Produced with a Trial Version of PDF Annotator - www.PDFAnno

Introduction to Growth in Groups Part I: Asymptotics

Alex Evetts

Erwin Schrödinger Institute / University of Vienna

19/11/2020

BRroduced witlsec\$rial Version of PDF Annotator - www.PDFAnno

Given a group G, generated by a finite subset S, define a graph $\Gamma(G, S)=\Gamma$.

- Vertices correspond to elements of $G: V(\Gamma)=\left\{v_{g} \mid g \in G\right\}$
- Directed edges connect vertices v_{g} to v_{h} iff $h=\widehat{g s}$ for $s \in S$

BRroduced witlsec\$rial Version of PDF Annotator - www.PDFAnno

Word LengTh

The word length of $g \in G$ with respect to S is the length of a shortest word representing g :

$$
|g|_{S}=\min \left\{|w| \mid w \in S^{*}, w=_{G} g\right\}
$$

BRroduced witlsec\$rial Version of PDF Annotator - www.PDFAnno

Word Length

The word length of $g \in G$ with respect to S is the length of a shortest word representing g :

$$
|g|_{S}=\min \left\{|w| \mid w \in S^{*}, w=_{G} g\right\}
$$

Equivalently, $|g|_{S}$ is the length of a geodesic path from v_{1} to v_{g} in the Cayley graph.

BRroduced withec\$rial Version of PDF Annotator - www.PDFAnno

Word LengTH

The word length of $g \in G$ with respect to S is the length of a shortest word representing g :

$$
|g|_{S}=\min \left\{|w| \mid w \in S^{*}, w=_{G} g\right\}
$$

Equivalently, $|g|_{S}$ is the length of a geodesic path from v_{1} to v_{g} in the Cayley graph.

In fact, Cayley graph becomes a metric space if we define $d(g, h)=\left|g^{-1} h\right|_{s}$.

$$
S^{-1}=S
$$

CBroducedawith aniriaal Nersion of PDF Annotator - www.PDFAnno

[^0]
CBroducedtwith aniriaa Nersion of PDF Annotator - www.PDFAnno

Definition

The strict growth function $\sigma_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s}=n\right\}$,
and the cumulative growth function $\beta_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s} \leq n\right\}$.

- counting the number of elements in the metric sphere or ball of radius n in Γ

Counting elements

Definition

The strict growth function $\sigma_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s}=n\right\}$, and the cumulative growth function $\beta_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s} \leq n\right\}$.

- counting the number of elements in the metric sphere or ball of radius n in Γ Loose interpretation: groups with 'faster' growth functions are 'larger'.

ERrodurdedswith a Trial Version of PDF Annotator - www.PDFAnno

$$
\begin{aligned}
& \mathbb{Z}^{2}=\langle a, b \mid[a, b]\rangle \\
& \sigma(n)=4 n \\
& \sigma(n)=1
\end{aligned}
$$

ERroduredswith a Trial Version of PDF Annotator - www.PDFAnno

$$
\begin{aligned}
& F_{2}=\langle a, b \mid-\rangle \\
& \sigma(0)=1 \\
& \sigma(n)=4 \cdot 3^{n-1} \\
& \sigma(n)=2 r(2 r-1)^{n-1}
\end{aligned}
$$

InRroducedwith a Trial Version of PDF Annotator - www.PDFAnno

Equivalence of growth functions

- For two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ we write $f \preccurlyeq g$ if there exists $\lambda \geq 1$ s.t.

$$
f(n)<\lambda g(\lambda n+\lambda)+\lambda
$$

for all n.

InRroducedawith a Trial Version of PDF Annotator - www.PDFAnno

EQUIVALENCE OF GROWTH FUNCTIONS

- For two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ we write $f \preccurlyeq g$ if there exists $\lambda \geq 1$ s.t.

$$
f(n)<\lambda g(\lambda n+\lambda)+\lambda
$$

for all n.

- If $f \preccurlyeq g$ and $g \preccurlyeq f$ then we write $f \sim g$ and say that the functions are equivalent.

