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Introduction



Motivation: famous problems in group theory

• Milnor’s Problem =⇒ growth of a group.

• General Burnside Problem =⇒ finiteness properties of a group.
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Some facts (no spoiler: see Alex’s talk) about growth of groups

• Free groups of finite rank k > 1: exponential growth.

• Fundamental group π1(M) of a closed negatively curved

Riemannian manifold: exponential growth.

• Finite groups: polynomial growth (of degree 0).

• (Gromov, 1981) A group is virtually nilpotent if and only if it

has polynomial growth.

Milnor’s question (1960):

Are there groups of intermediate growth between polynomial and

exponential?

Grigorchuk’s answer (1980):

Yes, the first . . . Grigorchuk group.
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About the General Burnside Problem

A still undecided point in the theory of discontinuous groups is

whether the order of a group may be not finite, while the order of

every operation it contains is finite.

W. Burnside (1902)

In modern terminology the general Burnside problem asks:

can a finitely generated periodic group be finite?
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Are finitely generated periodic groups finite?

• Yes, for nilpotent groups.

• Yes, finitely generated periodic subgroups of the general linear

group of degree n > 1 over the complex field.

• Yes, . . . for many other classes of groups.

• Counterexample: the first Grigorchuk group.
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To summarize

It seems that:

Milnor’s question
⋂

General Burnside Problem

= the first Grigorchuk group, . . .
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Automorphisms of regular rooted

trees



Regular rooted trees
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Seriously: the regular rooted tree Td
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Regular rooted trees

• The tree is infinite.

• The root is a distinguished (fixed) vertex.

• Regular: the number of descendants is the same at every level.

• A vertex is a word in the alphabet X = {1, . . . , d}.

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

∅

1 2 d

11 12 1d 21 22 2d d1 d2 dd

· · ·

• X n denotes the nth level of the tree. 9



Automorphisms of rooted trees

Automorphisms of Td
Bijections of the vertices that preserve incidence.

∅

u

f

v

f

∅

f (u)

f (v)

f
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Aut Td

The set Aut Td of all automorphisms of Td is a group with respect

to composition between functions.

Sometimes we write T for Td , and, consequently, Aut T for Aut Td .

11



A subgroup of Aut T : the stabilizer

n-th level

• The nth level stabilizer st(n) fixes all vertices up to level n.

• If H ≤ Aut T , we define stH(n) = H ∩ st(n).
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The stabilizer

• Stabilizers are normal subgroups of the given group.

• There is a chain of subgroups of Aut T

Aut T ⊇ st(1) ⊇ st(2) ⊇ · · · ⊇ st(n) ⊇ . . .

where
⋂

n∈N st(n) = 1.

• Hence Aut T is a residually finite group (i.e. a group in which

the intersection of all its normal subgroups of finite index is

trivial).
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Describing elements of Aut T

An automorphism f ∈ Aut Td can be represented by writing in

each vertex v a permutation σv ∈ Sym(d) which represents the

action of f on the descendants of v .

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ∅

σ1 σ2 σd

σ11 σ12 σ1d σ21 σ22 σ2d σd1 σd2 σdd

· · ·

We say that σv ∈ Sym(d) is the label of f at the vertex v . The set

of all labels is the portrait of f .
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Describing elements of Aut T

The simplest type are rooted automorphisms: given σ ∈ Sym(d),

they simply permute the d subtrees hanging from the root

according to σ.

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ∅

ε ε ε

ε ε ε ε ε ε ε ε ε

· · ·

We denote with ε the identity element of Sym(d).

15



Example of a rooted automorphism

Let T3 be the ternary tree, and a the rooted automorphism

corresponding to the cycle σ = (1 2 3).

σ

ε ε ε

ε ε ε ε ε ε ε ε ε

...
...

...

...
...

...

Note: sometimes we will identify a with σ.
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Some facts about Aut T : I

We have Aut T ∼= st(1) o Sym(d). Why?

Intuitively: take f ∈ st(1), and σ ∈ Sym(d).

ε

· · ·

...

...
...

...

σ

· · ·

ε ε ε...

...
...

...
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Some facts about Aut T : II

We define the isomorphism

ψ : st(1) −→ Aut T × d· · · × Aut T
g 7−→ (g1, . . . , gd)

for every g ∈ st(1).

Above, we denoted with gi the section of g at the vertex i , that is

the action of g on the subtree Ti (which is identified with T ) that

hangs from the vertex i .

u

T

Digression: this implies that Aut T contains products

Aut T × · · · × Aut T .
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I + II = Describing elements of Aut T

• Any g ∈ Aut Td can be seen as

g = hσ, σ ∈ Sym(d), h ∈ st(1) ∼= Aut Td × d. . .× Aut Td

In other words, every f ∈ Aut Td can be written as

f = (f1, . . . , fd)a,

where fi ∈ Aut Td and a is rooted corresponding to some

permutation σ ∈ Sym(d).
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Example

Let f ∈ Aut Td with f = (f1, f2, . . . , fd)a, where fi ∈ Aut Td and a

is rooted corresponding to σ. If f1 = f2 = · · · = fd = 1, then f is

rooted. Do you remember?

