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This paper explores the use of visualization through animations, coined visuanimation, in the field of statistics.
In particular, it illustrates the embedding of animations in the paper itself and the storage of larger movies
in the online supplemental material. We present results from statistics research projects using a variety of
visuanimations, ranging from exploratory data analysis of image data sets to spatio-temporal extreme event
modeling; these include a multiscale analysis of classification methods, the study of the effects of a simulated
explosive volcanic eruption, and an emulation of climate model output. This paper serves as an illustration of
visuanimation for future publications in Stat. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. Introduction
In our world of increasingly complex and big data structures and models, visualization of information and of analyzed
results is becoming more important than ever. If one believes the adage from the beginning of the 20th century that
“a picture is worth a thousand words,” then it seems appropriate at the beginning of the 21st century to claim that “a
movie is worth a million words,” or at least a thousand images. In this paper, we explore the use of visualization through
animations, coined visuanimation, in the field of statistics. This is particularly relevant for an online journal such as
Stat, where animations can be embedded in the paper itself and larger movies can be stored in the online supplemental
material of the paper. Although this attractive possibility has not yet been utilized so far in papers published in the
journal Stat, we envision that this practice will become the norm in future Stat papers.

This paper presents results from statistics research projects performed at King Abdullah University of Science and
Technology (KAUST) in Saudi Arabia using a variety of visuanimation techniques. Exploratory data analysis is the
ideal platform for generating animations: Section 2 considers the surface boxplot to visualize data sets of images
and provides a visuanimation of this interactive exploratory tool. Section 3 describes a visuanimation of multiscale
analysis of classification using data depth. Spatio-temporal data is an interesting setting for visuanimation: Section 4
aims at visualizing the output from simulation models and considers the formation and dispersion of particles in the
stratosphere from an explosive volcanic eruption of Mt. Pinatubo in 1991. Results are presented visually via a 3D
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virtual reality movie. Section 5 compares 3D global data from both a climate model and from a statistical emulator by
exploring a visuanimation of the results. Finally, Section 6 visuanimates the spatio-temporal behavior of a model for
extreme events, specifically extreme hourly precipitation in Switzerland. The paper ends with a brief discussion.

2. Exploratory data analysis of images with surface boxplots
The classical boxplot is widely used as a tool to display important summary statistics for univariate variables, where
observations are ordered from the smallest value to the largest in order to define the median, quartiles, the minimum
and maximum, and to detect outliers. To visualize high-dimensional data or functional data of infinite dimension, simple
extensions of univariate statistics to the multivariate setting do not properly capture multivariate data features because
of the absence of a natural order for multi-dimensional Euclidean space. Instead, data depth provides a powerful tool
for understanding multivariate ranking and quantiles. The general idea is that observations are ordered according to
decreasing values of data depth (Liu et al., 1999; Zuo & Serfling, 2000). The first order statistic is defined as the
median, which is the most central or the most representative observation. Subsequent order statistics induced by
data depth start from the most central observation and move outwards, where larger ranks are associated with more
outlying observations.

Although many notions of data depth can be used to generalize the boxplot to multivariate or functional settings,
visualization remains a challenge, especially in 3D. The bagplot (Rousseeuw et al., 1999) and the functional boxplot
(Sun & Genton, 2011) along with its adjusted version (Sun & Genton, 2012) are good examples of 2D visualization.
The bagplot was constructed for bivariate observations using the Tukey half-space depth (Tukey, 1975), where the
median data point is identified as the one with the largest depth value, and the bag is defined by the convex hull of the
first 50% data points, displayed as an analog to the middle box in the classical boxplot. By contrast, the functional
boxplot uses modified data depth (López-Pintado & Romo, 2009) for functional data to order sample curves, and the
50% central region is naturally defined as the envelope formed by the first 50% curves. Fast ranking by band depth
is obtained by means of the algorithm proposed by Sun et al. (2012). Both the bagplot and the functional boxplot
effectively summarize data features by displaying important statistics and potential outliers in 2D. Although a surface
boxplot is constructed similarly, by ranking sample images, the 3D visualization can be confusing. To better display
important statistics in 3D, Genton et al. (2014) developed a user-friendly visualization tool and applied it to real data
examples to illustrate their features.

Movie 1 complements the description of the surface boxplot approach in Genton et al. (2014). It shows an interactive
visualization tool for exploring data sets of images using the surface boxplot to extract descriptive statistics. It starts
with an overview of the surface boxplot viewer, which uses a multi-window approach to display the median, inner and
outer envelopes, and potential outliers. Next, we see the depth value plot and the corresponding histogram, followed
by a brain fMRI data example. In addition to the multi-window display of the informative brain images, the movie also
illustrates the features of image selection and identification between the depth graph and the histogram. In the movie,
the corresponding image is highlighted when a point on the depth graph is selected. Similarly, if the user selects a bin
on the histogram, then it is highlighted along with all corresponding images in the depth graph. The movie finishes by
comparing climate model outputs from two different periods: historical run and future projection. This demonstrates
through visuanimation that the surface boxplot tool is highly interactive for exploration and comparison.

