Introduction to Growth in Groups Part I: Asymptotics

Alex Evetts

Erwin Schrödinger Institute / University of Vienna

19/11/2020

Mann - 'How groups grow'

Given a group G, generated by a finite subset S, define a graph $\Gamma(G,S) = \Gamma$.

- Vertices correspond to elements of G: $V(\Gamma) = \{v_g \mid g \in G\}$
- Directed edges connect vertices v_g to v_h iff $h = \overline{gs}$ for $s \in S$

WORD LENGTH

The word length of $g \in G$ with respect to S is the length of a shortest word representing g:

$$|g|_{S} = \min\{|w| \mid w \in S^*, \ w =_{G} g\}$$

WORD LENGTH

The word length of $g \in G$ with respect to S is the length of a shortest word representing g:

$$|g|_S = \min\{|w| \mid w \in S^*, \ w =_G g\}$$

Equivalently, $|g|_S$ is the length of a geodesic path from v_1 to v_g in the Cayley graph.

3/20

WORD LENGTH

The word length of $g \in G$ with respect to S is the length of a shortest word representing g:

$$|g|_S = \min\{|w| \mid w \in S^*, \ w =_G g\}$$

Equivalently, $|g|_S$ is the length of a geodesic path from v_1 to v_g in the Cayley graph.

In fact, Cayley graph becomes a metric space if we define $d(g,h) = |g^{-1}h|_S$.

DEFINITION

The strict growth function $\sigma_{G,S}(n) = \#\{g \in G \mid |g|_S = n\}$,

and the cumulative growth function $\beta_{G,S}(n) = \#\{g \in G \mid |g|_S \leq n\}$.

DEFINITION

The strict growth function $\sigma_{G,S}(n) = \#\{g \in G \mid |g|_S = n\}$,

and the cumulative growth function $\beta_{G,S}(n) = \#\{g \in G \mid |g|_S \leq n\}$.

ullet counting the number of elements in the metric sphere or ball of radius n in Γ

Counting elements

DEFINITION

The strict growth function $\sigma_{G,S}(n) = \#\{g \in G \mid |g|_S = n\}$,

and the cumulative growth function $\beta_{G,S}(n) = \#\{g \in G \mid |g|_S \leq n\}$.

ullet counting the number of elements in the metric sphere or ball of radius n in Γ

Loose interpretation: groups with 'faster' growth functions are 'larger'.

$$\mathbb{Z}^2 = \langle a, b \mid [a, b] \rangle$$

EQUIVALENCE OF GROWTH FUNCTIONS

ullet For two functions $f,g\colon \mathbb{N} \to \mathbb{N}$ we write $f \preccurlyeq g$ if there exists $\lambda \geq 1$ s.t.

$$f(n) < \lambda g(\lambda n + \lambda) + \lambda$$

for all n.

EQUIVALENCE OF GROWTH FUNCTIONS

• For two functions $f,g: \mathbb{N} \to \mathbb{N}$ we write $f \preccurlyeq g$ if there exists $\lambda \geq 1$ s.t.

$$f(n) < \lambda g(\lambda n + \lambda) + \lambda$$

for all n.

• If $f \preccurlyeq g$ and $g \preccurlyeq f$ then we write $f \sim g$ and say that the functions are equivalent.

Equivalence of growth functions

• For two functions $f,g:\mathbb{N}\to\mathbb{N}$ we write $f \leq g$ if there exists $\lambda\geq 1$ s.t.

$$f(n) < \lambda g(\lambda n + \lambda) + \lambda$$

for all n.

• If $f \leq g$ and $g \leq f$ then we write $f \sim g$ and say that the functions are equivalent.

Fact: If S and T are two generating sets for a group G, then $\beta_{G,S} \sim \beta_{G,T}$.

get
$$|g|_S \leq N$$

$$g = 5.52 - 5m$$

$$|g|_T \leq R.N$$

Growth behaves "well".