InRroducedcwith a Trial Version of PDF Annotator - www.PDFAnno

EQUIVALENCE OF GROWTH FUNCTIONS

- For two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ we write $f \preccurlyeq g$ if there exists $\lambda \geq 1$ s.t.

$$
f(n)<\lambda g(\lambda n+\lambda)+\lambda
$$

for all n.

- If $f \preccurlyeq g$ and $g \preccurlyeq f$ then we write $f \sim g$ and say that the functions are equivalent.

Fact: If S and T are two generating sets for a group G, then $\beta_{G, S} \sim \beta_{G, T}$.
$R_{1}=\max _{s \in S}\left\{\left|\leq| |_{T}\right\} \quad G \in|g|_{S} \leq n \quad \rightarrow \beta_{G, S}(n) \leq \beta_{G, T}\left(R_{n}\right)\right.$
$R_{2}=\max _{t \in T}\left\{|t|_{s}\right\}$
$g=S_{1} S_{2} \cdots S_{m} \quad|g|_{T} \leqslant R \cdot n$

Fundamental Results

Growth behaves "well".

F Produced with a Rriat VVersion of PDF Annotator - www.PDFAnno

Growth behaves "well".

$\langle T\rangle=G$
$s_{1}=t_{i} \cdot t_{m}$

- If H is a finitely generated subgroup of G then $\beta_{H} \preccurlyeq \beta_{G}$.

Fundamental Results

Growth behaves "well".

- If H is a finitely generated subgroup of G then $\beta_{H} \preccurlyeq \beta_{G}$.
- If $N \triangleleft G$ then $\beta_{G / N} \preccurlyeq \beta_{G}$.

Fundamental Results

Growth behaves "well".

- If H is a finitely generated subgroup of G then $\beta_{H} \preccurlyeq \beta_{G}$.
- If $N \triangleleft G$ then $\beta_{G / N} \preccurlyeq \beta_{G}$.
- Commensurability invariant: if H is a finite index subgroup of G then $\beta_{H} \sim \beta_{G}$.

Fundamental Results

Growth behaves "well".

- If H is a finitely generated subgroup of G then $\beta_{H} \preccurlyeq \beta_{G}$.
- If $N \triangleleft G$ then $\beta_{G / N} \preccurlyeq \beta_{G}$.
- Commensurability invariant: if H is a finite index subgroup of G then $\beta_{H} \sim \beta_{G}$.
- Quasi-Isometry invariant: quasi-isometric groups have equivalent growth functions.

Possible growth

Which functions can occur as growth functions?

PBroduced withoanTrial Version of PDF Annotator - www.PDFAnno

$$
4+马^{n-1}
$$

Which functions can occur as growth functions?

- Exponential: $\beta(n) \sim a^{n}$, some $a>1$, e.g. free groups, hyperbolic groups N.B. every group has growth function bounded above by an exponential

PBroduced withoanTrial Version of PDF Annotator - www.PDFAnno

Which functions can occur as growth functions?

- Exponential: $\beta(n) \sim a^{n}$, some $a>1$, e.g. free groups, hyperbolic groups N.B. every group has growth function bounded above by an exponential
- Polynomial: $\beta(n) \preccurlyeq n^{d}$, some $d>0$, e.g. abelian groups $4 h$ $d \in \mathbb{R}$

PBroduced withoanTrial Version of PDF Annotator - www.PDFAnno

Which functions can occur as growth functions?

- Exponential: $\beta(n) \sim a^{n}$, some $a>1$, e.g. free groups, hyperbolic groups N.B. every group has growth function bounded above by an exponential
- Polynomial: $\beta(n) \preccurlyeq n^{d}$, some $d>0$, e.g. abelian groups $n^{d} d \in \mathbb{N}$
- Intermediate: strictly bigger than any polynomial, strictly smaller than any exponential, e.g. $\beta(n) \sim 2^{\sqrt{n}}$ (Grigorchuk's group - see Marialaura's lectures)

REnodwcedtwith a Trial Version of PDF Annotator - www.PDFAnno

Subnormal series:

$$
\underline{G}=G_{0} \triangleright G_{1} \triangleright G_{2} \cdots \triangleright G_{\underline{r}}=\{1\}
$$

REnodwcedtwith a Trial Version of PDF Annotator - www.PDFAnno

Subnormal series:

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \cdots \triangleright G_{r}=\{1\}
$$

G is soluble if it has a subnormal series with each G_{i} / G_{i+1} is abelian.

