Groups of automorphisms of rooted trees I

Marialaura Noce

mnoce@unisa.it

October 2020, NBGGT lectures for postgraduate students

Georg-August-Universität Göttingen

- 1. Introduction
- 2. Automorphisms of regular rooted trees
- 3. Branch groups
- 4. Next lecture

Introduction

- Milnor's Problem \implies growth of a group.
- General Burnside Problem \implies finiteness properties of a group.

• Free groups of finite rank k > 1: exponential growth.

- Free groups of finite rank k > 1: exponential growth.
- Fundamental group π₁(M) of a closed negatively curved Riemannian manifold: exponential growth.

- Free groups of finite rank k > 1: exponential growth.
- Fundamental group π₁(M) of a closed negatively curved Riemannian manifold: exponential growth.
- Finite groups: polynomial growth (of degree 0).

- Free groups of finite rank k > 1: exponential growth.
- Fundamental group π₁(M) of a closed negatively curved Riemannian manifold: exponential growth.
- Finite groups: polynomial growth (of degree 0).
- (Gromov, 1981) A group is virtually nilpotent if and only if it has polynomial growth.

- Free groups of finite rank k > 1: exponential growth.
- Fundamental group π₁(M) of a closed negatively curved Riemannian manifold: exponential growth.
- Finite groups: polynomial growth (of degree 0).
- (Gromov, 1981) A group is virtually nilpotent if and only if it has polynomial growth.

Milnor's question (1960):

Are there groups of intermediate growth between polynomial and exponential?

- Free groups of finite rank k > 1: exponential growth.
- Fundamental group π₁(M) of a closed negatively curved Riemannian manifold: exponential growth.
- Finite groups: polynomial growth (of degree 0).
- (Gromov, 1981) A group is virtually nilpotent if and only if it has polynomial growth.

Milnor's question (1960):

Are there groups of intermediate growth between polynomial and exponential?

Grigorchuk's answer (1980):

Yes, the first ... Grigorchuk group.

A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite. W. BURNSIDE (1902) A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite, while the order of every operation it contains is finite. W. BURNSIDE (1902)

In modern terminology the general Burnside problem asks:

can a finitely generated periodic group be finite?

- Yes, for nilpotent groups.
- Yes, finitely generated periodic subgroups of the general linear group of degree *n* > 1 over the complex field.
- Yes, ... for many other classes of groups.

- Yes, for nilpotent groups.
- Yes, finitely generated periodic subgroups of the general linear group of degree *n* > 1 over the complex field.
- Yes, ... for many other classes of groups.
- Counterexample: the first Grigorchuk group.

It seems that:

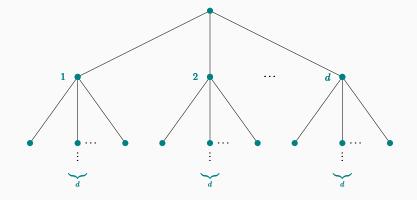
It seems that:

Milnor's question \bigcap General Burnside Problem

= the first Grigorchuk group, \ldots

Automorphisms of regular rooted trees

Seriously: the regular rooted tree \mathcal{T}_d



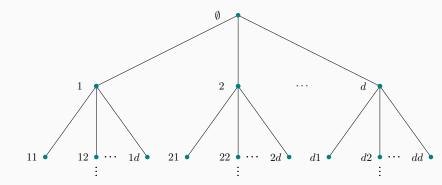
• The tree is infinite.

- The tree is infinite.
- The root is a distinguished (fixed) vertex.

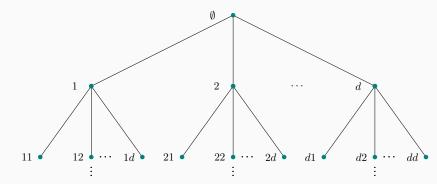
- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.

- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.
- A vertex is a word in the alphabet $X = \{1, \ldots, d\}$.

