Introduction to Growth in Groups Part II: Formal power series

Alex Evetts
Erwin Schrödinger Institute / University of Vienna

26/11/2020

LAST WEEK

Word length

The word length of $g \in G$ with respect to S is the length of a shortest word representing g :

$$
|g|_{s}=\min \left\{|w| \mid w \in S^{*}, w=G g\right\}
$$

LASt WEEK

Word length

The word length of $g \in G$ with respect to S is the length of a shortest word representing g :

$$
|g| s=\min \left\{|w| \mid w \in S^{*}, w={ }_{G} g\right\}
$$

Definition

The strict growth function $\sigma_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s}=n\right\}$, and the cumulative growth function $\beta_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s} \leq n\right\}$.

LAST WEEK

Conjugacy classes

Define the length of a conjugacy class κ of G with respect to S to be the length of a shortest word representing κ :

$$
|\kappa|_{S}=\min \left\{|w| \mid w \in S^{*}, \bar{w} \in \kappa\right\}=\min \left\{|g|_{S} \mid g \in \kappa\right\}
$$

LASt WEEK

Conjugacy Classes

Define the length of a conjugacy class κ of G with respect to S to be the length of a shortest word representing κ :

$$
|\kappa|_{S}=\min \left\{|w| \mid w \in S^{*}, \bar{w} \in \kappa\right\}=\min \left\{|g|_{S} \mid g \in \kappa\right\}
$$

Definition

The strict conjugacy growth function $s_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S}=n\right\}$, and the cumulative conjugacy growth function $c_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S} \leq n\right\}$.

Standard vs Conjugacy growth

	Standard	Conjugacy
Group invariant	Yes	Yes
Quasi-Isometry Invariant	Yes	No
Polynomial growth	n^{d} for $d \in \mathbb{N}$	"anything"

Standard vs Conjugacy growth

	Standard	Conjugacy
Group invariant	Yes	Yes
Quasi-Isometry Invariant	Yes	No
Polynomial growth	n^{d} for $d \in \mathbb{N}$	"anything"

- For any group $G, c_{G}(n) \preccurlyeq \beta_{G}(n)$.
- If G is abelian then $c_{G}(n) \sim \beta_{G}(n)$ (converse does not hold).

Growth series

Suppose we have some growth function γ for a group G and generating set S.

Growth series

Suppose we have some growth function γ for a group G and generating set S.

DEFINITION

The (standard/conjugacy/etc.) growth series of G with respect to S is the formal power series

$$
\mathbb{S}(z):=\sum_{n=0}^{\infty} \gamma(n) z^{n} .
$$

Algebraic complexity

A formal power series $\mathbb{S}(z)$ is called

- rational if there exist polynomials P, Q with integer coefficients such that $\mathbb{S}(z)=\frac{P(z)}{Q(z)} ;$
- algebraic if $\mathbb{S}(z)$ satisfies a polynomial equation with polynomial coefficients;
- holonomic (a.k.a. D-finite) if $\mathbb{S}(z)$ satisfies a finite order differential equation, with polynomial coefficients;
- transcendental if it is not algebraic.

Algebraic complexity

A formal power series $\mathbb{S}(z)$ is called

- rational if there exist polynomials P, Q with integer coefficients such that $\mathbb{S}(z)=\frac{P(z)}{Q(z)} ;$
- algebraic if $\mathbb{S}(z)$ satisfies a polynomial equation with polynomial coefficients;
- holonomic (a.k.a. D-finite) if $\mathbb{S}(z)$ satisfies a finite order differential equation, with polynomial coefficients;
- transcendental if it is not algebraic.

Question: Into which classes do the various growth functions fall?

Examples

- Standard growth of F_{2}, with respect to a basis: $\sigma(n)=4 \cdot 3^{n-1}$ for $n \geq 1$

$$
\mathbb{S}(z)=1+\sum_{n \geq 1} 4 \cdot 3^{n-1} z^{n}=1+\frac{4}{3} \sum_{n \geq 1}(3 z)^{n}=\frac{1-2 z}{1-3 z}
$$

Examples

- Standard growth of F_{2}, with respect to a basis: $\sigma(n)=4 \cdot 3^{n-1}$ for $n \geq 1$

$$
\mathbb{S}(z)=1+\sum_{n \geq 1} 4 \cdot 3^{n-1} z^{n}=1+\frac{4}{3} \sum_{n \geq 1}(3 z)^{n}=\frac{1-2 z}{1-3 z}
$$