Reminder

Subnormal series:

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \cdots \triangleright G_{r}=\{1\}
$$

G is soluble if it has a subnormal series with each G_{i} / G_{i+1} is abelian. G is polycyclic if it has a subnormal series with each G_{i} / G_{i+1} is cyclic.

REnoducedtwith a Trial Version of PDF Annotator - www.PDFAnno

Subnormal series:

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \cdots \triangleright G_{r}=\{1\}
$$

G is soluble if it has a subnormal series with each G_{i} / G_{i+1} is abelian.
G is polycyclic if it has a subnormal series with each G_{i} / G_{i+1} is cyclic.
G is nilpotent if it has a subnormal series with each $G_{i+1} \triangleleft G$ and $G_{i} / G_{i+1} \leq Z\left(G / G_{i+1}\right)$.

VRroduced withra Frial Mersionof PPDF Annotator - www.PDFAnno

$$
x_{0} x_{0} x_{0}^{-1} x_{1}^{-1}
$$

For any group G, define $G^{(i)}=\left\langle\left[\cdots\left[\left[x_{0}, x_{1}\right], x_{2}\right] \cdots x_{i}\right] \mid x_{k} \in G\right\rangle$

VRroduced withia FrialB/Ersionof PPBF Annotator - www.PDFAnno

$$
G \nabla G^{(1)}>G^{(2)} \ldots 1
$$

For any group G, define $G^{(i)}=\left\langle\left[\cdots\left[\left[x_{0}, x_{1}\right], x_{2}\right] \cdots x_{i}\right] \mid x_{k} \in G\right\rangle$

DEFINITION

G is nilpotent if there is some $i \in \mathbb{N}$ with $G^{(i)}$ is trivial. The first such i is the nilpotency class of G.

VRroduced withia FrialkKersionofiPPEF Annotator - www.PDFAnno

For any group G, define $G^{(i)}=\left\langle\left[\cdots\left[\left[x_{0}, x_{1}\right], x_{2}\right] \cdots x_{i}\right] \mid x_{k} \in G\right\rangle$

Definition

G is nilpotent if there is some $i \in \mathbb{N}$ with $G^{(i)}$ is trivial. The first such i is the nilpotency class of G.

Wolf (1968): Every virtually nilpotent group has polynomial growth.

VRroduced withia Frialklersionof PPBF Annotator - www.PDFAnno

For any group G, define $G^{(i)}=\left\langle\left[\cdots\left[\left[x_{0}, x_{1}\right], x_{2}\right] \cdots x_{i}\right] \mid x_{k} \in G\right\rangle$

DEFINITION

G is nilpotent if there is some $i \in \mathbb{N}$ with $G^{(i)}$ is trivial. The first such i is the nilpotency class of G.

Wolf (1968): Every virtually nilpotent group has polynomial growth. Bass (1972), Guivarc'h (1973): The degree of polynomial growth of a virtually nilpotent group G is given by

$$
d=\sum_{i=1}^{c} i \cdot \operatorname{rank}(\underbrace{G^{(i)} / G^{(i+1)}}) .
$$

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

$$
\text { froe inip of omber, cless } 2
$$

The discrete Heisenberg group: $H=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle$

EXAMPLE

The discrete Heisenberg group: $H=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle$

- $H^{(1)}=\left\langle\left[g_{0}, g_{1}\right] \mid g_{i} \in H\right\rangle=\langle[a, b]\rangle \cong \mathbb{Z}$

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

The discrete Heisenberg group: $H=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle$