8 / 20

(5)=H (T)=G S_= t_-t_m eT*

Growth behaves "well".

• If H is a finitely generated subgroup of G then $\beta_H \leq \beta_G$.

Growth behaves "well".

- If H is a finitely generated subgroup of G then $\beta_H \leq \beta_G$.
- If $N \triangleleft G$ then $\beta_{G/N} \preccurlyeq \beta_G$.

Growth behaves "well".

- If H is a finitely generated subgroup of G then $\beta_H \leq \beta_G$.
- If $N \triangleleft G$ then $\beta_{G/N} \preccurlyeq \beta_G$.
- Commensurability invariant: if H is a finite index subgroup of G then $\beta_H \sim \beta_G$.

8 / 20

Growth behaves "well".

- If H is a finitely generated subgroup of G then $\beta_H \leq \beta_G$.
- If $N \triangleleft G$ then $\beta_{G/N} \preccurlyeq \beta_G$.
- Commensurability invariant: if H is a finite index subgroup of G then $\beta_H \sim \beta_G$.
- Quasi-Isometry invariant: quasi-isometric groups have equivalent growth functions.

Possible Growth

Which functions can occur as growth functions?

Personation - www.PDFAnnotator -

Which functions can occur as growth functions?

• Exponential: $\beta(n) \sim a^n$, some a > 1, e.g. free groups, hyperbolic groups N.B. every group has growth function bounded above by an exponential

Which functions can occur as growth functions?

- Exponential: $\beta(n) \sim a^n$, some a > 1, e.g. free groups, hyperbolic groups N.B. every group has growth function bounded above by an exponential
- Polynomial: $\beta(n) \leq n^d$, some d > 0, e.g. abelian groups $d \in \mathbb{R}$

Which functions can occur as growth functions?

- Exponential: $\beta(n) \sim a^n$, some a > 1, e.g. free groups, hyperbolic groups N.B. every group has growth function bounded above by an exponential
- Polynomial: $\beta(n) \leq n^d$, some d > 0, e.g. abelian groups
- Intermediate: strictly bigger than any polynomial, strictly smaller than any exponential, e.g. $\beta(n) \sim 2^{\sqrt{n}}$ (Grigorchuk's group see Marialaura's lectures)

Subnormal series:

$$\underline{G} = G_0 \rhd G_1 \rhd G_2 \cdots \rhd G_r = \{1\}$$

Subnormal series:

$$G = G_0 \rhd G_1 \rhd G_2 \cdots \rhd G_r = \{1\}$$

G is soluble if it has a subnormal series with each G_i/G_{i+1} is abelian.

REMINDER

Subnormal series:

$$G = G_0 \rhd G_1 \rhd G_2 \cdots \rhd G_r = \{1\}$$

G is soluble if it has a subnormal series with each G_i/G_{i+1} is abelian.

G is polycyclic if it has a subnormal series with each G_i/G_{i+1} is cyclic.

Subnormal series:

$$G = G_0 \rhd G_1 \rhd G_2 \cdots \rhd G_r = \{1\}$$

G is soluble if it has a subnormal series with each G_i/G_{i+1} is abelian.

G is polycyclic if it has a subnormal series with each G_i/G_{i+1} is cyclic.

G is nilpotent if it has a subnormal series with each $G_{i+1} \triangleleft G$ and $G_i/G_{i+1} \leq Z(G/G_{i+1})$.

For any group G, define $G^{(i)} = \langle [\cdots [[x_0, x_1], x_2] \cdots x_i] \mid x_k \in G \rangle$

For any group G, define $G^{(i)} = \langle [\cdots [[x_0, x_1], x_2] \cdots x_i] \mid x_k \in G \rangle$

DEFINITION

G is nilpotent if there is some $i \in \mathbb{N}$ with $G^{(i)}$ is trivial. The first such i is the nilpotency class of G.