- Standard (and conjugacy) growth of \mathbb{Z}^{2} with respect to $\{(1,0),(0,1)\}$: $\sigma(n)=4 n$ for $n \geq 1$

$$
\mathbb{S}(z)=1+\sum_{n \geq 1}(4 n) z^{n}=\frac{(1+z)^{2}}{(1-z)^{2}}
$$

Rational growth

Rational growth reflects a strong 'regularity' property:

Proposition

A series $\mathbb{S}(z)=\sum \gamma(n) z^{n} \in \mathbb{Z}[[z]]$ is rational if and only if $\gamma(n)$ satisfies a linear recurrence relation: $\gamma(n)=a_{1} \gamma(n-1)+\cdots a_{k} \gamma(n-k)$ for $a_{i} \in \mathbb{Q}$.

Rational growth

Rational growth reflects a strong 'regularity' property:

Proposition

A series $\mathbb{S}(z)=\sum \gamma(n) z^{n} \in \mathbb{Z}[[z]]$ is rational if and only if $\gamma(n)$ satisfies a linear recurrence relation: $\gamma(n)=a_{1} \gamma(n-1)+\cdots a_{k} \gamma(n-k)$ for $a_{i} \in \mathbb{Q}$.

Proof By Example

Let $\gamma(0)=\gamma(1)=1$ and $\gamma(n)=\gamma(n-1)+\gamma(n-2)$ for $n \geq 2$.

Rational growth

Rational growth reflects a strong 'regularity' property:

Proposition

A series $\mathbb{S}(z)=\sum \gamma(n) z^{n} \in \mathbb{Z}[[z]]$ is rational if and only if $\gamma(n)$ satisfies a linear recurrence relation: $\gamma(n)=a_{1} \gamma(n-1)+\cdots a_{k} \gamma(n-k)$ for $a_{i} \in \mathbb{Q}$.

Proof By ExAmple

Let $\gamma(0)=\gamma(1)=1$ and $\gamma(n)=\gamma(n-1)+\gamma(n-2)$ for $n \geq 2$.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \gamma(n) z^{n} & =1+z+\sum_{n=2}^{\infty}(\gamma(n-1)+\gamma(n-2)) z^{n} \\
& =1+z \sum_{n=0}^{\infty} \gamma(n) z^{n}+z^{2} \sum_{n=0}^{\infty} \gamma(n) z^{n} \\
\sum_{n=0}^{\infty} \gamma(n) z^{n} & =\frac{1}{1-z-z^{2}}
\end{aligned}
$$

Fun with generating functions

Product formula: For any functions f, g, we have:

$$
\sum_{n=0}^{\infty} f(n) z^{n} \cdot \sum_{n=0}^{\infty} g(n) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} f(k) g(n-k) z^{n}
$$

Fun with generating functions

Product formula: For any functions f, g, we have:

$$
\sum_{n=0}^{\infty} f(n) z^{n} \cdot \sum_{n=0}^{\infty} g(n) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} f(k) g(n-k) z^{n}
$$

Set $f(n)=1$ and $g(n)=\sigma(n)$, the strict growth function:

$$
\frac{1}{1-z} \sum_{n=0}^{\infty} \sigma(n) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \sigma(n-k) z^{n}=\sum_{n=0}^{\infty} \beta(n) z^{n} .
$$

Fun with generating functions

Product formula: For any functions f, g, we have:

$$
\sum_{n=0}^{\infty} f(n) z^{n} \cdot \sum_{n=0}^{\infty} g(n) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} f(k) g(n-k) z^{n}
$$

Set $f(n)=1$ and $g(n)=\sigma(n)$, the strict growth function:

$$
\frac{1}{1-z} \sum_{n=0}^{\infty} \sigma(n) z^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \sigma(n-k) z^{n}=\sum_{n=0}^{\infty} \beta(n) z^{n}
$$

Proposition

The algebraic complexity of the cumulative (conjugacy) growth series is the same as that of the strict (conjugacy) growth series.

