Produced with a Trial Version of PDF Annotator - www.PDFAnno

INTRODUCTION TO GROWTH IN GROUPS PART II: FORMAL POWER SERIES

Alex Evetts

Erwin Schrödinger Institute / University of Vienna

26/11/2020

ALEX EVETTS (ESI, VIENNA)

GROWTH IN GROUPS

26/11/2020 1/28

WORD LENGTH

The word length of $g \in G$ with respect to S is the length of a shortest word representing g:

 $|g|_{S} = \min\{|w| \mid w \in S^{*}, w =_{G} g\}$

WORD LENGTH

The word length of $g \in G$ with respect to S is the length of a shortest word representing g:

$$g|_{S} = \min\{|w| \mid w \in S^{*}, w =_{G} g\}$$

DEFINITION

The strict growth function
$$\sigma_{G,S}(n) = \#\{g \in G \mid |g|_S = n\}$$
,

and the cumulative growth function $\beta_{G,S}(n) = \#\{g \in G \mid |g|_S \le n\}$.

Conjugacy classes

Define the length of a conjugacy class κ of G with respect to S to be the length of a shortest word representing κ :

 $|\kappa|_{\mathcal{S}} = \min\left\{|w| \mid w \in \mathcal{S}^*, \ \overline{w} \in \kappa\right\} = \min\{|g|_{\mathcal{S}} \mid g \in \kappa\}$

イロト イポト イヨト イヨー

CONJUGACY CLASSES

Define the length of a conjugacy class κ of G with respect to S to be the length of a shortest word representing κ :

 $|\kappa|_{\mathcal{S}} = \min\{|w| \mid w \in \mathcal{S}^*, \ \overline{w} \in \kappa\} = \min\{|g|_{\mathcal{S}} \mid g \in \kappa\}$

DEFINITION

The strict conjugacy growth function $s_{G,S}(n) = \#\{\kappa \in C_G \mid |\kappa|_S = n\}$,

and the cumulative conjugacy growth function $c_{G,S}(n) = \#\{\kappa \in C_G \mid |\kappa|_S \leq n\}$.

S Produced with a Trial Nersion of PDF Annotator - www.PDFAnno

	Standard	Conjugacy
Group invariant	Yes	Yes
Quasi-Isometry Invariant -	Yes	No
Polynomial growth	n^d for $d \in \mathbb{N}$	"anything"

3/2

ヘロト 人間 ト 人 油 ト 人 油 ト

ALEX EVETTS (ESI, VIENNA)

	Standard	Conjugacy
Group invariant	Yes	Yes
Quasi-Isometry Invariant	Yes	No
Polynomial growth	n^d for $d \in \mathbb{N}$	"anything"

- For any group G, $c_G(n) \preccurlyeq \beta_G(n)$.
- If G is abelian then $c_G(n) \sim \beta_G(n)$ (converse does not hold).

Suppose we have some growth function γ for a group G and generating set S.

ヘロト ヘロト ヘビト ヘビト

Suppose we have some growth function γ for a group G and generating set S.

DEFINITION

The (standard/conjugacy/etc.) growth series of G with respect to S is the formal power series

$$\mathbb{S}(z):=\sum_{n=0}^{\infty}\gamma(n)z^n.$$

Alex Eve	fts (ESI	I, VIENNA	
----------	----------	-----------	--

イロト イポト イヨト イヨ

A Pcod Bcediwith a Minal Eversion of PDF Annotator - www.PDFAnno

A formal power series S(z) is called

• rational if there exist polynomials P, Q with integer coefficients such that $\mathbb{S}(z) = \frac{P(z)}{Q(z)};$ $\mathbb{S}(z) = \frac{P(z)}{Q(z)};$

 $\overline{\mathbb{Q}(2)}$ • algebraic if $\mathbb{S}(z)$ satisfies a polynomial equation with polynomial coefficients;

- holonomic (a.k.a. *D*-finite) if S(*z*) satisfies a finite order differential equation, with polynomial coefficients;
- transcendental if it is not algebraic.

Algebraic complexity

A formal power series $\mathbb{S}(z)$ is called

- rational if there exist polynomials *P*, *Q* with integer coefficients such that $\mathbb{S}(z) = \frac{P(z)}{Q(z)}$;
- algebraic if $\mathbb{S}(z)$ satisfies a polynomial equation with polynomial coefficients;
- holonomic (a.k.a. *D*-finite) if S(*z*) satisfies a finite order differential equation, with polynomial coefficients;
- transcendental if it is not algebraic.