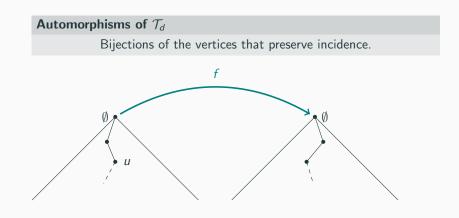
- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.
- A vertex is a word in the alphabet $X = \{1, \ldots, d\}$.

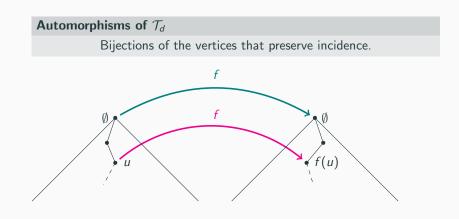


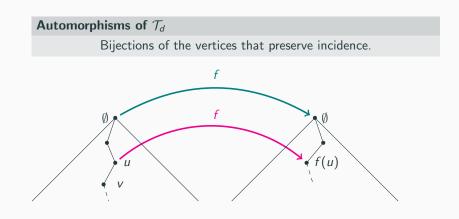
- The tree is infinite.
- The root is a distinguished (fixed) vertex.
- Regular: the number of descendants is the same at every level.
- A vertex is a word in the alphabet $X = \{1, \ldots, d\}$.

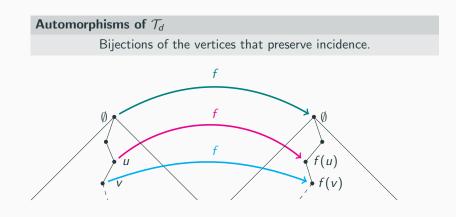


• X^n denotes the *n*th level of the tree.









The set Aut \mathcal{T}_d of all automorphisms of \mathcal{T}_d is a group with respect to composition between functions.

The set Aut T_d of all automorphisms of T_d is a group with respect to composition between functions.

Sometimes we write \mathcal{T} for \mathcal{T}_d , and, consequently, Aut \mathcal{T} for Aut \mathcal{T}_d .

A subgroup of $\operatorname{Aut} \mathcal{T}$: the stabilizer

• The *n*th level stabilizer st(n) fixes all vertices up to level *n*.

A subgroup of $\operatorname{Aut} \mathcal{T}$: the stabilizer

- The *n*th level stabilizer st(n) fixes all vertices up to level *n*.
- If $H \leq \operatorname{Aut} \mathcal{T}$, we define $\operatorname{st}_H(n) = H \cap \operatorname{st}(n)$.

• Stabilizers are normal subgroups of the given group.

- Stabilizers are normal subgroups of the given group.
- $\bullet\,$ There is a chain of subgroups of $\operatorname{Aut} \mathcal T$

Aut $\mathcal{T} \supseteq \operatorname{st}(1) \supseteq \operatorname{st}(2) \supseteq \cdots \supseteq \operatorname{st}(n) \supseteq \ldots$

where $\bigcap_{n \in \mathbb{N}} \operatorname{st}(n) = 1$.

- Stabilizers are normal subgroups of the given group.
- $\bullet\,$ There is a chain of subgroups of $\operatorname{Aut} \mathcal T$

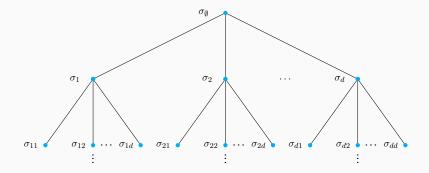
Aut
$$\mathcal{T} \supseteq \operatorname{st}(1) \supseteq \operatorname{st}(2) \supseteq \cdots \supseteq \operatorname{st}(n) \supseteq \ldots$$

where $\bigcap_{n \in \mathbb{N}} \operatorname{st}(n) = 1$.

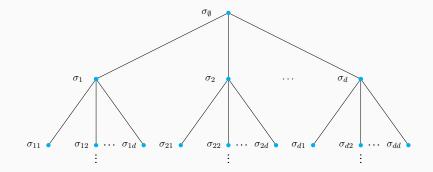
• Hence Aut T is a residually finite group (i.e. a group in which the intersection of all its normal subgroups of finite index is trivial).