For any group G, define $G^{(i)} = \langle [\cdots [[x_0, x_1], x_2] \cdots x_i] \mid x_k \in G \rangle$

DEFINITION

G is nilpotent if there is some $i \in \mathbb{N}$ with $G^{(i)}$ is trivial. The first such i is the nilpotency class of G.

Wolf (1968): Every virtually nilpotent group has polynomial growth.

$\overline{ m V}$ $\overline{ m R}$ roduced with a $\overline{ m R}$ $\overline{ m c}$ all $\overline{ m R}$ $\overline{ m e}$ roi $\overline{ m R}$ $\overline{ m e}$ $\overline{$

For any group G, define $G^{(i)} = \langle [\cdots [[x_0, x_1], x_2] \cdots x_i] \mid x_k \in G \rangle$

DEFINITION

G is nilpotent if there is some $i \in \mathbb{N}$ with $G^{(i)}$ is trivial. The first such i is the nilpotency class of G.

Wolf (1968): Every virtually nilpotent group has polynomial growth.

Bass (1972), Guivarc'h (1973): The degree of polynomial growth of a virtually nilpotent group *G* is given by

$$\lambda = \sum_{i=1}^{c} i \cdot \operatorname{rank}\left(G^{(i)}/G^{(i+1)}\right).$$

B(n) ~ nd

free rule of voule2, class 2

The discrete Heisenberg group: $H = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$

EXAMPLE

The discrete Heisenberg group: $H = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$

•
$$H^{(1)} = \langle [g_0, g_1] \mid g_i \in H \rangle = \langle [a, b] \rangle \cong \mathbb{Z}$$

The discrete Heisenberg group: $H = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$

- $H^{(1)} = \langle [g_0, g_1] \mid g_i \in H \rangle = \langle [a, b] \rangle \cong \mathbb{Z}$
- $\bullet \ \ H^{(2)} = \langle [[g_0,g_1],g_2] \mid g_i \in H \rangle = \{1\}$

The discrete Heisenberg group: $H = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$

•
$$H^{(1)} = \langle [g_0, g_1] \mid g_i \in H \rangle = \langle [a, b] \rangle \cong \mathbb{Z}$$

•
$$H^{(2)} = \langle [[g_0, g_1], g_2] \mid g_i \in H \rangle = \{1\}$$

Quotients: $H/H^{(1)} \cong \mathbb{Z}^2$, $H^{(1)}/H^{(2)} \cong \mathbb{Z}$.

The discrete Heisenberg group: $H = \langle a, b \mid [[a, b], a] = [[a, b], b] = 1 \rangle$

- $H^{(1)} = \langle [g_0, g_1] \mid g_i \in H \rangle = \langle [a, b] \rangle \cong \mathbb{Z}$
- $H^{(2)} = \langle [[g_0, g_1], g_2] \mid g_i \in H \rangle = \{1\}$

Quotients: $H/H^{(1)} \cong \mathbb{Z}, H^{(1)}/H^{(2)} \cong \mathbb{Z}$.

Bass-Guivarc'h: $\beta(n) \sim n^{1 \times 2 + 2 \times 1} = n^4$

19605

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Some history

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

SOME HISTORY

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).

13 / 20

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).

Tits alternative: Every linear group is either virtually soluble or has a non-abelian free subgroup.

SOME HISTORY

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).

Tits alternative: Every linear group is either virtually soluble or has a non-abelian free subgroup.

So every linear group has either exponential growth of is virtually nilpotent (with polynomial growth).

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).

Tits alternative: Every linear group is either virtually soluble or has a non-abelian free subgroup.

So every linear group has either exponential growth of is virtually nilpotent (with polynomial growth).

More generally: G is said to satisfy a Tits Alternative if every subgroup $H \leq G$ is either virtually soluble or has a non-abelian free subgroup.

This includes Hyperbolic groups, mapping class groups, $Out(F_n)$.

1968

CONVERSE TO BASS-GUIVARC'H

THEOREM (GROMOV 1981)

A finitely generated group has polynomial growth if and only if it is virtually nilpotent.