Question: Into which classes do the various growth functions fall?

ERroducedswith a Trial Version of PDF Annotator - www.PDFAnno

• Standard growth of F_2 , with respect to a basis: $\sigma(n) = 4 \cdot 3^{n-1}$ for $n \ge 1$

$$\mathbb{S}(z) = 1 + \sum_{n \ge 1} 4 \cdot 3^{n-1} z^n = 1 + \frac{4}{3} \sum_{n \ge 1} (3z)^n = \frac{1-2z}{1-3z} \quad \checkmark$$

Erroducedswith a Trial Version of PDF Annotator - www.PDFAnno

• Standard growth of F_2 , with respect to a basis: $\sigma(n) = 4 \cdot 3^{n-1}$ for $n \ge 1$

$$\mathbb{S}(z) = 1 + \sum_{n \ge 1} 4 \cdot 3^{n-1} z^n = 1 + \frac{4}{3} \sum_{n \ge 1} (3z)^n = \frac{1-2z}{1-3z}$$

• Standard (and conjugacy) growth of \mathbb{Z}^2 with respect to $\{(1,0), (0,1)\}$: $\sigma(n) = 4n$ for $n \ge 1$

$$\mathbb{S}(z) = 1 + \sum_{n \ge 1} (4n) z^n = \frac{(1+z)^2}{(1-z)^2}$$

26/11/2020 7/28

Remoduced with a Wriate Version of PDF Annotator - www.PDFAnno

Rational growth reflects a strong 'regularity' property:

PROPOSITION

A series $\mathbb{S}(z) = \sum \gamma(n) z^n \in \mathbb{Z}[[z]]$ is rational if and only if $\gamma(n)$ satisfies a linear recurrence relation: $\gamma(n) = a_1 \gamma(n-1) + \cdots + a_k \gamma(n-k)$ for $a_i \in \mathbb{Q}$.

Remoduced with a Wriate Version of PDF Annotator - www.PDFAnno

Rational growth reflects a strong 'regularity' property:

PROPOSITION

A series $\mathbb{S}(z) = \sum \gamma(n)z^n \in \mathbb{Z}[[z]]$ is rational if and only if $\gamma(n)$ satisfies a linear recurrence relation: $\gamma(n) = a_1\gamma(n-1) + \cdots + a_k\gamma(n-k)$ for $a_i \in \mathbb{Q}$.

PROOF BY EXAMPLE

Let
$$\gamma(0) = \gamma(1) = 1$$
 and $\gamma(n) = \gamma(n-1) + \gamma(n-2)$ for $n \ge 2$.

Remoduced with a Wriate Version of PDF Annotator - www.PDFAnno

Rational growth reflects a strong 'regularity' property:

PROPOSITION

A series $\mathbb{S}(z) = \sum \gamma(n) z^n \in \mathbb{Z}[[z]]$ is rational if and only if $\gamma(n)$ satisfies a linear recurrence relation: $\gamma(n) = a_1 \gamma(n-1) + \cdots + a_k \gamma(n-k)$ for $a_i \in \mathbb{Q}$.

PROOF BY EXAMPLE

Let
$$\gamma(0) = \gamma(1) = 1$$
 and $\gamma(n) = \gamma(n-1) + \gamma(n-2)$ for $n \ge 2$.

Ferodyced with a final Version of PDF Annotator - www.PDFAnno

Product formula: For any functions f, g, we have:

$$\sum_{n=0}^{\infty} f(n)z^n \cdot \sum_{n=0}^{\infty} g(n)z^n = \sum_{n=0}^{\infty} \sum_{k=0}^n f(k)g(n-k)z^n.$$

Ferodyced with a final Version of PDF Annotator - www.PDFAnno

Product formula: For any functions f, g, we have:

$$\sum_{n=0}^{\infty} f(n)z^n \cdot \sum_{n=0}^{\infty} g(n)z^n = \sum_{n=0}^{\infty} \sum_{k=0}^n f(k)g(n-k)z^n.$$

Set f(n) = 1 and $g(n) = \sigma(n)$, the strict growth function:

$$\frac{1}{1-z}\sum_{n=0}^{\infty}\sigma(n)z^n = \sum_{n=0}^{\infty}\sum_{k=0}^n\sigma(n-k)z^n = \sum_{n=0}^{\infty}\beta(n)z^n$$