An automorphism $f \in \operatorname{Aut} \mathcal{T}_d$ can be represented by writing in each vertex v a permutation $\sigma_v \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

An automorphism $f \in \operatorname{Aut} \mathcal{T}_d$ can be represented by writing in each vertex v a permutation $\sigma_v \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.

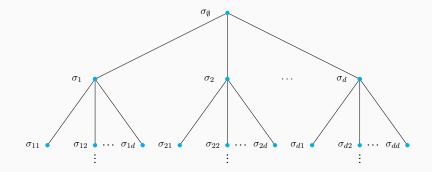


An automorphism $f \in \operatorname{Aut} \mathcal{T}_d$ can be represented by writing in each vertex v a permutation $\sigma_v \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.



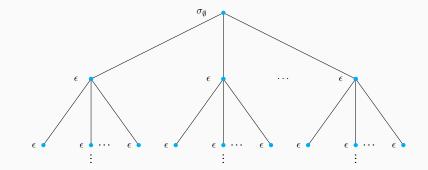
We say that $\sigma_v \in \text{Sym}(d)$ is the *label* of f at the vertex v.

An automorphism $f \in \operatorname{Aut} \mathcal{T}_d$ can be represented by writing in each vertex v a permutation $\sigma_v \in \operatorname{Sym}(d)$ which represents the action of f on the descendants of v.



We say that $\sigma_v \in \text{Sym}(d)$ is the *label* of f at the vertex v. The set of all labels is the *portrait* of f.

The simplest type are rooted automorphisms: given $\sigma \in \text{Sym}(d)$, they simply permute the *d* subtrees hanging from the root according to σ .

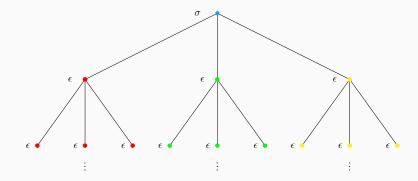


We denote with ϵ the identity element of Sym(*d*).

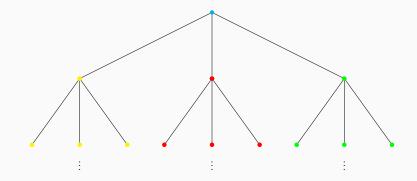
Let \mathcal{T}_3 be the ternary tree, and *a* the rooted automorphism corresponding to the cycle $\sigma = (1 \ 2 \ 3)$.

Example of a rooted automorphism

Let T_3 be the ternary tree, and *a* the rooted automorphism corresponding to the cycle $\sigma = (1 \ 2 \ 3)$.



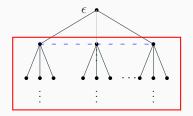
Let T_3 be the ternary tree, and *a* the rooted automorphism corresponding to the cycle $\sigma = (1 \ 2 \ 3)$.



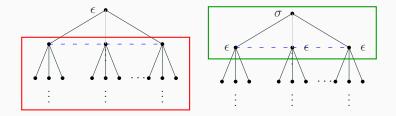
Note: sometimes we will identify a with σ .

We have $\operatorname{Aut} \mathcal{T} \cong \operatorname{st}(1) \rtimes \operatorname{Sym}(d)$.

We have Aut $\mathcal{T} \cong st(1) \rtimes Sym(d)$. Why? Intuitively: take $f \in st(1)$, and $\sigma \in Sym(d)$. We have Aut $\mathcal{T} \cong st(1) \rtimes Sym(d)$. Why? Intuitively: take $f \in st(1)$, and $\sigma \in Sym(d)$.



We have Aut $\mathcal{T} \cong st(1) \rtimes Sym(d)$. Why? Intuitively: take $f \in st(1)$, and $\sigma \in Sym(d)$.



Some facts about $\operatorname{Aut} \mathcal{T}$: II

We define the isomorphism

$$\psi: \mathsf{st}(1) \longrightarrow \mathsf{Aut}\,\mathcal{T} imes \stackrel{d}{\cdots} imes \mathsf{Aut}\,\mathcal{T}$$
 $g \longmapsto (g_1, \dots, g_d)$

for every $g \in st(1)$.

