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Last week.

• Maps of graphs ↔ subgroups of free groups.

• Number of generators, subgroup membership problem,
normality, index, intersection, malnormality...

• Immersions “are” subgroups.

• Finite coverings correspond to finite index subgroups.

• However, coverings are useless for infinite-index subgroups!

This week.

• Foldings take a subgroup and produce an immersion.

• Immersions are brilliant for infinite-index subgroups!
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Folding (formal)

f : Γ→ ∆ a graph, e1, e2 ∈ EΓ such that:

1 ι(e1) = ι(e2)

2 f (e1) = f (e2)

then

1 f folds e1 and e2,

2 f factors through the graph Γ/[e1 = e2] obtained by
identifying τ(e1) with τ(e2) and e1 with e2.

Therefore, if Γ is a finite graph then f factors as

Γ = Γ0 → Γ1 → · · · → Γn︸ ︷︷ ︸
folds

f ′−−−−−−−−→︸ ︷︷ ︸
immersion

∆

The immersion f ′ : Γn → ∆ is unique.

Note. Folding maps are π1-surjective.
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Foldings correspond to subgroups

Theorem 4.

Let ∆ be a connected graph, v ∈ V∆ a vertex, and H ≤ π1(∆, v)
a finitely generated subgroup. Then there exists an immersion
f : Γ→ ∆ where Γ is connected, u ∈ VΓ a vertex with f (u) = v ,
and f π1(Γ, u) = H.

Proof.

Proof is constructive/algorithmic:

1 Input: a finite generating set {α1, . . . , αn} for H.

2 Form the map of graphs corresponding to the directed graph
with central vertex w and loops p1, . . . , pn, where pi has label
αi .

3 Fold.

4 The resulting map of graphs is an immersion, with image H.
(Image is H as folds are π1-surjective.)
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Example of folding

Let H = 〈ba−1, abc, c〉.
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Application 1: preliminaries to M. Hall’s theorem

Let Γ be a graph, v ∈ V a vertex, T ⊂ Γ a spanning tree of Γ.
Clearly, for each edge ei ∈ Γ \ T there exist reduced paths
pi , qi ⊂ T such that pieiqi is a loop at v .

Theorem 5.

The set [pieiqi ] forms a basis for π1(Γ, v).

Proof.
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Application 1: more preliminaries to M. Hall’s theorem

As the set [pieiqi ] forms a basis for π1(Γ, v), we have:

Corollary 6.

π1(Γ, v) has rank |EΓ| − |ET | = |EΓ| − |VΓ|+ 1.

Proof.

Corollary 7 (Subgraphs “are” free factors).

Let Σ be a subgraph of Γ, and let v ∈ VΣ ∩ VΓ. Then π1(Σ, v) is
a free factor of π1(Γ, v).

Proof.
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Application 1: M. Hall’s theorem

Theorem 8 (M. Hall’s theorem).

Let F be a f.g. free group, H a f.g. subgroup. Then there exists
K ≤ F with finite index such that K = K ′ ∗ H.

Proof.
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Pullbacks of immersions represent intersection

Pullback: Γ3 ⊆ Γ1× Γ2 with VΓ3 = {(u1, u2) | f1(u1) = f2(u2)}&

EΓ3 = {(e1, e2) | f1(e1) = f2(e2)}.

Theorem 9.

Let fi : Γi → ∆, i = 1, 2, be immersions and let

Γ3 Γ1

Γ2 ∆

g1

g2 f1

f2

be their pullback diagram. Let v1 ∈ Γ1, v2 ∈ Γ2 be such that
f1(v1) = w = f2(v2); let v3 be the corresponding vertex in Γ3.
Define f3 = f1g1 = f2g2 : Γ3 → ∆, and define

Si = fiπ1(Γi , vi ) i = 1, 2, 3.

(These are subgroups of π1(∆,w).)
Then

S3 = S1 ∩ S2.
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Application 2: Howson’s theorem

Theorem 10 (Howson’s theorem).

Let H,K be f.g. subgroups of a free group F . Then H ∩ K is
finitely generated (and a free basis of H ∩ K can be determines by
an easy algorithm).

Proof.

1 Use the folding algorithm to find immersions f1 : Γ1 → ∆ and
f2 : Γ2 → ∆ representing H and K respectively.

2 Consider the pullback map f3 : Γ3 → ∆.

3 Then H ∩ K = f3π1(Γ3, v3) is finitely generated as Γ3 is a
finite graph.

4 Construction of pullback is algorithmic.

5 A basis B for π1(Γ3, v3) is found via Theorem 5.

6 f3(B) is a basis for H ∩ K .
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Application 3: On the Hanna Neumann Conjecture

Hanna Neumann conjecture/Friedman–Mineyev theorem

rank(H ∩ K )− 1 ≤ (rank(H)− 1)(rank(K )− 1)

Theorem 11 (Tardos, 1992).

Let H,K ≤ F with rank(H) = 2. Then:

rank(H ∩ K ) ≤ rank(K )

Proof.

The branching number of Γ is:
b(Γ) = #{vertices of degree ≥ 3}+ #{vertices of degree 4}.
For Γ connected, rank(Γ) = b(Γ)/2 + 1.
If Γ is not a tree, then core(Γ) is the minimal subgraph of Γ
containing every loop in Γ. So prove:
Let fi : Γi → ∆, i = 1, 2, immersions of connected graphs,
core(Γi ) = Γi and b(∆) = b(Γ1) = 2. Then

b(core(Γ1 × Γ2)) ≤ b(Γ2).
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Summary

• Maps of graphs ↔ subgroups of free groups.

• Number of generators, subgroup membership problem,
normality, index, intersection, malnormality...

• Immersions ���“are” correspond to subgroups (via foldings).

• Finite coverings correspond to finite index subgroups.

Easy proofs of interesting theorems:

• M. Hall’s theorem: f.g. subgroups are free factors of finite
index subgroups.

• Howson’s theorem: intersections of f.g. subgroups are f.g.
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