THEOREM (GROMOV 1981)

A finitely generated group has polynomial growth if and only if it is virtually nilpotent.

Consequence: If a group has growth function $\beta(n) \sim n^d$ then $d \in \mathbb{N}$.

URroduced with a Nitial Version to PDFHAnnotator - www.PDFAnno

For a group G with generating set S, define:

growth rate
$$\rho_{G,S} = \lim_{n \to \infty} \left(\underline{\beta}_{G,S}(n) \right)^{\frac{1}{n}}$$

15 / 20

Unroduced with a Trial Version of Portion of the North Annotator - www.PDFAnnotator - www

For a group G with generating set S, define:

$$\rho_{G,S} = \lim_{n \to \infty} (\beta_{G,S}(n))^{\frac{1}{n}}$$

G has uniform exponential growth if $\inf_{S} \rho_{G,S} > 1$.

Hyp., MCG, ...

John Wilson

CProducedowithcar TriatiVersion of PDF Annotator - www.PDFAnno

ullet $\mathcal{C}_G:=$ set of conjugacy classes of G

- ullet $\mathcal{C}_G:=$ set of conjugacy classes of G
- $\bullet \ \, \text{For} \,\, \kappa \in \mathcal{C}_{\mathcal{G}}, \, \text{define} \,\, |\kappa|_{\mathcal{S}} = \min\{|w| \mid w \in \mathcal{S}^*, \,\, \overline{w} \in \kappa\} = \min\{|g|_{\mathcal{S}} \mid g \in \kappa\}$

CProducedowithcar TriatiVersion of PDF Annotator - www.PDFAnno

- ullet $\mathcal{C}_G:=$ set of conjugacy classes of G
- For $\kappa \in \mathcal{C}_G$, define $|\kappa|_S = \min\{|w| \mid w \in S^*, \ \overline{w} \in \kappa\} = \min\{|g|_S \mid g \in \kappa\}$

DEFINITION

The strict and cumulative conjugacy growth functions of ${\it G}$ with respect to ${\it S}$ are

$$s_{G,S}(n) = \#\{\kappa \in \mathcal{C}_G \mid |\kappa|_S = n\},\$$

$$c_{G,S}(n) = \#\{\kappa \in \mathcal{C}_G \mid |\kappa|_S \leq n\}$$

Conjugacy growth

- ullet $\mathcal{C}_G := \mathsf{set}$ of conjugacy classes of G
- $\bullet \ \, \text{For} \,\, \kappa \in \mathcal{C}_{\textit{G}}, \, \text{define} \,\, |\kappa|_{\textit{S}} = \min\{|w| \mid w \in \textit{S}^*, \,\, \overline{w} \in \kappa\} = \min\{|g|_{\textit{S}} \mid g \in \kappa\}$

DEFINITION

The strict and cumulative conjugacy growth functions of ${\it G}$ with respect to ${\it S}$ are

$$s_{G,S}(n) = \#\{\kappa \in \mathcal{C}_G \mid |\kappa|_S = n\},$$

$$c_{G,S}(n) = \#\{\kappa \in \mathcal{C}_G \mid |\kappa|_S \le n\}$$

• $c_{G,S}(n)$ is the number of distinct conjugacy classes intersecting the ball of radius n in the Cayley graph

Conjugacy growth

- ullet $\mathcal{C}_G := \mathsf{set}$ of conjugacy classes of G
- $\bullet \ \, \text{For} \,\, \kappa \in \mathcal{C}_{\textit{G}}, \, \text{define} \,\, |\kappa|_{\textit{S}} = \min\{|w| \mid w \in \textit{S}^*, \,\, \overline{w} \in \kappa\} = \min\{|g|_{\textit{S}} \mid g \in \kappa\}$

DEFINITION

The strict and cumulative conjugacy growth functions of ${\it G}$ with respect to ${\it S}$ are

$$s_{G,S}(n) = \#\{\kappa \in \mathcal{C}_G \mid |\kappa|_S = n\},$$

$$c_{G,S}(n) = \#\{\kappa \in \mathcal{C}_G \mid |\kappa|_S \le n\}$$

• $c_{G,S}(n)$ is the number of distinct conjugacy classes intersecting the ball of radius n in the Cayley graph

 Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.