FProduced with a Final Version of PDF Annotator - www.PDFAnno

Concuele Mathanatios

・ロト ・回ト ・ヨト ・ヨト

Product formula: For any functions f, g, we have: Grahm-Unutly

$$\sum_{n=0}^{\infty} f(n)z^n \cdot \sum_{n=0}^{\infty} g(n)z^n = \sum_{n=0}^{\infty} \sum_{k=0}^n f(k)g(n-k)z^n.$$

Set f(n) = 1 and $g(n) = \sigma(n)$, the strict growth function:

$$\frac{1}{1-z}\sum_{n=0}^{\infty}\sigma(n)z^n=\sum_{n=0}^{\infty}\sum_{k=0}^n\sigma(n-k)z^n=\sum_{n=0}^{\infty}\beta(n)z^n.$$

PROPOSITION

The algebraic complexity of the cumulative (conjugacy) growth series is the same as that of the strict (conjugacy) growth series.

A Produced withow Total Version of PDICAnnotator - www.PDFAnno

PROPOSITION 2 [[7]

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

A RESTRICTION ON ASYMPTOTICS

PROPOSITION

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

ヘロト 人間 ト 人 油 ト 人 油 ト

A Produced ovithoa Total Version of PDEAnnotator - www.PDFAnno

PROPOSITION

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

We can write

$$\mathbb{S}(z)=rac{p(z)}{q(z)}=p'(z)\prod_{i=1}^krac{1}{1-lpha_i z}, \ lpha_i\in\mathbb{C}.$$

Alex Evetts	(ESI, Vienna)	
-------------	---------------	--

A Produced ovition Total Version of PDE Annotator - www.PDFAnno

PROPOSITION

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

We can write

$$\mathbb{S}(z)=rac{p(z)}{q(z)}=p'(z)\prod_{i=1}^krac{1}{1-lpha_i z},\,\,lpha_i\in\mathbb{C}.$$

If there is a pole inside the unit disc, have some $|\alpha_i| > 1$. This gives exponential growth.

Otherwise, can show the growth is at most polynomial (hint: use the product formula).

1+x,2+ &,22+.

A restriction on asymptotics

PROPOSITION

If a series $\mathbb{S}(z)$ is rational then the coefficients grow either exponentially or polynomially.

IDEA OF PROOF

We can write

$$\mathbb{S}(z)=rac{p(z)}{q(z)}=p'(z)\prod_{i=1}^krac{1}{1-lpha_i z},\,\,lpha_i\in\mathbb{C}.$$

If there is a pole inside the unit disc, have some $|\alpha_i| > 1$. This gives exponential growth.

Otherwise, can show the growth is at most polynomial (hint: use the product formula).

COROLLARY

If G has intermediate (conjugacy) growth, it cannot have rational (conjugacy) growth series.

ALEX EVETTS (ESI, VIENNA)

COMBINATION THEOREMS

Suppose $G = \langle S \rangle$, $H = \langle T \rangle$.

< □ > < □ > < □ > < □ > < □ > < □ > = □

C Broduced with a This Oversion of PDF Annotator - www.PDFAnno

Suppose $G = \langle S \rangle$, $H = \langle T \rangle$. Then S and T both embed into $G \times H$ and into G * H.

CBroduced with a This Oversion of PDF Annotator - www.PDFAnno

Suppose $G = \langle S \rangle$, $H = \langle T \rangle$.

Then S and T both embed into $G \times H$ and into G * H.

And $S \cup T \subset G \times H$, and $S \cup T \subset G * H$ are generating sets.

CBroduced with a Thial Version of PDF Annotator - www.PDFAnno

Suppose $G = \langle S \rangle$, $H = \langle T \rangle$.

Then S and T both embed into $G \times H$ and into G * H.

And $S \cup T \subset G \times H$, and $S \cup T \subset G * H$ are generating sets.

THEOREM

Direct product:

$$\mathbb{S}_{G\times H,S\cup T}(z) = \mathbb{S}_{G,S}(z) \cdot \mathbb{S}_{H,T}(z)$$

Free product:

$$\frac{1}{\mathbb{S}_{G*H,S\cup T}(z)} = \frac{1}{\mathbb{S}_{G,S}(z)} + \frac{1}{\mathbb{S}_{H,T}(z)} - 1$$

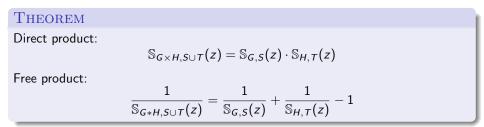
(strict, stoudad

COMBINATION THEOREMS

Suppose $G = \langle S \rangle$, $H = \langle T \rangle$.