Some facts about $\operatorname{Aut} \mathcal{T}$: II

We define the isomorphism

$$\psi: \mathsf{st}(1) \longrightarrow \mathsf{Aut}\,\mathcal{T} imes \stackrel{d}{\cdots} imes \mathsf{Aut}\,\mathcal{T}$$

 $g \longmapsto (g_1, \dots, g_d)$

for every $g \in st(1)$.

Above, we denoted with g_i the section of g at the vertex i,

Some facts about $Aut \mathcal{T}$: II

We define the isomorphism

$$\psi: \mathsf{st}(1) \longrightarrow \mathsf{Aut}\,\mathcal{T} imes \stackrel{d}{\cdots} imes \mathsf{Aut}\,\mathcal{T}$$

 $g \longmapsto (g_1, \dots, g_d)$

for every $g \in st(1)$.

Above, we denoted with g_i the section of g at the vertex i, that is the action of g on the subtree \mathcal{T}_i (which is identified with \mathcal{T}) that hangs from the vertex i.

Some facts about $Aut \mathcal{T}$: II

We define the isomorphism

$$\psi: \mathsf{st}(1) \longrightarrow \mathsf{Aut}\,\mathcal{T} imes \stackrel{d}{\cdots} imes \mathsf{Aut}\,\mathcal{T}$$

 $g \longmapsto (g_1, \dots, g_d)$

for every $g \in st(1)$.

Above, we denoted with g_i the section of g at the vertex i, that is the action of g on the subtree \mathcal{T}_i (which is identified with \mathcal{T}) that hangs from the vertex i.

Some facts about $Aut \mathcal{T}$: II

We define the isomorphism

$$\psi: \mathsf{st}(1) \longrightarrow \operatorname{Aut} \mathcal{T} \times \overset{d}{\cdots} imes \operatorname{Aut} \mathcal{T}$$

 $g \longmapsto (g_1, \dots, g_d)$

for every $g \in st(1)$.

Above, we denoted with g_i the section of g at the vertex i, that is the action of g on the subtree \mathcal{T}_i (which is identified with \mathcal{T}) that hangs from the vertex i.



Digression: this implies that Aut \mathcal{T} contains products Aut $\mathcal{T} \times \cdots \times Aut \mathcal{T}$. • Any $g \in \operatorname{Aut} \mathcal{T}_d$ can be seen as

 $g = h\sigma, \quad \sigma \in \operatorname{Sym}(d), \quad h \in \operatorname{st}(1) \cong \operatorname{Aut} \mathcal{T}_d \times \overset{d}{\ldots} \times \operatorname{Aut} \mathcal{T}_d$

• Any $g \in \operatorname{Aut} \mathcal{T}_d$ can be seen as

 $g = h\sigma, \quad \sigma \in \operatorname{Sym}(d), \quad h \in \operatorname{st}(1) \cong \operatorname{Aut} \mathcal{T}_d imes . \stackrel{d}{\cdot} \cdot imes \operatorname{Aut} \mathcal{T}_d$

In other words, every $f \in \operatorname{Aut} \mathcal{T}_d$ can be written as

$$f=(f_1,\ldots,f_d)a,$$

where $f_i \in Aut \mathcal{T}_d$ and a is rooted corresponding to some permutation $\sigma \in Sym(d)$.

Example

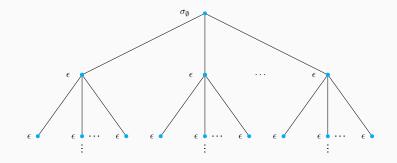
Let $f \in \text{Aut } \mathcal{T}_d$ with $f = (f_1, f_2, \dots, f_d)a$, where $f_i \in \text{Aut } \mathcal{T}_d$ and a is rooted corresponding to σ . If $f_1 = f_2 = \dots = f_d = 1$, then f is rooted.

