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Last week

Word length
The word length of g ∈ G with respect to S is the length of a shortest word
representing g :

|g |S = min {|w | | w ∈ S∗, w =G g}

Definition

The strict growth function σG ,S(n) = #{g ∈ G | |g |S = n},

and the cumulative growth function βG ,S(n) = #{g ∈ G | |g |S ≤ n}.
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Last week

Conjugacy classes
Define the length of a conjugacy class κ of G with respect to S to be the length
of a shortest word representing κ:

|κ|S = min {|w | | w ∈ S∗, w ∈ κ} = min{|g |S | g ∈ κ}

Definition

The strict conjugacy growth function sG ,S(n) = #{κ ∈ CG | |κ|S = n},

and the cumulative conjugacy growth function cG ,S(n) = #{κ ∈ CG | |κ|S ≤ n}.
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Standard vs Conjugacy growth

Standard Conjugacy
Group invariant Yes Yes
Quasi-Isometry Invariant Yes No
Polynomial growth nd for d ∈ N “anything”

For any group G , cG (n) 4 βG (n).

If G is abelian then cG (n) ∼ βG (n) (converse does not hold).
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Growth series

Suppose we have some growth function γ for a group G and generating set S .

Definition

The (standard/conjugacy/etc.) growth series of G with respect to S is the formal
power series

S(z) :=
∞∑
n=0

γ(n)zn.
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Algebraic complexity

A formal power series S(z) is called

rational if there exist polynomials P, Q with integer coefficients such that

S(z) = P(z)
Q(z) ;

algebraic if S(z) satisfies a polynomial equation with polynomial coefficients;

holonomic (a.k.a. D-finite) if S(z) satisfies a finite order differential equation,
with polynomial coefficients;

transcendental if it is not algebraic.

Question: Into which classes do the various growth functions fall?
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Examples

Standard growth of F2, with respect to a basis: σ(n) = 4 · 3n−1 for n ≥ 1

S(z) = 1 +
∑
n≥1

4 · 3n−1zn = 1 +
4

3

∑
n≥1

(3z)n =
1− 2z

1− 3z

Standard (and conjugacy) growth of Z2 with respect to {(1, 0), (0, 1)}:
σ(n) = 4n for n ≥ 1

S(z) = 1 +
∑
n≥1

(4n)zn =
(1 + z)2

(1− z)2
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Rational growth

Rational growth reflects a strong ‘regularity’ property:

Proposition

A series S(z) =
∑
γ(n)zn ∈ Z[[z ]] is rational if and only if γ(n) satisfies a linear

recurrence relation: γ(n) = a1γ(n − 1) + · · · akγ(n − k) for ai ∈ Q.

Proof by example

Let γ(0) = γ(1) = 1 and γ(n) = γ(n − 1) + γ(n − 2) for n ≥ 2.

∞∑
n=0

γ(n)zn = 1 + z +
∞∑
n=2

(γ(n − 1) + γ(n − 2))zn

= 1 + z
∞∑
n=0

γ(n)zn + z2
∞∑
n=0

γ(n)zn

∞∑
n=0

γ(n)zn =
1

1− z − z2
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Fun with generating functions

Product formula: For any functions f , g , we have:

∞∑
n=0

f (n)zn ·
∞∑
n=0

g(n)zn =
∞∑
n=0

n∑
k=0

f (k)g(n − k)zn.

Set f (n) = 1 and g(n) = σ(n), the strict growth function:

1

1− z

∞∑
n=0

σ(n)zn =
∞∑
n=0

n∑
k=0

σ(n − k)zn =
∞∑
n=0

β(n)zn.

Proposition

The algebraic complexity of the cumulative (conjugacy) growth series is the same
as that of the strict (conjugacy) growth series.
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A restriction on asymptotics

Proposition

If a series S(z) is rational then the coefficients grow either exponentially or
polynomially.