Then S and T both embed into $G \times H$ and into G * H.

And $S \cup T \subset G \times H$, and $S \cup T \subset G * H$ are generating sets.



In particular, if G and H have rational growth series, then so do $G \times H$ and G * H.

イロン イヨン イヨン

Deroduced without Trial Version of PDF Annotator - www.PDFAnno

19117

Max Dehn, 1912.

• Word problem: For a given presentation $G = \langle S \mid R \rangle$, is there an algorithm to decide whether a word in S^* represents the identity in G?

Max Dehn, 1912.

- Word problem: For a given presentation $G = \langle S | R \rangle$, is there an algorithm to decide whether a word in S^* represents the identity in G?
- Conjugacy problem: Is there an algorithm to decide whether any pair of words in *S** represent conjugate elements?

Max Dehn, 1912.

|w| = h

- Word problem: For a given presentation $G = \langle S | R \rangle$, is there an algorithm to decide whether a word in S^* represents the identity in G?
- Conjugacy problem: Is there an algorithm to decide whether any pair of words in *S** represent conjugate elements?

If the standard (or conjugacy) growth series is holonomic then the word (or conjugacy) problem has a solution.

Max Dehn, 1912.

- Word problem: For a given presentation $G = \langle S | R \rangle$, is there an algorithm to decide whether a word in S^* represents the identity in G?
- Conjugacy problem: Is there an algorithm to decide whether any pair of words in *S** represent conjugate elements?

If the standard (or conjugacy) growth series is holonomic then the word (or conjugacy) problem has a solution.

COROLLARY

If G has insoluble word (conjugacy) problem then it has non-holonomic standard (conjugacy) growth.

GROWTH SERIES

So the growth series are a useful tool...

GROWTH SERIES

So the growth series are a useful tool... but the algebraic complexity is not a group invariant!

GRoduced Shitkes rial Version of PDF Annotator - www.PDFAnno

So the growth series are a useful tool... but the algebraic complexity is not a group invariant!

THEOREM (STOLL, 1996)

The higher Heisenberg groups H_r have rational standard growth series with respect to one choice of generating set and transcendental with respect to another.

$${\mathcal H}_2 = \left\{ egin{pmatrix} 1 & a & b & c \ 0 & 1 & 0 & d \ 0 & 0 & 1 & e \ 0 & 0 & 0 & 1 \end{pmatrix} ig| {a, b, c, d, e \in \mathbb{Z}}
ight\}$$

GRoduced Shitkes rial Version of PDF Annotator - www.PDFAnno

So the growth series are a useful tool... but the algebraic complexity is not a group invariant!

THEOREM (STOLL, 1996)

The higher Heisenberg groups H_r have rational standard growth series with respect to one choice of generating set and transcendental with respect to another.

$$H_2 = \left\{ egin{pmatrix} 1 & a & b & c \ 0 & 1 & 0 & d \ 0 & 0 & 1 & e \ 0 & 0 & 0 & 1 \end{pmatrix} ig| a, b, c, d, e \in \mathbb{Z}
ight\}$$

Proof makes use of combination theorems about `central products'.

イロト イボト イヨト イヨ

Whroduced with a Trial Version of PDF Annotator - www.PDFAnno

In some cases the behaviour is known to be independent of the generators:

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational	Transcendental Man-olem
	(Cannon 1984*)	(Antolín-Ciobanu 2017)
Virtually abelian	Rational (Benson 1983)	Rational (E. 2019)
Heisenberg H ₁	Rational (Duchin-Shapiro 2019)	Transcendental (E. 2020)
(ab)	2016	Non-holonomic

(10b) (01)

Whreduced with a Trial Version of PDF Annotator - www.PDFAnno

In some cases the behaviour is known to be independent of the generators:

	Standard Growth Series	Conjugacy Growth Series
Hyperbolic	Rational	Transcendental
	(Cannon 1984*)	(Antolín-Ciobanu 2017)
Virtually abelian	Rational (Benson 1983)	Rational (E. 2019)
Heisenberg H ₁	Rational (Duchin-Shapiro 2019)	Transcendental (E. 2020)