Example

Let $f \in \text{Aut } \mathcal{T}_d$ with $f = (f_1, f_2, \dots, f_d)a$, where $f_i \in \text{Aut } \mathcal{T}_d$ and a is rooted corresponding to σ . If $f_1 = f_2 = \dots = f_d = 1$, then f is rooted. Do you remember?

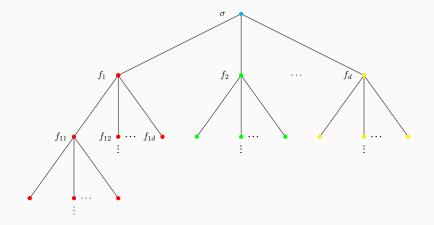
Example

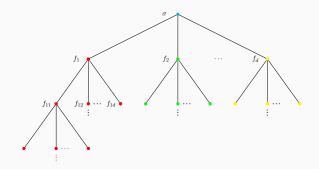
Let $f \in \text{Aut } \mathcal{T}_d$ with $f = (f_1, f_2, \dots, f_d)a$, where $f_i \in \text{Aut } \mathcal{T}_d$ and a is rooted corresponding to σ . If $f_1 = f_2 = \dots = f_d = 1$, then f is rooted. Do you remember?

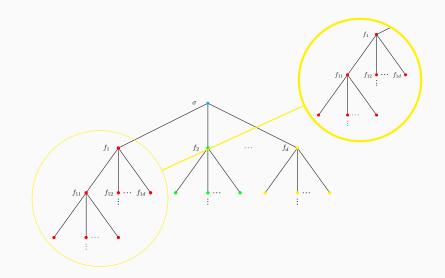


Let $f \in \operatorname{Aut} \mathcal{T}_d$ with $f = (f_1, f_2, \dots, f_d)a$, where $f_i \in \operatorname{Aut} \mathcal{T}_d$ and a is rooted corresponding to σ .

Let $f \in \operatorname{Aut} \mathcal{T}_d$ with $f = (f_1, f_2, \dots, f_d)a$, where $f_i \in \operatorname{Aut} \mathcal{T}_d$ and a is rooted corresponding to σ .





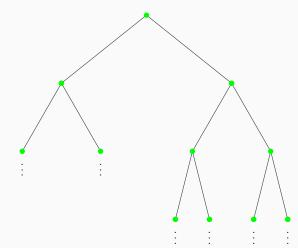


If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.

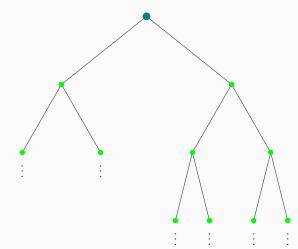
If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

$$b = (1, b)a.$$



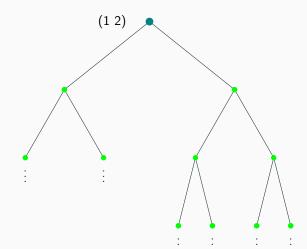
If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

$$b = (1, b)a.$$



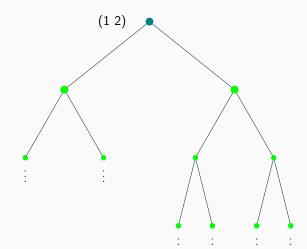
If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1, b)a.



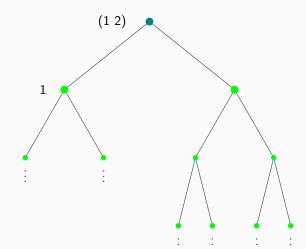
If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1, b)a.



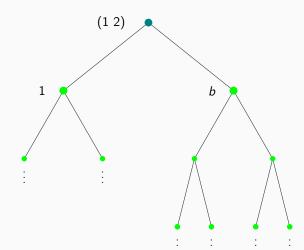
If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1, b)a.