- $H^{(1)}=\left\langle\left[g_{0}, g_{1}\right] \mid g_{i} \in H\right\rangle=\langle[a, b]\rangle \cong \mathbb{Z}$
- $H^{(2)}=\left\langle\left[\left[g_{0}, g_{1}\right], g_{2}\right] \mid g_{i} \in H\right\rangle=\{1\}$

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

The discrete Heisenberg group: $H=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle$

- $H^{(1)}=\left\langle\left[g_{0}, g_{1}\right] \mid g_{i} \in H\right\rangle=\langle[a, b]\rangle \cong \mathbb{Z}$
- $H^{(2)}=\left\langle\left[\left[g_{0}, g_{1}\right], g_{2}\right] \mid g_{i} \in H\right\rangle=\{1\}$

Quotients: $H / H^{(1)} \cong \mathbb{Z}^{2}, H^{(1)} / H^{(2)} \cong \mathbb{Z}$.

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

$$
\begin{array}{rlr}
{\left[a^{k}, b^{2}\right]} & =c^{k l} \quad[a, b]=: c \\
4-\left[a^{n}, b^{n}\right] & =c^{n^{2}} &
\end{array}
$$

The discrete Heisenberg group: $H=\langle a, b \mid[[a, b], a]=[[a, b], b]=1\rangle$

- $H^{(1)}=\left\langle\left[g_{0}, g_{1}\right] \mid g_{i} \in H\right\rangle=\langle[a, b]\rangle \cong \mathbb{Z}$
- $H^{(2)}=\left\langle\left[\left[g_{0}, g_{1}\right], g_{2}\right] \mid g_{i} \in H\right\rangle=\{1\}$

Quotients: $H / H^{(1)} \cong{ }^{2} 2, H^{(1)} / H^{(2)} \cong \mathbb{Z}$
Bass-Guivarc'h: $\beta(n) \sim n \underline{1 \times 2+2 \times 1}=n^{4}$

$$
n^{2} \cdot n \cdot n=n^{4}
$$

S円rodurestwitha Trial Version of PDF Annotator - www.PDFAnno

1960 s
Milnor: A finitely generated soluble group of subexponential growth is polycyclic.

Some history

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.
Wolf: A polycyclic group of subexponential growth is virtually nilpotent.

Some history

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.
Wolf: A polycyclic group of subexponential growth is virtually nilpotent.
So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).

S円rodurestwitha Trial Version of PDF Annotator - www.PDFAnno

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.
Wolf: A polycyclic group of subexponential growth is virtually nilpotent.
So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).
Tits alternative: Every linear group is either virtually soluble or has a non-abelian free subgroup.

$$
\leqslant G L_{n} F
$$

Some history

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.
Wolf: A polycyclic group of subexponential growth is virtually nilpotent.
So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).
Tits alternative: Every linear group is either virtually soluble or has a non-abelian free subgroup.

So every linear group has either exponential growth of is virtually nilpotent (with polynomial growth).

S円roduredrwitha Trial Version of PDF Annotator - www.PDFAnno

Milnor: A finitely generated soluble group of subexponential growth is polycyclic.
Wolf: A polycyclic group of subexponential growth is virtually nilpotent.
So a finitely generated virtually soluble group either has exponential growth, or is virtually nilpotent (and hence has polynomial growth by Bass and Guivarc'h).
Tits alternative: Every linear group is either virtually soluble or has a non-abelian free subgroup.

So every linear group has either exponential growth of is virtually nilpotent (with polynomial growth).

More generally: G is said to satisfiy a Tits Alternative if every subgroup $H \leq G$ is either virtually soluble or has a non-abelian free subgroup.
This includes Hyperbolic groups, mapping class groups, $\operatorname{Out}\left(F_{n}\right)$.
1968

Converse to Bass-Guivarc'h

Theorem (Gromov 1981)

A finitely generated group has polynomial growth if and only if it is virtually nilpotent.

CBnoducedewithaBriadSVerssion ofREDIF Annotator - www.PDFAnno

Theorem (Gromov 1981)

A finitely generated group has polynomial growth if and only if it is virtually nilpotent.