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ∅

ε ε ε

ε ε ε ε ε ε ε ε ε

· · ·
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Example: General Case

Let f ∈ Aut Td with f = (f1, f2, . . . , fd)a, where fi ∈ Aut Td and a

is rooted corresponding to σ.

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

· · ·
...

σ

f1 f2 fd

f11 f12 f1d

...

· · ·

· · ·
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Example: General Case
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· · ·

· · ·
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Example (another!)

If T2 is the binary tree and a is rooted corresponding to (1 2), let

b = (1, b)a.

How does b act on T2?

(1 2)

1 bε (1 2)

1 bε (1 2)

(1 2)ε

...
...

...
...

...
...
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Exercise

If T7 is the 7-adic tree and a is rooted corresponding to

(1 2 3 4 5 6 7), let

b = (a, a−1, a2, 1, 1, 1, b)a.

How does b act on T7?
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Branch groups



Introduction

• Branch groups were introduced by Grigorchuk in 1997.

• Recall that in the full group of automorphisms we have

st(n) ' Aut T × dn

· · · × Aut T ,

since ψn : st(n) −→ Aut T × dn

· · · × Aut T is an isomorphism.

• If G ≤ Aut T , we have

ψn : stG (n) −→ ψn(stG (n)),

where ψn(stG (n)) need not be a direct product.

• The question is: given G ≤ Aut T , can we find for every

n ∈ N a subgroup (eventually of finite index) of stG (n) which

is a direct product?
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Rigid stabilizers

The rigid stabilizer of the vertex u is

rstG (u) = {g ∈ G : g fixes all vertices outside Tu}

n-th level

The rigid stabilizer of the nth level is rstG (n) =
∏

u∈X n rstG (u).
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About the “question”

• If G is the whole Aut T then the rigid stabilizer coincides with

the nth level stabilizer.

• And if G ≤ Aut T ?

• Bad news: this is not usually the case for arbitrary subgroups

of Aut T .

• Good news: in some cases, there exist “nice” rigid stabilizers.

• Informally speaking: the subgroup ψn(rstG (n)) is the largest

subgroup of ψn(stG (n)) which is a “geometric” direct product.
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Branch groups

Let G ≤ Aut T a spherically transitive group (a group that acts

transitively on each level of T ). Digression: It is true that a

spherically transitive group cannot be finite? Think about it :)

• We say that G is a branch group if for all n ≥ 1, the index of

the rigid nth level stabilizer in G is finite. In other words, for

all n ≥ 1,

|G : rstG (n)| <∞.

• We say that G is a weakly branch group if all of its rigid

vertex stabilizers are nontrivial for every vertex of the tree.

• Branch −→ weakly branch.

• These groups try to approximate the behaviour of the full

group Aut T , where rst(n) = st(n) is as large as possible.

• The most important families of subgroups of Aut T consist

almost entirely of (weakly) branch groups.

• The first Grigorchuk group is a branch group.
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More definitions: Self-similar groups

Let G ≤ Aut T .

• A group G is said to be self-similar if taken

g = (g1, . . . , gd)σ ∈ G we have gi ∈ G for any i = {1, . . . , d}.
• Example: Aut T is self-similar, the first Grigorchuk is

self-similar.

• Non-example: The group G = 〈a, b〉, where a = (b, c)σ and

c /∈ G , then G is not self-similar.
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Regular branch groups

Let G be a self-similar group. We say that G is a regular branch if

there exists a subgroup K of stG (1) of finite index such that

ψ(K ) ⊇ K × d. . .× K .

More precisely we have this situation:

G G × d. . .× G

stG (1)
ψ
// ψ(stG (1))

K
ψ

// ψ(K )

L
ψ
// K × d. . .× K
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Regular branch groups

• We say that G is a weakly regular branch group if K has

infinite index in G .

• If we want to emphasize the subgroup K , we say that G is

(weakly) regular branch over K .

• Regular branch −→ branch.
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Next lecture



Examples of (weakly) branch groups

Next week we will present the following groups of automorphisms

of rooted trees together with their main properties:

• The Grigorchuk groups

• The GGS-groups

• The Basilica group

• The Hanoi Tower group
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I am sure I was too quick, so there is still time . . . .
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The first Grigorchuk group (finally!)

Γ = 〈a, b, c , d〉

a = (1, 1)(12) b = (a, c) c = (a, d) d = (1, b)

b

(12) c

(12) d

ε b

(12) c...

c

(12) d

ε b

(12) c

(12) d...

d

ε b

(12) c

(12) d

ε b...
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Some properties of Γ

29th of October

¨̂
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Thank you :)
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