A Restriction on asymptotics

Proposition

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

A Restriction on asymptotics

Proposition

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

A Restriction on asymptotics

Proposition

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF
We can write

$$
\mathbb{S}(z)=\frac{p(z)}{q(z)}=p^{\prime}(z) \prod_{i=1}^{k} \frac{1}{1-\alpha_{i} z}, \alpha_{i} \in \mathbb{C} .
$$

A Restriction on asymptotics

Proposition

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

We can write

$$
\mathbb{S}(z)=\frac{p(z)}{q(z)}=p^{\prime}(z) \prod_{i=1}^{k} \frac{1}{1-\alpha_{i} z}, \alpha_{i} \in \mathbb{C} .
$$

If there is a pole inside the unit disc, have some $\left|\alpha_{i}\right|>1$. This gives exponential growth.
Otherwise, can show the growth is at most polynomial (hint: use the product formula).

A Restriction on asymptotics

Proposition

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

We can write

$$
\mathbb{S}(z)=\frac{p(z)}{q(z)}=p^{\prime}(z) \prod_{i=1}^{k} \frac{1}{1-\alpha_{i} z}, \alpha_{i} \in \mathbb{C} .
$$

If there is a pole inside the unit disc, have some $\left|\alpha_{i}\right|>1$. This gives exponential growth.
Otherwise, can show the growth is at most polynomial (hint: use the product formula).

Corollary

If G has intermediate (conjugacy) growth, it cannot have rational (conjugacy) growth series.

Combination theorems

Suppose $G=\langle S\rangle, H=\langle T\rangle$.

Combination theorems

Suppose $G=\langle S\rangle, H=\langle T\rangle$.
Then S and T both embed into $G \times H$ and into $G * H$.

Combination theorems

Suppose $G=\langle S\rangle, H=\langle T\rangle$.
Then S and T both embed into $G \times H$ and into $G * H$.
And $S \cup T \subset G \times H$, and $S \cup T \subset G * H$ are generating sets.

Combination theorems

Suppose $G=\langle S\rangle, H=\langle T\rangle$.
Then S and T both embed into $G \times H$ and into $G * H$.
And $S \cup T \subset G \times H$, and $S \cup T \subset G * H$ are generating sets.

Theorem

Direct product:

$$
\mathbb{S}_{G \times H, S \cup T}(z)=\mathbb{S}_{G, S}(z) \cdot \mathbb{S}_{H, T}(z)
$$

Free product:

$$
\frac{1}{\mathbb{S}_{G * H, S \cup T}(z)}=\frac{1}{\mathbb{S}_{G, S}(z)}+\frac{1}{\mathbb{S}_{H, T}(z)}-1
$$

Combination theorems

Suppose $G=\langle S\rangle, H=\langle T\rangle$.
Then S and T both embed into $G \times H$ and into $G * H$.
And $S \cup T \subset G \times H$, and $S \cup T \subset G * H$ are generating sets.

Theorem

Direct product:

$$
\mathbb{S}_{G \times H, S \cup T}(z)=\mathbb{S}_{G, S}(z) \cdot \mathbb{S}_{H, T}(z)
$$

Free product:

$$
\frac{1}{\mathbb{S}_{G * H, S \cup T}(z)}=\frac{1}{\mathbb{S}_{G, S}(z)}+\frac{1}{\mathbb{S}_{H, T}(z)}-1
$$

In particular, if G and H have rational growth series, then so do $G \times H$ and $G * H$.

DECISION PROBLEMS

Max Dehn, 1912.

- Word problem: For a given presentation $G=\langle S \mid R\rangle$, is there an algorithm to decide whether a word in S^{*} represents the identity in G ?

DECISION PROBLEMS

Max Dehn, 1912.

- Word problem: For a given presentation $G=\langle S \mid R\rangle$, is there an algorithm to decide whether a word in S^{*} represents the identity in G ?
- Conjugacy problem: Is there an algorithm to decide whether any pair of words in S^{*} represent conjugate elements?

DECISION PROBLEMS

Max Dehn, 1912.

- Word problem: For a given presentation $G=\langle S \mid R\rangle$, is there an algorithm to decide whether a word in S^{*} represents the identity in G ?
- Conjugacy problem: Is there an algorithm to decide whether any pair of words in S^{*} represent conjugate elements?

If the standard (or conjugacy) growth series is holonomic then the word (or conjugacy) problem has a solution.

DECISION PROBLEMS

Max Dehn, 1912.

- Word problem: For a given presentation $G=\langle S \mid R\rangle$, is there an algorithm to decide whether a word in S^{*} represents the identity in G ?
- Conjugacy problem: Is there an algorithm to decide whether any pair of words in S^{*} represent conjugate elements?