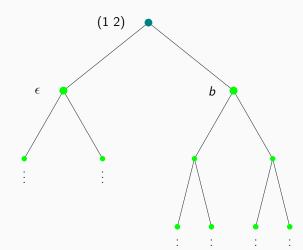
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



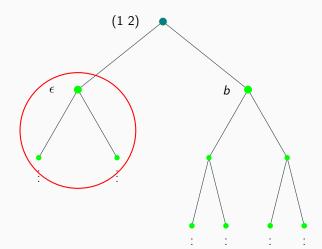
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



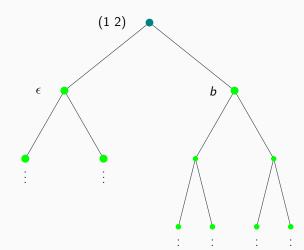
If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1, b)a.



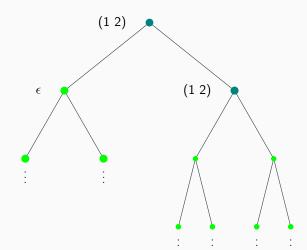
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



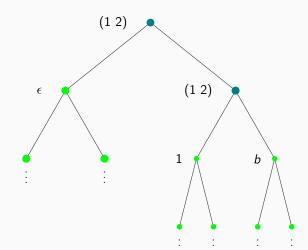
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



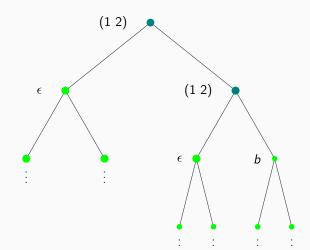
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



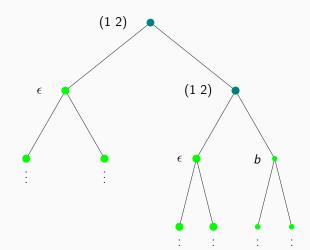
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



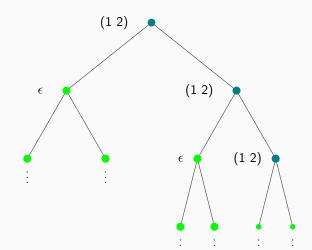
If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

b = (1, b)a.



If \mathcal{T}_2 is the binary tree and ${\it a}$ is rooted corresponding to (1 2), let

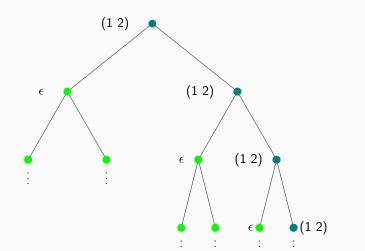
b = (1, b)a.



If \mathcal{T}_2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1, b)a.

How does *b* act on \mathcal{T}_2 ?



23

If \mathcal{T}_7 is the 7-adic tree and *a* is rooted corresponding to (1 2 3 4 5 6 7), let

$$b = (a, a^{-1}, a^2, 1, 1, 1, b)a.$$

If \mathcal{T}_7 is the 7-adic tree and *a* is rooted corresponding to (1 2 3 4 5 6 7), let

$$b = (a, a^{-1}, a^2, 1, 1, 1, b)a.$$

• Branch groups were introduced by Grigorchuk in 1997.

- Branch groups were introduced by Grigorchuk in 1997.
- Recall that in the full group of automorphisms we have

$$\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T},$$

since $\psi_n : \operatorname{st}(n) \longrightarrow \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}$ is an isomorphism.

- Branch groups were introduced by Grigorchuk in 1997.
- Recall that in the full group of automorphisms we have

$$\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T},$$

since $\psi_n : \operatorname{st}(n) \longrightarrow \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}$ is an isomorphism.

• If $G \leq \operatorname{Aut} \mathcal{T}$, we have

$$\psi_n : \operatorname{st}_G(n) \longrightarrow \psi_n(\operatorname{st}_G(n)),$$

where $\psi_n(\operatorname{st}_G(n))$ need not be a direct product.

- Branch groups were introduced by Grigorchuk in 1997.
- Recall that in the full group of automorphisms we have

$$\operatorname{st}(n) \simeq \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T},$$

since $\psi_n : \operatorname{st}(n) \longrightarrow \operatorname{Aut} \mathcal{T} \times \stackrel{d^n}{\cdots} \times \operatorname{Aut} \mathcal{T}$ is an isomorphism.