F. Rroduced with actival Version of RDFVAnnotator - www.PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).

FACTS ABOUT CONJUGACY GROWTH

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).
- Conjugacy growth is always bounded above by standard growth.

F. Rroduced with actival Version of RDFVAnnotator - www.PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).
- Conjugacy growth is always bounded above by standard growth.
- Conjugacy growth and standard growth coincide in abelian groups.

F. Produced with actival Version of RDFVAnnotator - www.PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).
- Conjugacy growth is always bounded above by standard growth.
- Conjugacy growth and standard growth coincide in abelian groups.

	Standard	Conjugacy
Group invariant	Yes	Yes <
Quasi-Isometry Invariant	Yes	No
Polynomial growth	n^d for $d \in \mathbb{N}$	a nything **

EXAMPLE

$$F_2 = \langle a, b \mid - \rangle$$

• Each element is conjugate to a cyclically reduced element (approximately 3ⁿ such elements).

$$ba^{-1}ba$$
 $ba^{-1}ba$
 $F_{2} = \langle a, b \mid - \rangle$

- Each element is conjugate to a cyclically reduced element (approximately 3ⁿ such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other.

- $F_2 = \langle a, b \mid \rangle$
- Each element is conjugate to a cyclically reduced element (approximately 3ⁿ such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other
- A cyclically reduced element has *n* cyclic permutations (not counting powers which are negligible).

$$F_2 = \langle a, b \mid - \rangle$$

- Each element is conjugate to a cyclically reduced element (approximately 3ⁿ such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other.
- A cyclically reduced element has *n* cyclic permutations (not counting powers which are negligible).
- So $c_{F_2}(n) \sqrt{\frac{3^n}{n}}$

EXAMPLE

$$F_2 = \langle a, b \mid - \rangle$$

- Each element is conjugate to a cyclically reduced element (approximately 3ⁿ such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other.
- A cyclically reduced element has *n* cyclic permutations (not counting powers which are negligible).
- So $c_{F_2}(n) \sim \frac{3^n}{n}$

This holds for any non-elementary hyperbolic group (Coornaert-Knieper).

EXPONENTIAL CONJUGACY GROWTH

CONJECTURE (GUBA-SAPIR 2010)

For "ordinary" groups, exponential standard growth should imply exponential conjugacy growth

(so the conjugacy and standard growth functions are equivalent).

EXPONENTIAL CONJUGACY GROWTH

CONJECTURE (GUBA-SAPIR 2010)

For "ordinary" groups, exponential standard growth should imply exponential conjugacy growth (so the conjugacy and standard growth functions are equivalent).

Breuillard-Cornulier: This holds for soluble groups.

amenable 3 F

Conjecture (Guba-Sapir 2010)

For "ordinary" groups, exponential standard growth should imply exponential conjugacy growth

(so the conjugacy and standard growth functions are equivalent).

Breuillard-Cornulier: This holds for soluble groups.

Breuillard-Cornulier-Lubotzky-Meiri: This holds for all linear groups.

POLYNOMIAL CONJUGACY GROWTH

For groups of polynomial standard growth, the standard and conjugacy growth functions can be non-equivalent.

For groups of polynomial standard growth, the standard and conjugacy growth functions can be non-equivalent.

Example: Heisenberg group: $c(n) \sim n^2 \log n$

(3(w) ~ ~4

POLYNOMIAL CONJUGACY GROWTH

For groups of polynomial standard growth, the standard and conjugacy growth functions can be non-equivalent.

Example: Heisenberg group: $c(n) \sim n^2 \log n$

Open question: What are the asymptotics for the conjugacy growth of virtually nilpotent groups in general?

Can the function be determined from the lower central series, as for standard growth?