If the standard (or conjugacy) growth series is holonomic then the word (or conjugacy) problem has a solution.

Corollary

If G has insoluble word (conjugacy) problem then it has non-holonomic standard (conjugacy) growth.

Growth Series

So the growth series are a useful tool...

Growth Series

So the growth series are a useful tool... but the algebraic complexity is not a group invariant!

Growth Series

So the growth series are a useful tool... but the algebraic complexity is not a group invariant!

Theorem (STOLL, 1996)

The higher Heisenberg groups H_{r} have rational standard growth series with respect to one choice of generating set and transcendental with respect to another.

$$
H_{2}=\left\{\left.\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & 0 & d \\
0 & 0 & 1 & e \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d, e \in \mathbb{Z}\right\}
$$

Growth Series

So the growth series are a useful tool... but the algebraic complexity is not a group invariant!

Theorem (STOLL, 1996)

The higher Heisenberg groups H_{r} have rational standard growth series with respect to one choice of generating set and transcendental with respect to another.

$$
H_{2}=\left\{\left.\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & 0 & d \\
0 & 0 & 1 & e \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d, e \in \mathbb{Z}\right\}
$$

Proof makes use of combination theorems about 'central products'.

What do we know?

In some cases the behaviour is known to be independent of the generators:

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational (Cannon 1984*)	Transcendental (Antolín-Ciobanu 2017)
Virtually abelian	Rational (Benson 1983)	Rational (E. 2019)
Heisenberg H_{1}	Rational (Duchin-Shapiro 2019)	Transcendental (E. 2020)

What do we know?

In some cases the behaviour is known to be independent of the generators:

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational (Cannon 1984^{*})	Transcendental (Antolín-Ciobanu 2017)
Virtually abelian	Rational (Benson 1983)	Rational (E. 2019)
Heisenberg H_{1}	Rational (Duchin-Shapiro 2019)	Transcendental (E. 2020)

Rational standard growth for some generators:

- some automatic groups (Epstein et al 1992),
- soluble Baumslag-Solitar groups $B S(1, k)$ (Collins-Edjvet-Gill 1994),
- and many more.

What do we know?

In some cases the behaviour is known to be independent of the generators:

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational (Cannon 1984*)	Transcendental (Antolín-Ciobanu 2017)
Virtually abelian	Rational (Benson 1983)	Rational (E. 2019)
Heisenberg H_{1}	Rational (Duchin-Shapiro 2019)	Transcendental (E. 2020)

Rational standard growth for some generators:

- some automatic groups (Epstein et al 1992),
- soluble Baumslag-Solitar groups BS $(1, k)$ (Collins-Edjvet-Gill 1994),
- and many more.

Transcendental conjugacy growth for some generators:

- soluble Baumslag-Solitar groups (Ciobanu-E.-Ho 2020),
- some wreath products (Mercier 2016).

Regular languages

A language $L \subset S^{*}$ is called regular if it is accepted by a finite state automaton (a directed, S-labelled graph with nominated start and accept states).

Regular languages

Theorem

The growth series of a regular language L is rational.

Regular languages

Theorem

The growth series of a regular language L is rational.

Proof.

- Let M be the transition matrix of a finite state automaton accepting L.

Regular languages

Theorem

The growth series of a regular language L is rational.

Proof.

- Let M be the transition matrix of a finite state automaton accepting L.
- The number of words in L of length n is given by $s^{T} M^{n}$ a.

Regular languages

Theorem

The growth series of a regular language L is rational.

Proof.

- Let M be the transition matrix of a finite state automaton accepting L.
- The number of words in L of length n is given by $s^{T} M^{n}$ a.
- The growth series is then

$$
\sum_{n \geq 0}\left(s^{T} M^{n} a\right) z^{n}=s^{T}\left(\sum_{n \geq 0}(M z)^{n}\right) a=s^{T}(I-M z)^{-1} a
$$

Regular languages

Theorem

The growth series of a regular language L is rational.

Proof.

- Let M be the transition matrix of a finite state automaton accepting L.
- The number of words in L of length n is given by $s^{T} M^{n}$ a.
- The growth series is then

$$
\sum_{n \geq 0}\left(s^{T} M^{n} a\right) z^{n}=s^{T}\left(\sum_{n \geq 0}(M z)^{n}\right) a=s^{T}(I-M z)^{-1} a
$$

So if we can find a language of geodesic representatives for the elements of G, then the growth series is rational.