• If $G \leq \operatorname{Aut} \mathcal{T}$, we have

$$\psi_n : \operatorname{st}_G(n) \longrightarrow \psi_n(\operatorname{st}_G(n)),$$

where $\psi_n(\operatorname{st}_G(n))$ need not be a direct product.

 The question is: given G ≤ Aut T, can we find for every n ∈ N a subgroup (eventually of finite index) of st_G(n) which is a direct product?

Rigid stabilizers

The *rigid stabilizer* of the vertex u is

 $\mathsf{rst}_G(u) = \{g \in G : g \text{ fixes all vertices outside } \mathcal{T}_u\}$

n-th level

Rigid stabilizers

The *rigid stabilizer* of the vertex u is

 $\mathsf{rst}_G(u) = \{g \in G : g \text{ fixes all vertices outside } \mathcal{T}_u\}$

The *rigid stabilizer* of the *n*th level is $rst_G(n) = \prod_{u \in X^n} rst_G(u)$.

• If G is the whole $\operatorname{Aut} \mathcal{T}$ then the rigid stabilizer coincides with the *n*th level stabilizer.

- If G is the whole $\operatorname{Aut} \mathcal{T}$ then the rigid stabilizer coincides with the *n*th level stabilizer.
- And if $G \leq \operatorname{Aut} \mathcal{T}$?

- If G is the whole $\operatorname{Aut} \mathcal{T}$ then the rigid stabilizer coincides with the *n*th level stabilizer.
- And if $G \leq \operatorname{Aut} \mathcal{T}$?
- $\bullet\,$ Bad news: this is not usually the case for arbitrary subgroups of $\operatorname{Aut}\mathcal{T}.$

- If G is the whole Aut T then the rigid stabilizer coincides with the *n*th level stabilizer.
- And if $G \leq \operatorname{Aut} \mathcal{T}$?
- $\bullet\,$ Bad news: this is not usually the case for arbitrary subgroups of $\operatorname{Aut}\mathcal{T}.$
- Good news: in some cases, there exist "nice" rigid stabilizers.

- If G is the whole Aut T then the rigid stabilizer coincides with the *n*th level stabilizer.
- And if $G \leq \operatorname{Aut} \mathcal{T}$?
- $\bullet\,$ Bad news: this is not usually the case for arbitrary subgroups of $\operatorname{Aut}\mathcal{T}.$
- Good news: in some cases, there exist "nice" rigid stabilizers.
- Informally speaking: the subgroup ψ_n(rst_G(n)) is the largest subgroup of ψ_n(st_G(n)) which is a "geometric" direct product.

Let $G \leq \operatorname{Aut} \mathcal{T}$ a spherically transitive group (a group that acts transitively on each level of \mathcal{T}).

Let $G \leq \operatorname{Aut} \mathcal{T}$ a spherically transitive group (a group that acts transitively on each level of \mathcal{T}). Digression: It is true that a spherically transitive group cannot be finite? Think about it :)

• We say that G is a branch group if for all $n \ge 1$, the index of the rigid *n*th level stabilizer in G is finite. In other words, for all $n \ge 1$,

 $|G: \operatorname{rst}_G(n)| < \infty.$

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,
 |G: rst_G(n)| < ∞.
- We say that *G* is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,
 |G: rst_G(n)| < ∞.
- We say that *G* is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,
 |G: rst_G(n)| < ∞.
- We say that *G* is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.
- These groups try to approximate the behaviour of the full group Aut T, where rst(n) = st(n) is as large as possible.

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,
 |G: rst_G(n)| < ∞.
- We say that *G* is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.
- These groups try to approximate the behaviour of the full group Aut \mathcal{T} , where rst(n) = st(n) is as large as possible.
- The most important families of subgroups of Aut \mathcal{T} consist almost entirely of (weakly) branch groups.