Idea of proof
We can write

S(z) =
p(z)

q(z)
= p′(z)

k∏
i=1

1

1− αiz
, αi ∈ C.

If there is a pole inside the unit disc, have some |αi | > 1. This gives exponential
growth.
Otherwise, can show the growth is at most polynomial (hint: use the product
formula).

Corollary

If G has intermediate (conjugacy) growth, it cannot have rational (conjugacy)
growth series.
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Combination theorems

Suppose G = 〈S〉, H = 〈T 〉.

Then S and T both embed into G × H and into G ∗ H.

And S ∪ T ⊂ G × H, and S ∪ T ⊂ G ∗ H are generating sets.

Theorem
Direct product:

SG×H,S∪T (z) = SG ,S(z) · SH,T (z)

Free product:
1

SG∗H,S∪T (z)
=

1

SG ,S(z)
+

1

SH,T (z)
− 1

In particular, if G and H have rational growth series, then so do G ×H and G ∗H.
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Decision problems

Max Dehn, 1912.

Word problem: For a given presentation G = 〈S | R〉, is there an algorithm
to decide whether a word in S∗ represents the identity in G?

Conjugacy problem: Is there an algorithm to decide whether any pair of
words in S∗ represent conjugate elements?

If the standard (or conjugacy) growth series is holonomic then the word (or
conjugacy) problem has a solution.

Corollary

If G has insoluble word (conjugacy) problem then it has non-holonomic standard
(conjugacy) growth.
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Growth Series

So the growth series are a useful tool...

but the algebraic complexity is not a group invariant!

Theorem (Stoll, 1996)

The higher Heisenberg groups Hr have rational standard growth series with respect
to one choice of generating set and transcendental with respect to another.

H2 =




1 a b c
0 1 0 d
0 0 1 e
0 0 0 1


∣∣∣∣∣∣∣∣a, b, c , d , e ∈ Z


Proof makes use of combination theorems about ’central products’.
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What do we know?

In some cases the behaviour is known to be independent of the generators:

Standard Growth Series Conjugacy Growth Series
Hyperbolic Rational Transcendental

(Cannon 1984*) (Antoĺın-Ciobanu 2017)
Virtually abelian Rational (Benson 1983) Rational (E. 2019)
Heisenberg H1 Rational (Duchin-Shapiro 2019) Transcendental (E. 2020)

Rational standard growth for some generators:

some automatic groups (Epstein et al 1992),

soluble Baumslag-Solitar groups BS(1, k) (Collins-Edjvet-Gill 1994),

and many more.

Transcendental conjugacy growth for some generators:

soluble Baumslag-Solitar groups (Ciobanu-E.-Ho 2020),

some wreath products (Mercier 2016).
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Transcendental conjugacy growth for some generators:

soluble Baumslag-Solitar groups (Ciobanu-E.-Ho 2020),

some wreath products (Mercier 2016).
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Regular languages

A language L ⊂ S∗ is called regular if it is accepted by a finite state automaton (a
directed, S-labelled graph with nominated start and accept states).
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Regular languages

Theorem
The growth series of a regular language L is rational.

Proof.
Let M be the transition matrix of a finite state automaton accepting L.

The number of words in L of length n is given by sTMna.

The growth series is then

∑
n≥0

(
sTMna

)
zn = sT

∑
n≥0

(Mz)n

 a = sT (I −Mz)−1a.

So if we can find a language of geodesic representatives for the elements of G ,
then the growth series is rational.
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Example

The language of geodesics in F2 with respect to a basis is regular.
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Hyperbolic groups - standard growth

Theorem (Cannon)

For a hyperbolic group, with any choice of finite generating set, the language of
all geodesics is regular.

Corollary
The standard growth series is rational, with respect to any choice of finite
generating set (using a modified counting argument).

This is a consequence of the geometry.
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Hyperbolic groups - conjugacy growth

Theorem (Antoĺın-Ciobanu 2017)

The conjugacy growth series of a hyperbolic group G is rational if G is virtually
cyclic and transcendental otherwise.