EXAMPLE

The language of geodesics in F_{2} with respect to a basis is regular.

Hyperbolic groups - standard growth

Theorem (Cannon)

For a hyperbolic group, with any choice of finite generating set, the language of all geodesics is regular.

Hyperbolic groups - standard growth

Theorem (Cannon)

For a hyperbolic group, with any choice of finite generating set, the language of all geodesics is regular.

Corollary

The standard growth series is rational, with respect to any choice of finite generating set (using a modified counting argument).

Hyperbolic groups - standard growth

Theorem (Cannon)

For a hyperbolic group, with any choice of finite generating set, the language of all geodesics is regular.

Corollary

The standard growth series is rational, with respect to any choice of finite generating set (using a modified counting argument).

This is a consequence of the geometry.

Hyperbolic groups - CONJugacy growth

Theorem (Antolín-Ciobanu 2017)

The conjugacy growth series of a hyperbolic group G is rational if G is virtually cyclic and transcendental otherwise.

Hyperbolic groups - CONJugacy growth

Theorem (Antolín-Ciobanu 2017)

The conjugacy growth series of a hyperbolic group G is rational if G is virtually cyclic and transcendental otherwise.

For any finite generating set, there exist constants A, B, ρ, such that

$$
A \frac{e^{\rho n}}{n} \leq c_{G, S}(n) \leq B \frac{e^{\rho n}}{n}
$$

Hyperbolic groups - CONJugacy growth

Theorem (Antolín-Ciobanu 2017)

The conjugacy growth series of a hyperbolic group G is rational if G is virtually cyclic and transcendental otherwise.

For any finite generating set, there exist constants A, B, ρ, such that

$$
A \frac{e^{\rho n}}{n} \leq c_{G, S}(n) \leq B \frac{e^{\rho n}}{n}
$$

No algebraic series can have these asymptotics (via an analytic combinatorics result of Flajolet).

Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S.

Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S.

- The standard growth series is rational (Benson 1982).

Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S.

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).

Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S.

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).
- Cosets, subgroups, solutions of equations...
(E. 2019, E.-Levine 2020).

Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S.

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).
- Cosets, subgroups, solutions of equations... (E. 2019, E.-Levine 2020).
- The set of all geodesics? Sometimes rational. (Bishop 2020).

Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S.

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).
- Cosets, subgroups, solutions of equations... (E. 2019, E.-Levine 2020).
- The set of all geodesics? Sometimes rational. (Bishop 2020).

Patterns and polyhedral sets

Partition S^{*} into pieces (aka patterns) that behave like subsets of \mathbb{N}^{r}. Reduce to sets of representatives which are 'polyhedral'. Precise form depends on structure of S^{*}, but they produce rational growth series in each case.

Higher Heisenberg groups

Definition

For any positive integer r, define the (higher) Heisenberg group H_{r} as follows:

$$
H_{r}=\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{r}, b_{r} \left\lvert\, \begin{array}{l}
{\left[a_{i}, a_{j}\right]=\left[a_{i}, b_{j}\right]=\left[b_{i}, b_{j}\right]=1 \forall i \neq j} \\
{\left[a_{i}, b_{i}\right]=\left[a_{j}, b_{j}\right] \forall i \neq j} \\
{\left[\left[a_{i}, b_{i}\right], a_{j}\right]=\left[\left[a_{i}, b_{i}\right], b_{j}\right]=1 \forall i, j}
\end{array}\right.\right\rangle .
$$

Higher Heisenberg groups

Definition

For any positive integer r, define the (higher) Heisenberg group H_{r} as follows:

$$
H_{r}=\left\langle a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{r}, b_{r} \left\lvert\, \begin{array}{l}
{\left[a_{i}, a_{j}\right]=\left[a_{i}, b_{j}\right]=\left[b_{i}, b_{j}\right]=1 \forall i \neq j} \\
{\left[a_{i}, b_{i}\right]=\left[a_{j}, b_{j}\right] \forall i \neq j} \\
{\left[\left[a_{i}, b_{i}\right], a_{j}\right]=\left[\left[a_{i}, b_{i}\right], b_{j}\right]=1 \forall i, j}
\end{array}\right.\right\rangle .
$$

$$
H_{2}=\left\{\left.\left(\begin{array}{llll}
1 & a & b & c \\
0 & 1 & 0 & d \\
0 & 0 & 1 & e \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c, d, e \in \mathbb{Z}\right\}
$$