Consequence: If a group has growth function $\beta(n) \sim n^{d}$ then $d \in \mathbb{N}$.

URioduced withp@TNiar VersionoffPDFIAnnotator - www.PDFAnno

For a group G with generating set S, define:

$$
\text { grouth rate } \rho_{G, S}=\lim _{n \rightarrow \infty}\left(\beta_{G, S}(n)\right)^{\frac{1}{n}}
$$

$$
\rho=a
$$

URiodureed withpeTNiar VersionoffDDFIAnnotator - www.PDFAnno

For a group G with generating set S, define:

$$
\rho_{G, S}=\lim _{n \rightarrow \infty}\left(\beta_{G, S}(n)\right)^{\frac{1}{n}}
$$

G has uniform exponential growth if $\inf _{S} \rho_{G, S}>1$.

CBroducedwwithcartriativersion of PDF Annotator - www.PDFAnno

S^{*}

- $\mathcal{C}_{G}:=$ set of conjugacy classes of G

CBroducedwwithcardriativersion of PDF Annotator - www.PDFAnno

- $\mathcal{C}_{G}:=$ set of conjugacy classes of G
- For $\kappa \in \mathcal{C}_{G}$, define $|\kappa|_{S}=\min \left\{|w| \mid w \in S^{*}, \bar{w} \in \kappa\right\}=\min \{|g| s \mid g \in \kappa\}$

CBroducedawithcartrialiversion of PDF Annotator - www.PDFAnno

- $\mathcal{C}_{G}:=$ set of conjugacy classes of G
- For $\kappa \in \mathcal{C}_{G}$, define $|\kappa|_{S}=\min \left\{|w| \mid w \in S^{*}, \bar{w} \in \kappa\right\}=\min \left\{|g|_{S} \mid g \in \kappa\right\}$

DEfinition

The strict and cumulative conjugacy growth functions of G with respect to S are

$$
\begin{aligned}
& s_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S}=n\right\}, \\
& c_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S} \leq n\right\}
\end{aligned}
$$

Conjugacy growth

- $\mathcal{C}_{G}:=$ set of conjugacy classes of G
- For $\kappa \in \mathcal{C}_{G}$, define $|\kappa|_{S}=\min \left\{|w| \mid w \in S^{*}, \bar{w} \in \kappa\right\}=\min \{|g| S \mid g \in \kappa\}$

DEfinition

The strict and cumulative conjugacy growth functions of G with respect to S are

$$
\begin{aligned}
& s_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S}=n\right\}, \\
& c_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S} \leq n\right\}
\end{aligned}
$$

- $c_{G, S}(n)$ is the number of distinct conjugacy classes intersecting the ball of radius n in the Cayley graph

Conjugacy growth

- $\mathcal{C}_{G}:=$ set of conjugacy classes of G
- For $\kappa \in \mathcal{C}_{G}$, define $|\kappa|_{S}=\min \left\{|w| \mid w \in S^{*}, \bar{w} \in \kappa\right\}=\min \{|g| S \mid g \in \kappa\}$

DEfinition

The strict and cumulative conjugacy growth functions of G with respect to S are

$$
\begin{aligned}
& s_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S}=n\right\}, \\
& c_{G, S}(n)=\#\left\{\left.\kappa \in \mathcal{C}_{G}| | \kappa\right|_{S} \leq n\right\}
\end{aligned}
$$

- $c_{G, S}(n)$ is the number of distinct conjugacy classes intersecting the ball of radius n in the Cayley graph

F Rroduced with acTriajJVersior ofiRDFVAnmotator - www.PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.

F Rcroduced wuith actriajJVersion of:RDFEAnmotator - www.PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).

Facts about conjugacy growth

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).
- Conjugacy growth is always bounded above by standard growth.

F Rroduced wuith actrialJVersion offRDEAAnmotator - www.PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).
- Conjugacy growth is always bounded above by standard growth.
- Conjugacy growth and standard growth coincide in abelian groups.