- We say that G is a branch group if for all n ≥ 1, the index of the rigid nth level stabilizer in G is finite. In other words, for all n ≥ 1,
 |G: rst_G(n)| < ∞.
- We say that *G* is a weakly branch group if all of its rigid vertex stabilizers are nontrivial for every vertex of the tree.
- Branch \longrightarrow weakly branch.
- These groups try to approximate the behaviour of the full group Aut \mathcal{T} , where rst(n) = st(n) is as large as possible.
- The most important families of subgroups of Aut \mathcal{T} consist almost entirely of (weakly) branch groups.
- The first Grigorchuk group is a branch group.

Let $G \leq \operatorname{Aut} \mathcal{T}$.

 A group G is said to be *self-similar* if taken g = (g₁,...,g_d)σ ∈ G we have g_i ∈ G for any i = {1,...,d}. Let $G \leq \operatorname{Aut} \mathcal{T}$.

- A group G is said to be *self-similar* if taken g = (g₁,...,g_d)σ ∈ G we have g_i ∈ G for any i = {1,...,d}.
- Example: Aut \mathcal{T} is self-similar, the first Grigorchuk is self-similar.

Let $G \leq \operatorname{Aut} \mathcal{T}$.

- A group G is said to be *self-similar* if taken g = (g₁,...,g_d)σ ∈ G we have g_i ∈ G for any i = {1,...,d}.
- Example: Aut ${\mathcal T}$ is self-similar, the first Grigorchuk is self-similar.
- Non-example: The group G = ⟨a, b⟩, where a = (b, c)σ and c ∉ G, then G is not self-similar.

Regular branch groups

Let G be a self-similar group. We say that G is a *regular branch* if there exists a subgroup K of $st_G(1)$ of finite index such that

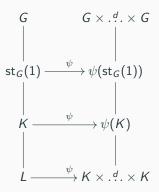
 $\psi(K) \supseteq K \times \stackrel{d}{\ldots} \times K.$

Regular branch groups

Let G be a self-similar group. We say that G is a *regular branch* if there exists a subgroup K of $st_G(1)$ of finite index such that

 $\psi(K) \supseteq K \times \stackrel{d}{\ldots} \times K.$

More precisely we have this situation:



- We say that G is a weakly regular branch group if K has infinite index in G.
- If we want to emphasize the subgroup K, we say that G is (weakly) regular branch over K.

- We say that G is a weakly regular branch group if K has infinite index in G.
- If we want to emphasize the subgroup K, we say that G is (weakly) regular branch over K.
- Regular branch \longrightarrow branch.

Next lecture

Next week we will present the following groups of automorphisms of rooted trees together with their main properties:

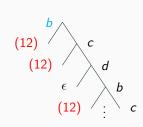
- The Grigorchuk groups
- The GGS-groups
- The Basilica group
- The Hanoi Tower group

I am sure I was too quick, so there is still time

 $\Gamma = \langle a, b, c, d \rangle$ $a = (1, 1)(12) \qquad b = (a, c) \qquad c = (a, d) \qquad d = (1, b)$

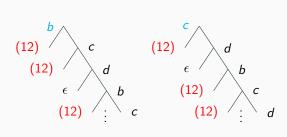
 $\Gamma = \langle a, b, c, d \rangle$

$$a = (1,1)(12)$$
 $b = (a,c)$ $c = (a,d)$ $d = (1,b)$



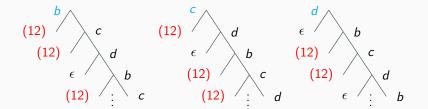
 $\Gamma = \langle a, b, c, d \rangle$

$$a = (1,1)(12)$$
 $b = (a,c)$ $c = (a,d)$ $d = (1,b)$



 $\Gamma = \langle a, b, c, d \rangle$

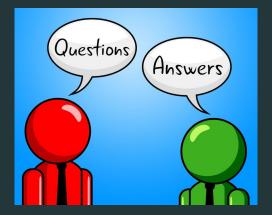
a = (1,1)(12) b = (a,c) c = (a,d) d = (1,b)



Some properties of $\ensuremath{\mathsf{\Gamma}}$

29th of October

Ü



Thank you :)