Conjugacy growth

Theorem (Babenko 1989)

The higher Heisenberg groups H_{r} have conjugacy growth

$$
c_{H_{r}}(n) \sim\left\{\begin{array}{ll}
n^{2} \log n & r=1 \\
n^{2 r} & r \geq 2
\end{array} .\right.
$$

Conjugacy growth

Theorem (Babenko 1989)

The higher Heisenberg groups H_{r} have conjugacy growth

$$
c_{H_{r}}(n) \sim\left\{\begin{array}{ll}
n^{2} \log n & r=1 \\
n^{2 r} & r \geq 2
\end{array} .\right.
$$

Corollary

The conjugacy growth series of H_{1} is non-holonomic.

CASE $r=1$

$$
H_{1}=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle
$$

CASE $r=1$

$$
H_{1}=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle
$$

Babenko's Theorem: $c(n) \sim n^{2} \log n$

CASE $r=1$

$$
H_{1}=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle
$$

Babenko's Theorem: $c(n) \sim n^{2} \log n$

- Write $c=[a, b]$. We can commute a and b at the cost of powers of c : $a b=b a c$.

CASE $r=1$

$$
H_{1}=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle
$$

Babenko's Theorem: $c(n) \sim n^{2} \log n$

- Write $c=[a, b]$. We can commute a and b at the cost of powers of c : $a b=b a c$.
- Normal form $\left\{a^{i} b^{j} c^{k} \mid i, j, k \in \mathbb{Z}\right\}$

CASE $r=1$

$$
H_{1}=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle
$$

Babenko's Theorem: $c(n) \sim n^{2} \log n$

- Write $c=[a, b]$. We can commute a and b at the cost of powers of c : $a b=b a c$.
- Normal form $\left\{a^{i} b^{j} c^{k} \mid i, j, k \in \mathbb{Z}\right\}$
- Conjugating:

$$
a a^{i} b^{j} c^{k} a^{-1}=a^{i} b^{j} c^{k+j}, b a^{i} b^{j} c^{k} b^{-1}=a^{i} b^{j} c^{k-i}
$$

and so $\left[a^{i} b^{j} c^{k}\right]=a^{i} b^{j} c^{k}\left\langle c^{\operatorname{gcd}(i, j)}\right\rangle$.

Length of a conjugacy class

Claim: $\left[a^{i} b^{j} c^{k}\right]=a^{i} b^{j} c^{k}\left\langle c^{g c d(i, j)}\right\rangle$ has length $|i|+|j|$.

Length of a conjugacy class

Claim: $\left[a^{i} b^{j} c^{k}\right]=a^{i} b^{j} c^{k}\left\langle c^{g c d(i, j)}\right\rangle$ has length $|i|+|j|$. Proof:

- Any element $a^{i} b^{j} c^{k}$ has length at least $|i|+|j|$.

Length of a conjugacy class

Claim: $\left[a^{i} b^{j} c^{k}\right]=a^{i} b^{j} c^{k}\left\langle c^{\operatorname{gcd}(i, j)}\right\rangle$ has length $|i|+|j|$.
Proof:

- Any element $a^{i} b^{j} c^{k}$ has length at least $|i|+|j|$.
- Assume $i, j>0$. There exists $0 \leq K<\operatorname{gcd}(i, j)$ with $a^{i} b^{j} c^{-K} \in\left[a^{i} b^{j} c^{k}\right]$.

Length of a conjugacy class

Claim: $\left[a^{i} b^{j} c^{k}\right]=a^{i} b^{j} c^{k}\left\langle c^{g c d(i, j)}\right\rangle$ has length $|i|+|j|$.
Proof:

- Any element $a^{i} b^{j} c^{k}$ has length at least $|i|+|j|$.
- Assume $i, j>0$. There exists $0 \leq K<\operatorname{gcd}(i, j)$ with $a^{i} b^{j} c^{-K} \in\left[a^{i} b^{j} c^{k}\right]$.
- $a^{i-1} b^{K} a b^{j-K}$ has length $i+j$ and represents the element $a^{i} b^{j} c^{-K}$, and hence the conjugacy class [ai $a^{j} c^{k}$].