Rational standard growth for some generators:

- some automatic groups (Epstein et al 1992),
- soluble Baumslag-Solitar groups BS(1, k) (Collins-Edjvet-Gill 1994),
- · and many more. RAPES, Cassile, Coxely, _____ X L

26/11/2020 14/28

Whreduced with a Trial Version of PDF Annotator - www.PDFAnno

In some cases the behaviour is known to be independent of the generators:

1		Standard Growth Series	Conjugacy Growth Series
I	Hyperbolic	Rational	Transcendental
		(Cannon 1984*)	(Antolín-Ciobanu 2017)
ľ	Virtually abelian	Rational (Benson 1983)	Rational (E. 2019)
V	Heisenberg H ₁	Rational (Duchin-Shapiro 2019)	Transcendental (E. 2020)

Rational standard growth for some generators:

- some automatic groups (Epstein et al 1992),
- soluble Baumslag-Solitar groups BS(1, k) (Collins-Edjvet-Gill 1994),
- and many more.

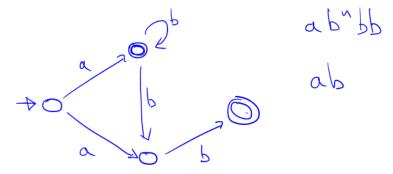
Transcendental conjugacy growth for some generators:

- soluble Baumslag-Solitar groups (Ciobanu-E.-Ho 2020),
- some wreath products (Mercier 2016).

イロン イヨン イヨン イヨ

REcoduced with a Triac Version of PDF Annotator - www.PDFAnno

A language $L \subset S^*$ is called regular if it is accepted by a finite state automaton (a directed, S-labelled graph with nominated start and accept states).

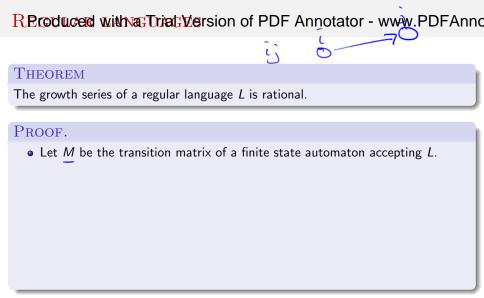


REGULAR LANGUAGES

Theorem

The growth series of a regular language L is rational.

・ロト ・回ト ・ヨト ・ヨト



イロン イヨン イヨン イヨ

REcoduced with a Triac Version of PDF Annotator - www.PDFAnno

THEOREM

The growth series of a regular language L is rational.

Proof.

- Let M be the transition matrix of a finite state automaton accepting L.
- The number of words in L of length n is given by $s^T M^n a$.

THEOREM

The growth series of a regular language L is rational.

Proof.

- Let M be the transition matrix of a finite state automaton accepting L.
- The number of words in L of length n is given by $s^T M^n a$.
- The growth series is then

$$\sum_{n\geq 0} \left(\underbrace{\mathbf{s}^T M^n \mathbf{a}}_{n\geq 0} \right) z^n = \underbrace{\mathbf{s}^T}_{n\geq 0} \left(\underbrace{\mathbf{M} z}_{n\geq 0}^n \right) \mathbf{a} = \underbrace{\mathbf{s}^T (I - Mz)^{-1} \mathbf{a}}_{\mathbf{MQ}}.$$

REcoduced with a Triac Dersion of PDF Annotator - www.PDFAnno

THEOREM

The growth series of a regular language L is rational.

Proof.

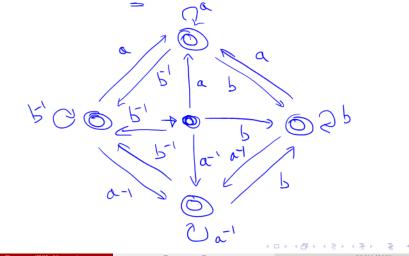
- Let M be the transition matrix of a finite state automaton accepting L.
- The number of words in L of length n is given by $s^T M^n a$.
- The growth series is then

$$\sum_{n\geq 0} \left(\mathbf{s}^T M^n \mathbf{a} \right) z^n = \mathbf{s}^T \left(\sum_{n\geq 0} (Mz)^n \right) \mathbf{a} = \mathbf{s}^T (I - Mz)^{-1} \mathbf{a}.$$

So if we can find a anguage of geodesic representatives for the elements of G, then the **growth series** is rational.