For any finite generating set, there exist constants A, B, ρ, such that

A
eρn

n
≤ cG ,S(n) ≤ B

eρn

n
.

No algebraic series can have these asymptotics (via an analytic combinatorics
result of Flajolet).
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Virtually abelian groups

Let G be a virtually abelian group with a finite generating set S .

The standard growth series is rational (Benson 1982).

The conjugacy growth series is rational (E. 2019).

Cosets, subgroups, solutions of equations... (E. 2019, E.-Levine 2020).

The set of all geodesics? Sometimes rational. (Bishop 2020).

Patterns and polyhedral sets

Partition S∗ into pieces (aka patterns) that behave like subsets of Nr . Reduce to
sets of representatives which are ‘polyhedral’. Precise form depends on structure
of S∗, but they produce rational growth series in each case.
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Higher Heisenberg groups

Definition

For any positive integer r , define the (higher) Heisenberg group Hr as follows:

Hr =

〈
a1, b1, a2, b2, . . . , ar , br

∣∣∣∣∣∣
[ai , aj ] = [ai , bj ] = [bi , bj ] = 1 ∀i 6= j
[ai , bi ] = [aj , bj ] ∀i 6= j
[[ai , bi ], aj ] = [[ai , bi ], bj ] = 1 ∀i , j

〉
.

H2 =




1 a b c
0 1 0 d
0 0 1 e
0 0 0 1


∣∣∣∣∣∣∣∣a, b, c , d , e ∈ Z


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Conjugacy growth

Theorem (Babenko 1989)

The higher Heisenberg groups Hr have conjugacy growth

cHr (n) ∼

{
n2 log n r = 1

n2r r ≥ 2
.

Corollary
The conjugacy growth series of H1 is non-holonomic.
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Case r = 1

H1 = 〈a, b | [[a, b], a] = [[a, b], b] = 1〉

Babenko’s Theorem: c(n) ∼ n2 log n

Write c = [a, b]. We can commute a and b at the cost of powers of c :
ab = bac.

Normal form {aibjck | i , j , k ∈ Z}
Conjugating:

aaibjcka−1 = aibjck+j , baibjckb−1 = aibjck−i

and so [aibjck ] = aibjck〈cgcd(i,j)〉.
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Length of a conjugacy class

Claim: [aibjck ] = aibjck〈cgcd(i,j)〉 has length |i |+ |j |.

Proof:

Any element aibjck has length at least |i |+ |j |.
Assume i , j > 0. There exists 0 ≤ K < gcd(i , j) with aibjc−K ∈ [aibjck ].

ai−1bKabj−K has length i + j and represents the element aibjc−K , and hence
the conjugacy class [aibjck ].

So at each point (i , j), there are exactly gcd(i , j) many conjugacy classes, all of
length |i |+ |j |∗.
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Abelianisation

Conjugacy growth:

c(n) ∼ βAb(H1)(n) · (‘expected value’ of gcd(i , j) if |i |+ |j | ≤ n)

∼ n2 log n
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Non-holonomic growth series

Corollary
The conjugacy growth series of H1 is non-holonomic.

Proof:

If γ(n) ≤ nd , some d ∈ N, and
∑

n≥0 γ(n)zn ∈ Q(z) then there is some

d ′ ∈ N with γ(n) ∼ nd
′
.

(Pólya-Carlson Theorem) If
∑

n≥0 γ(n)zn ∈ Z[[z ]] converges inside the unit
disc, it is either rational or has the unit circle as a natural boundary.

A holonomic function has only finitely many singularities.

Question: What about the conjugacy growth series of Hr in general?
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Open Problems

Find more examples where the growth series behaviour is independent of the
choice of generating set.

Find more examples where the growth series behaviour depends on the choice
of generating set.

Conjecture: A finitely presented group has rational conjugacy growth series
if and only if it is virtually abelian.
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