Length of a conjugacy class

Claim: $\left[a^{i} b^{j} c^{k}\right]=a^{i} b^{j} c^{k}\left\langle c^{g c d(i, j)}\right\rangle$ has length $|i|+|j|$.
Proof:

- Any element $a^{i} b^{j} c^{k}$ has length at least $|i|+|j|$.
- Assume $i, j>0$. There exists $0 \leq K<\operatorname{gcd}(i, j)$ with $a^{i} b^{j} c^{-K} \in\left[a^{i} b^{j} c^{k}\right]$.
- $a^{i-1} b^{K} a b^{j-K}$ has length $i+j$ and represents the element $a^{i} b^{j} c^{-K}$, and hence the conjugacy class $\left[a^{i} b^{j} c^{k}\right.$].

So at each point (i, j), there are exactly $\operatorname{gcd}(i, j)$ many conjugacy classes, all of length $|i|+|j|^{*}$.

Abelianisation

Conjugacy growth:

$$
\begin{aligned}
c(n) & \sim \beta_{\mathrm{Ab}\left(H_{1}\right)}(n) \cdot(\text { 'expected value' of } \operatorname{gcd}(i, j) \text { if }|i|+|j| \leq n) \\
& \sim n^{2} \log n
\end{aligned}
$$

Non-Holonomic Growth series

Corollary

The conjugacy growth series of H_{1} is non-holonomic.

Non-Holonomic Growth series

Corollary

The conjugacy growth series of H_{1} is non-holonomic.
Proof:

- If $\gamma(n) \leq n^{d}$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Q}(z)$ then there is some $d^{\prime} \in \mathbb{N}$ with $\gamma(n) \sim n^{d^{\prime}}$.

Non-Holonomic Growth series

Corollary

The conjugacy growth series of H_{1} is non-holonomic.
Proof:

- If $\gamma(n) \leq n^{d}$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Q}(z)$ then there is some $d^{\prime} \in \mathbb{N}$ with $\gamma(n) \sim n^{d^{\prime}}$.
- (Pólya-Carlson Theorem) If $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Z}[[z]]$ converges inside the unit disc, it is either rational or has the unit circle as a natural boundary.

Non-Holonomic Growth series

Corollary

The conjugacy growth series of H_{1} is non-holonomic.
Proof:

- If $\gamma(n) \leq n^{d}$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Q}(z)$ then there is some $d^{\prime} \in \mathbb{N}$ with $\gamma(n) \sim n^{d^{\prime}}$.
- (Pólya-Carlson Theorem) If $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Z}[[z]]$ converges inside the unit disc, it is either rational or has the unit circle as a natural boundary.
- A holonomic function has only finitely many singularities.

Non-Holonomic Growth series

Corollary

The conjugacy growth series of H_{1} is non-holonomic.
Proof:

- If $\gamma(n) \leq n^{d}$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Q}(z)$ then there is some $d^{\prime} \in \mathbb{N}$ with $\gamma(n) \sim n^{d^{\prime}}$.
- (Pólya-Carlson Theorem) If $\sum_{n \geq 0} \gamma(n) z^{n} \in \mathbb{Z}[[z]]$ converges inside the unit disc, it is either rational or has the unit circle as a natural boundary.
- A holonomic function has only finitely many singularities.

Question: What about the conjugacy growth series of H_{r} in general?

Open Problems

- Find more examples where the growth series behaviour is independent of the choice of generating set.

Open Problems

- Find more examples where the growth series behaviour is independent of the choice of generating set.
- Find more examples where the growth series behaviour depends on the choice of generating set.

Open Problems

- Find more examples where the growth series behaviour is independent of the choice of generating set.
- Find more examples where the growth series behaviour depends on the choice of generating set.
- Conjecture: A finitely presented group has rational conjugacy growth series if and only if it is virtually abelian.

Further Reading

- M. Clay and D. Margalit (eds.), Office hours with a geometric group theorist, Princeton University Press, Princeton, NJ, 2017. MR 3645425
國 M. Duchin, Counting in groups: Fine asymptotic geometry, Notices of the AMS 63 (2016), no. 8, 871-874.
目
A. Mann, How groups grow, London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012. MR 2894945
- M. Stoll, Rational and transcendental growth series for the higher Heisenberg groups, Invent. Math. 126 (1996), no. 1, 85-109. MR 1408557

