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Back to basics

Given a group G , generated by a finite subset S , define a graph Γ(G ,S) = Γ.

Vertices correspond to elements of G : V (Γ) = {vg | g ∈ G}
Directed edges connect vertices vg to vh iff h = gs for s ∈ S
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Back to basics

Word length
The word length of g ∈ G with respect to S is the length of a shortest word
representing g :

|g |S = min {|w | | w ∈ S∗, w =G g}

Equivalently, |g |S is the length of a geodesic path from v1 to vg in the Cayley
graph.

In fact, Cayley graph becomes a metric space if we define d(g , h) = |g−1h|S .
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Counting elements

Definition

The strict growth function σG ,S(n) = #{g ∈ G | |g |S = n},

and the cumulative growth function βG ,S(n) = #{g ∈ G | |g |S ≤ n}.

counting the number of elements in the metric sphere or ball of radius n in Γ

Loose interpretation: groups with ‘faster’ growth functions are ‘larger’.
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Examples

Z2 = 〈a, b | [a, b]〉

Alex Evetts (ESI, Vienna) Growth in Groups 19/11/2020 5 / 20



Examples

F2 = 〈a, b | −〉
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Invariance

Equivalence of growth functions

For two functions f , g : N→ N we write f 4 g if there exists λ ≥ 1 s.t.

f (n) < λg(λn + λ) + λ

for all n.

If f 4 g and g 4 f then we write f ∼ g and say that the functions are
equivalent.

Fact: If S and T are two generating sets for a group G , then βG ,S ∼ βG ,T .
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Fundamental results

Growth behaves “well”.

If H is a finitely generated subgroup of G then βH 4 βG .

If N C G then βG/N 4 βG .

Commensurability invariant: if H is a finite index subgroup of G then
βH ∼ βG .

Quasi-Isometry invariant: quasi-isometric groups have equivalent growth
functions.
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Possible growth

Which functions can occur as growth functions?

Exponential: β(n) ∼ an, some a > 1, e.g. free groups, hyperbolic groups
N.B. every group has growth function bounded above by an exponential

Polynomial: β(n) 4 nd , some d > 0, e.g. abelian groups

Intermediate: strictly bigger than any polynomial, strictly smaller than any
exponential, e.g. β(n) ∼ 2

√
n (Grigorchuk’s group - see Marialaura’s lectures)
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Reminder

Subnormal series:
G = G0 B G1 B G2 · · ·B Gr = {1}

G is soluble if it has a subnormal series with each Gi/Gi+1 is abelian.

G is polycyclic if it has a subnormal series with each Gi/Gi+1 is cyclic.

G is nilpotent if it has a subnormal series with each Gi+1 C G and
Gi/Gi+1 ≤ Z (G/Gi+1).
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Virtually nilpotent groups

For any group G , define G (i) = 〈[· · · [[x0, x1], x2] · · · xi ] | xk ∈ G 〉

Definition

G is nilpotent if there is some i ∈ N with G (i) is trivial. The first such i is the
nilpotency class of G .

Wolf (1968): Every virtually nilpotent group has polynomial growth.
Bass (1972), Guivarc’h (1973): The degree of polynomial growth of a virtually
nilpotent group G is given by

c∑
i=1

i · rank
(
G (i)/G (i+1)

)
.
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Example

The discrete Heisenberg group: H = 〈a, b | [[a, b], a] = [[a, b], b] = 1〉

H(1) = 〈[g0, g1] | gi ∈ H〉 = 〈[a, b]〉 ∼= Z

H(2) = 〈[[g0, g1], g2] | gi ∈ H〉 = {1}

Quotients: H/H(1) ∼= Z2, H(1)/H(2) ∼= Z.

Bass-Guivarc’h: β(n) ∼ n1×2+2×1 = n4
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Some history

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

So a finitely generated virtually soluble group either has exponential growth, or is
virtually nilpotent (and hence has polynomial growth by Bass and Guivarc’h).

Tits alternative: Every linear group is either virtually soluble or has a non-abelian
free subgroup.

So every linear group has either exponential growth of is virtually nilpotent (with
polynomial growth).

More generally: G is said to satisfiy a Tits Alternative if every subgroup H ≤ G is
either virtually soluble or has a non-abelian free subgroup.
This includes Hyperbolic groups, mapping class groups, Out(Fn).
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Converse to Bass-Guivarc’h

Theorem (Gromov 1981)

A finitely generated group has polynomial growth if and only if it is virtually
nilpotent.

Consequence: If a group has growth function β(n) ∼ nd then d ∈ N.
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Uniform exponential growth

For a group G with generating set S , define:

ρG ,S = lim
n→∞

(βG ,S(n))
1
n

G has uniform exponential growth if infS ρG ,S > 1.

Alex Evetts (ESI, Vienna) Growth in Groups 19/11/2020 15 / 20



Uniform exponential growth

For a group G with generating set S , define:

ρG ,S = lim
n→∞

(βG ,S(n))
1
n

G has uniform exponential growth if infS ρG ,S > 1.

Alex Evetts (ESI, Vienna) Growth in Groups 19/11/2020 15 / 20



Conjugacy growth

CG := set of conjugacy classes of G

For κ ∈ CG , define |κ|S = min{|w | | w ∈ S∗, w ∈ κ} = min{|g |S | g ∈ κ}

Definition
The strict and cumulative conjugacy growth functions of G with respect to S are

sG ,S(n) = #{κ ∈ CG | |κ|S = n},
cG ,S(n) = #{κ ∈ CG | |κ|S ≤ n}

cG ,S(n) is the number of distinct conjugacy classes intersecting the ball of
radius n in the Cayley graph
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Facts about conjugacy growth

Introduced by Babenko in 1989. Previous counting results by Margulis in
1969.

Counts the number of closed geodesics, up to free homotopy, on a
Riemannian manifold (with suitable hypothesis).

Conjugacy growth is always bounded above by standard growth.

Conjugacy growth and standard growth coincide in abelian groups.

Standard Conjugacy
Group invariant Yes Yes
Quasi-Isometry Invariant Yes No
Polynomial growth nd for d ∈ N “anything”
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Example

F2 = 〈a, b | −〉

Each element is conjugate to a cyclically reduced element (approximately 3n

such elements).

Cyclically reduced elements are conjugate if and only if they are cyclic
permutations of each other.

A cyclically reduced element has n cyclic permutations (not counting powers
which are negligible).

So cF2(n) ∼ 3n

n

This holds for any non-elementary hyperbolic group (Coornaert-Knieper).
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Exponential conjugacy growth

Conjecture (Guba-Sapir 2010)

For “ordinary” groups, exponential standard growth should imply exponential
conjugacy growth
(so the conjugacy and standard growth functions are equivalent).

Breuillard-Cornulier: This holds for soluble groups.

Breuillard-Cornulier-Lubotzky-Meiri: This holds for all linear groups.
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Polynomial conjugacy growth

For groups of polynomial standard growth, the standard and conjugacy growth
functions can be non-equivalent.

Example: Heisenberg group: c(n) ∼ n2 log n

Open question: What are the asymptotics for the conjugacy growth of virtually
nilpotent groups in general?

Can the function be determined from the lower central series, as for standard
growth?
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