Erroduced with a Trial Version of PDF Annotator - www.PDFAnno

The language of geodesics in F_2 with respect to a basis is regular.



THEOREM (CANNON)

For a hyperbolic group, with any choice of finite generating set, the language of **all** geodesics is regular.

THEOREM (CANNON)

For a hyperbolic group, with any choice of finite generating set, the language of **all** geodesics is regular.

COROLLARY

The standard growth series is rational, with respect to any choice of finite generating set (using a modified counting argument).

THEOREM (CANNON)

For a hyperbolic group, with any choice of finite generating set, the language of **all** geodesics is regular.

COROLLARY

The standard growth series is rational, with respect to any choice of finite generating set (using a modified counting argument).

This is a consequence of the **geometry**.

THEOREM (ANTOLÍN-CIOBANU 2017)

The **conjugacy** growth series of a hyperbolic group G is rational if G is virtually cyclic and transcendental otherwise.

THEOREM (ANTOLÍN-CIOBANU 2017)

The **conjugacy** growth series of a hyperbolic group G is rational if G is virtually cyclic and transcendental otherwise.

For any finite generating set, there exist constants A, B, ρ , such that

$$A\frac{e^{\rho n}}{n} \leq c_{G,S}(n) \leq B\frac{e^{\rho n}}{n}.$$

イロン イヨン イヨン イヨ

THEOREM (ANTOLÍN-CIOBANU 2017)

The **conjugacy** growth series of a hyperbolic group G is rational if G is virtually cyclic and transcendental otherwise.

For any finite generating set, there exist constants A, B, ρ , such that

$$A\frac{e^{
ho n}}{n}\leq c_{G,S}(n)\leq B\frac{e^{
ho n}}{n}.$$

No algebraic series can have these asymptotics (via an analytic combinatorics result of Flajolet).

・ロト ・回ト ・ヨト ・ヨト

◆□▶ ◆□▶ ◆臣▶ ◆臣♪

• The standard growth series is rational (Benson 1982).

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).
- Cosets, subgroups, solutions of equations... (E. 2019, E.-Levine 2020).

イロト イボト イヨト イヨ

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).
- Cosets, subgroups, solutions of equations... (E. 2019, E.-Levine 2020).
- The set of all geodesics? Sometimes rational. (Bishop 2020).

- The standard growth series is rational (Benson 1982).
- The conjugacy growth series is rational (E. 2019).
- Cosets, subgroups, solutions of equations... (E. 2019, E.-Levine 2020).
- The set of all geodesics? Sometimes rational. (Bishop 2020).

Patterns and polyhedral sets

Partition S^* into pieces (aka patterns) that behave like subsets of \mathbb{N}^r . Reduce to sets of representatives which are 'polyhedral'. Precise form depends on structure of S^* , but they produce rational growth series in each case.

・ロト ・日ト ・ヨト ・ヨト

DEFINITION

For any positive integer r, define the (higher) Heisenberg group H_r as follows:

$$H_{r} = \left\langle a_{1}, b_{1}, a_{2}, b_{2}, \dots, a_{r}, b_{r} \middle| \begin{array}{c} [a_{i}, a_{j}] = [a_{i}, b_{j}] = [b_{i}, b_{j}] = 1 \ \forall i \neq j \\ [a_{i}, b_{i}] = [a_{j}, b_{j}] \ \forall i \neq j \\ [[a_{i}, b_{i}], a_{j}] = [[a_{i}, b_{i}], b_{j}] = 1 \ \forall i, j \end{array} \right\rangle.$$

DEFINITION

For any positive integer r, define the (higher) Heisenberg group H_r as follows:

$$H_{r} = \left\langle a_{1}, b_{1}, a_{2}, b_{2}, \dots, a_{r}, b_{r} \middle| \begin{array}{c} [a_{i}, a_{j}] = [a_{i}, b_{j}] = [b_{i}, b_{j}] = 1 \ \forall i \neq j \\ (a_{i}, b_{i}] = [a_{j}, b_{j}] \ \forall i \neq j \\ [[a_{i}, b_{i}], a_{j}] = [[a_{i}, b_{i}], b_{j}] = 1 \ \forall i, j \end{array} \right\rangle.$$

$$H_{2} = \left\{ \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & e \\ 0 & 0 & 0 & 1 \end{pmatrix} \middle| a, b, c, d, e \in \mathbb{Z} \right\}$$

