

13112.

• Goal: to send 11 . . . 1 to 33 . . . 3.
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• Other example: can you guess how to write the configuration below?

• The configuration is:

1

3112.

• Goal: to send 11 . . . 1 to 33 . . . 3.
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• Other example: can you guess how to write the configuration below?

• The configuration is:

13

112.

• Goal: to send 11 . . . 1 to 33 . . . 3.
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The Hanoi towers game II

• Other example: can you guess how to write the configuration below?

• The configuration is:

131

12.

• Goal: to send 11 . . . 1 to 33 . . . 3.
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• Other example: can you guess how to write the configuration below?

• The configuration is:

1311

2.

• Goal: to send 11 . . . 1 to 33 . . . 3.
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The Hanoi towers game

• Configurations (sequences of length n of 1, 2, 3) can be seen as

vertices on the n-th level in a rooted ternary tree.
∅

1 2 3

...
...

...

11 12 13 21 22 23 31 32 33

313

• Any move takes one vertex on the n-th level on the tree to another

vertex on the n-th level. Then each move can be thought of as an

automorphism of the rooted ternary tree.

30



The Hanoi towers game

Move a:

• Search for the first time a 2 or 3 appears in the configuration

• Switch them

• Apply the identity

• This means that a does the only movement we are allowed to do

between pegs 2 and 3

• Example: a(21322) = (31322).

One can define elements a, b and c acting on the whole ternary tree.

H = 〈a, b, c〉

where a = (a, 1, 1)(23), b = (1, b, 1)(13), c = (1, 1, c)(12)
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Do you remember the section of an automorphism?

Let u be a vertex of T , and g ∈ Aut T .

We denote with gu the section of

g at the vertex u, that is the action of g on the subtree Tu that hangs

from the vertex u. If f ∈ Aut T and u, v are vertices of the tree, we can

define the section fu by the formula f (uv) = f (u)fu(v).

u f(u)

f

uv f(u)w

fu

v w

Example: since a = (a, 1, 1)(23), we have

• a(21322) = a(2)a2(1322) = 31322

• a(1321) = a(1)a1(321) = 1a(321) = 1a(3)a3(211) = 1211
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Conclusions



To conclude . . .

Groups of automorphisms of rooted trees play an important role in group

theory.

Some questions:

• What is your favourite group...? :)

• What is the word growth of the GGS-groups?

• Nice topic: study algorithmic problems in branch groups.

• Do there exist finitely presented branch groups?

33



To conclude . . .

Groups of automorphisms of rooted trees play an important role in group

theory.

Some questions:

• What is your favourite group...? :)

• What is the word growth of the GGS-groups?

• Nice topic: study algorithmic problems in branch groups.

• Do there exist finitely presented branch groups?

33



To conclude . . .

Groups of automorphisms of rooted trees play an important role in group

theory.

Some questions:

• What is your favourite group...? :)

• What is the word growth of the GGS-groups?

• Nice topic: study algorithmic problems in branch groups.

• Do there exist finitely presented branch groups?

33



To conclude . . .

Groups of automorphisms of rooted trees play an important role in group

theory.

Some questions:

• What is your favourite group...? :)

• What is the word growth of the GGS-groups?

• Nice topic: study algorithmic problems in branch groups.

• Do there exist finitely presented branch groups?

33



To conclude . . .

Groups of automorphisms of rooted trees play an important role in group

theory.

Some questions:

• What is your favourite group...? :)

• What is the word growth of the GGS-groups?

• Nice topic: study algorithmic problems in branch groups.

• Do there exist finitely presented branch groups?

33



To conclude . . .

Groups of automorphisms of rooted trees play an important role in group

theory.

Some questions:

• What is your favourite group...? :)

• What is the word growth of the GGS-groups?

• Nice topic: study algorithmic problems in branch groups.

• Do there exist finitely presented branch groups?

33



References

[1] G. Baumslag Topics in combinatorial group theory - Lectures in
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Thank you :)

Stay safe!
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