F Rroduced wuith actrialJVersion of RDFEAnmotator - www. PDFAnno

- Introduced by Babenko in 1989. Previous counting results by Margulis in 1969.
- Counts the number of closed geodesics, up to free homotopy, on a Riemannian manifold (with suitable hypothesis).
- Conjugacy growth is always bounded above by standard growth.
- Conjugacy growth and standard growth coincide in abelian groups.

	Standard	Conjugacy
Group invariant	Yes	Yes
Quasi-Isometry Invariant	Yes	No
Polynomial growth	n^{d} for $d \in \mathbb{N}$	"anything ${ }^{\text {man }}$

Example

$$
F_{2}=\langle a, b \mid-\rangle
$$

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

- Each element is conjugate to a cyclically reduced element (approximately 3^{n} such elements).

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

$$
F_{2}=\langle a, b \mid-\rangle
$$

- Each element is conjugate to a cyclically reduced element (approximately 3^{n} such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other.

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

$$
\begin{equation*}
F_{2}=\langle a, b \mid-\rangle \tag{2}
\end{equation*}
$$

- Each element is conjugate to a cyclically reduced element (approximately 3^{n} such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other oflugth n
- A cyclically reduced element has n cyclic permutations (not counting powers which are negligible).

ERrodureed with a Trial Version of PDF Annotator - www.PDFAnno

$$
F_{2}=\langle a, b \mid-\rangle
$$

- Each element is conjugate to a cyclically reduced element (approximately 3^{n} such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other.
- A cyclically reduced element has n cyclic permutations (not counting powers which are negligible).
- So $c_{F_{2}}(n)-\frac{3^{n}}{n}$

Example

$$
F_{2}=\langle a, b \mid-\rangle
$$

- Each element is conjugate to a cyclically reduced element (approximately 3^{n} such elements).
- Cyclically reduced elements are conjugate if and only if they are cyclic permutations of each other.
- A cyclically reduced element has n cyclic permutations (not counting powers which are negligible).
- So $c_{F_{2}}(n) \sim \frac{3^{n}}{n}$

This holds for any non-elementary hyperbolic group (Coornaert-Knieper).

Exponential conjugacy growth

Conjecture (Guba-Sapir 2010)

For "ordinary" groups, exponential standard growth should imply exponential conjugacy growth
(so the conjugacy and standard growth functions are equivalent).

Exponential conjugacy Growth

Conjecture (Guba-Sapir 2010)

For "ordinary" groups, exponential standard growth should imply exponential conjugacy growth
(so the conjugacy and standard growth functions are equivalent).
Breuillard-Cornulier: This holds for soluble groups.

ERroduced with actoiallJfersion offPDFAAninotator - www.PDFAnno

Conjecture (Guba-Sapir 2010)

For "ordinary" groups, exponential standard growth should imply exponential conjugacy growth (so the conjugacy and standard growth functions are equivalent).

Breuillard-Cornulier: This holds for soluble groups.
Breuillard-Cornulier-Lubotzky-Meiri: This holds for all linear groups.

Polynomial conjugacy growth

For groups of polynomial standard growth, the standard and conjugacy growth functions can be non-equivalent.

PBroduced wwith ađvialt Kension of PRDAFAnnotator - www.PDFAnno

For groups of polynomial standard growth, the standard and conjugacy growth functions can be non-equivalent.

Example: Heisenberg group: $c(n) \sim n^{2} \log n$

$$
\beta(n) \sim n^{4}
$$

Polynomial conjugacy growth

For groups of polynomial standard growth, the standard and conjugacy growth functions can be non-equivalent.

Example: Heisenberg group: $c(n) \sim n^{2} \log n$
Open question: What are the asymptotics for the conjugacy growth of virtually nilpotent groups in general?

Can the function be determined from the lower central series, as for standard growth?

[^0]: DEFINITION
 The strict growth function $\sigma_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s}=n\right\}$, and the cumulative growth function $\beta_{G, S}(n)=\#\left\{\left.g \in G| | g\right|_{s} \leq n\right\}$.