CBroducedowith a Trian Version of PDF Annotator - www.PDFAnno

THEOREM (BABENKO 1989)

The higher Heisenberg groups H_r have conjugacy growth

$$c_{H_r}(n) \sim \begin{cases} n^2 \log n & r = 1 \\ n^{2r} & r \geq 2 \end{cases}.$$

THEOREM (BABENKO 1989)

The higher Heisenberg groups H_r have conjugacy growth

$$c_{H_r}(n) \sim egin{cases} n^2 \log n & r=1 \ n^{2r} & r \geq 2 \end{cases}.$$

COROLLARY

The conjugacy growth series of H_1 is non-holonomic.

ALEX EVETTS (ESI, VIENNA)

Y gen sets.

Case r = 1

$$H_1 = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$$

26/11/2020 23/28

・ロト・日本・日本・日本・日本・日本

$$H_1 = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$$

Babenko's Theorem: $c(n) \sim n^2 \log n$

< □ > < □ > < □ > < □ > < □ > < □ > = □

CRoduced with a Trial Version of PDF Annotator - www.PDFAnno

$$H_1 = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$$

Babenko's Theorem: $c(n) \sim n^2 \log n$

• Write c = [a, b]. We can commute a and b at the cost of powers of c: ab = bac.

CRoduced with a Trial Version of PDF Annotator - www.PDFAnno

$$H_1 = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$$

Babenko's Theorem: $c(n) \sim n^2 \log n$

- Write c = [a, b]. We can commute a and b at the cost of powers of c: ab = bac.
- Normal form $\{a^i b^j c^k \mid i, j, k \in \mathbb{Z}\}$

イロト イポト イヨト イヨ

CRoduced with a Trial Version of PDF Annotator - www.PDFAnno

$$H_1 = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$$

Babenko's Theorem: $c(n) \sim n^2 \log n$

- Write c = [a, b]. We can commute a and b at the cost of powers of c: ab = bac.
- Normal form $\{a^i b^j c^k \mid i, j, k \in \mathbb{Z}\}$
- Conjugating:

$$aa^{i}b^{j}c^{k}a^{-1} = a^{i}b^{j}c^{k+j}, \ ba^{i}b^{j}c^{k}b^{-1} = a^{i}b^{j}c^{k-i}$$

and so $[a^i b^j c^k] = a^i b^j c^k \langle c^{\text{gcd}(i,j)} \rangle$.

26/11/2020 23/28

・ロト ・回ト ・ヨト ・ヨト

Claim: $[a^i b^j c^k] = a^i b^j c^k \langle c^{\text{gcd}(i,j)} \rangle$ has length |i| + |j|.

Claim:
$$[a^i b^j c^k] = a^i b^j c^k \langle c^{gcd}(i,j) \rangle$$
 has length $|i| + |j|$.
Proof:

• Any element $a^i b^j c^k$ has length at least |i| + |j|.

Claim:
$$[a^i b^j c^k] = a^i b^j c^k \langle c^{\text{gcd}(i,j)} \rangle$$
 has length $|i| + |j|$.
Proof:

- Any element $a^i b^j c^k$ has length at least |i| + |j|.
- Assume i, j > 0. There exists $0 \le K < \gcd(i, j)$ with $a^i b^j c^{-K} \in [a^i b^j c^k]$.

```
Claim: [a^i b^j c^k] = a^i b^j c^k \langle c^{\text{gcd}(i,j)} \rangle has length |i| + |j|.
```

Proof:

- Any element $a^i b^j c^k$ has length at least |i| + |j|.
- Assume i, j > 0. There exists $0 \le K < gcd(i, j)$ with $a^i b^j c^{-K} \in [a^i b^j c^k]$.
- $a^{i-1}b^{K}ab^{j-K}$ has length i+j and represents the element $a^{i}b^{j}c^{-K}$, and hence the conjugacy class $[a^{i}b^{j}c^{k}]$.

```
Claim: [a^i b^j c^k] = a^i b^j c^k \langle c^{\text{gcd}(i,j)} \rangle has length |i| + |j|.
```

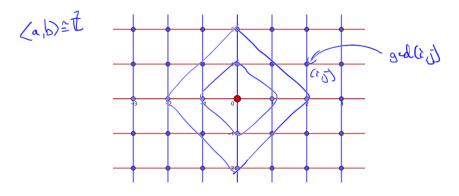
Proof:

- Any element $a^i b^j c^k$ has length at least |i| + |j|.
- Assume i, j > 0. There exists $0 \le K < gcd(i, j)$ with $a^i b^j c^{-K} \in [a^i b^j c^k]$.
- $a^{i-1}b^{K}ab^{j-K}$ has length i+j and represents the element $a^{i}b^{j}c^{-K}$, and hence the conjugacy class $[a^{i}b^{j}c^{k}]$.

So at each point (i, j), there are exactly gcd(i, j) many conjugacy classes, all of length |i| + |j| > -2

・ロト ・日ト ・ヨト ・ヨト

ABroducedswith an rial Version of PDF Annotator - www.PDFAnno



Conjugacy growth:

 $c(n) \sim \beta_{Ab(H_1)}(n) \cdot (\text{`expected value' of } \gcd(i,j) \text{ if } |i| + |j| \le n)$ $\sim n^2 \log n$ $\sqrt{2}$ $\operatorname{gcd}(i,j,k)$

The conjugacy growth series of H_1 is non-holonomic.

・ロト ・回ト ・ヨト ・ヨト

The conjugacy growth series of H_1 is non-holonomic.

Proof: • If $\gamma(n) \leq n^d$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^n \in \mathbb{Q}(z)$ then there is some $d' \in \mathbb{N}$ with $\gamma(n) \sim n^{d'}$.

The conjugacy growth series of H_1 is non-holonomic.

Proof:

- If $\gamma(n) \leq n^d$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^n \in \mathbb{Q}(z)$ then there is some $d' \in \mathbb{N}$ with $\gamma(n) \sim n^{d'}$.
- (Pólya-Carlson Theorem) If ∑_{n≥0} γ(n)zⁿ ∈ ℤ[[z]] converges inside the unit disc, it is either rational or has the unit circle as a natural boundary.

The conjugacy growth series of H_1 is non-holonomic.

Proof:

- If $\gamma(n) \leq n^d$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^n \in \mathbb{Q}(z)$ then there is some $d' \in \mathbb{N}$ with $\gamma(n) \sim n^{d'}$.
- (Pólya-Carlson Theorem) If ∑_{n≥0} γ(n)zⁿ ∈ ℤ[[z]] converges inside the unit disc, it is either rational or has the unit circle as a natural boundary.
- A holonomic function has only finitely many singularities.

The conjugacy growth series of H_1 is non-holonomic.

Proof:

- If $\gamma(n) \leq n^d$, some $d \in \mathbb{N}$, and $\sum_{n \geq 0} \gamma(n) z^n \in \mathbb{Q}(z)$ then there is some $d' \in \mathbb{N}$ with $\gamma(n) \sim n^{d'}$.
- (Pólya-Carlson Theorem) If ∑_{n≥0} γ(n)zⁿ ∈ ℤ[[z]] converges inside the unit disc, it is either rational or has the unit circle as a natural boundary.
- A holonomic function has only finitely many singularities.

Question: What about the conjugacy growth series of H_r in general?

・ロト ・回ト ・ヨト ・ヨト

• Find more examples where the growth series behaviour is independent of the choice of generating set.

ヘロト ヘロト ヘビト ヘビト

- Find more examples where the growth series behaviour is independent of the choice of generating set.
- Find more examples where the growth series behaviour depends on the choice of generating set.

・ロト ・回ト ・ヨト ・ヨト

- Find more examples where the growth series behaviour is independent of the choice of generating set.
- Find more examples where the growth series behaviour depends on the choice of generating set.
- Conjecture: A finitely presented group has rational **conjugacy** growth series if and only if it is virtually abelian.

・ロト ・回ト ・ヨト ・ヨト

- M. Clay and D. Margalit (eds.), *Office hours with a geometric group theorist*, Princeton University Press, Princeton, NJ, 2017. MR 3645425
- M. Duchin, *Counting in groups: Fine asymptotic geometry*, Notices of the AMS **63** (2016), no. 8, 871–874.
- A. Mann, *How groups grow*, London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012. MR 2894945
- M. Stoll, *Rational and transcendental growth series for the higher Heisenberg groups*, Invent. Math. **126** (1996), no. 1, 85–109. MR 1408557