3. Multiscale analysis of classification using data depth
The aim of a classification problem is to construct a rule to classify a new unlabeled observation to one of J predefined
classes. Let πi and fi(x) be the prior probability and the probability density function of the i-th class, respectively.
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Movie 1. Interactive visualization tool for exploring data sets of images using the surface boxplot to extract descriptive statistics.

The Bayes classifier assigns an observation to the class having the maximum posterior probability. An observation x is
classified to class i∗ if

i∗ = arg max
1≤i≤J

p(i |x) = arg max
1≤i≤J

πi fi(x),

where p(i |x) is the posterior probability of the i-th (1 ≤ i ≤ J) class. It is well known that the Bayes classifier is
optimal because it has the lowest overall misclassification probability. However, these densities, fi(x)s, are unknown in
practice and are to be estimated from the training sample, xi1, . . . , xini , of the i-th class (1 ≤ i ≤ J). Popular parametric
approaches include linear and quadratic discriminant analyses, while kernel discriminant analysis and k-nearest neighbors
are widely used nonparametric classifiers.

Data depth has emerged as a powerful methodology for data analysis with application in many areas including supervised
classification. Assume that f1, . . . , fJ are the density functions of J elliptically symmetric distributions, Fi , on Rd ; that
is, fi(x) = |Σi |−1/2gi{‖Σ−1/2i (x− µi)‖} for 1 ≤ i ≤ J. Here µi ∈ Rd is a location vector, Σi is a d × d positive definite
matrix, and gi(‖t‖) is a probability density function on Rd for 1 ≤ i ≤ J. If a depth function, D(x, Fi), is invariant
under affine transformations of x, then it is a function of ‖Σ−1/2i (x− µi)‖. Using this relationship, the density, fi(x),
can now be written as

fi(x) = ψi{D(x, Fi)} for all 1 ≤ i ≤ J,
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where ψi is an appropriate real-valued function that depends on gi . Now, for 1 ≤ i ≤ J, it is easy to see that

p(i |x) = p{i |z(x)} =
πiψi{D(x, Fi)}∑J
k=1 πkψk{D(x, Fi)}

, (1)

where z(x) = {z1(x), . . . , zJ(x)}T = {D(x, F1), . . . , D(x, FJ)}T . This shows that the Bayes classifier is based on the
J-dimensional vector z(x).

Spatial depth is a popular notion of data depth that was introduced and studied in Vardi & Zhang (2000) and Serfling
(2002). The standardized version of spatial depth (SPD) of an observation, x ∈ Rd , with respect to a distribution
function, F , on Rd is defined as

SPD(x, F ) = 1−
∥∥EF [u{Σ−1/2(x− X)}]

∥∥,
where X ∼ F and Σ is a scatter matrix associated with the distribution F . Here u(·) is the multivariate sign function
defined as u(x) = ‖x‖−1x if x 6= 0, x ∈ Rd , and u(0d) = 0d , where 0d ∈ Rd is the d-dimensional vector of zeros.
Henceforth ‖ · ‖ will denote the Euclidean norm. Note that SPD(x, Fi) is a monotonically decreasing function of
‖Σ−1/2i (x− µi)‖; see Dutta & Ghosh (2014).

To implement our approach, one can calculate the J-dimensional vector, z(xi j), where xi j is the j-th training sample
in the i-th class for 1 ≤ j ≤ ni and 1 ≤ i ≤ J. These z(xi j)s can be viewed as realizations of the vector of covariates
in a nonparametric regression model, where the response corresponds to the class label that belongs to {1, . . . , J}.
Hence, a classifier using SPD can be constructed using kernel regression; see, for example, Signorini & Jones (2004).

Our classifier is a combination of two components. The use of SPD to estimate the radial vector makes it
semiparametric, while kernel density estimation is nonparametric. Performance of the nonparametric portion depends
critically on bandwidth parameter values. Several techniques for choosing optimal bandwidths from the data are
available in the literature; see, for example, Jones et al. (1996). However, simultaneous consideration of different
levels of smoothing is expected to yield more useful information for classification. Therefore, we consider a family of
density estimates, {ψihi : hi ∈ H}, for 1 ≤ i ≤ J over a wide range of bandwidths. Multiscale methodology has emerged
as a powerful exploration and visualization tool for statistical data analysis. Chaudhuri & Marron (1999) used similar
methods to find significant features in regression and density estimates and Godtliebsen et al. (2002) used it to explore
bivariate density estimation.

For a two-class problem and given an observation, x, consider the following probability:

Ph1,h2(x) = P{ph1,h2(1|x) > ph1,h2(2|x)},

where

ph1,h2(1|x) =
π1ψ̂1h1{D(x, F1,n1)}

π1ψ̂1h1{D(x, F1,n1)}+ π2ψ̂2h2{D(x, F2,n2)}
,

with ph1,h2(2|x) = 1− ph1,h2(1|x), ψ̂ihi{D(x, Fi ,ni )} = 1
ni

∑ni
k=1Khi{D(xi , Fi ,ni )−D(x, Fi ,ni )}, and the empirical

distribution function, Fi ,ni , based on ni observations for i = 1, 2. Here, the kernel function, Khi (·), is a 1D density
function, and hi > 0 is a smoothing parameter (or bandwidth) for i = 1, 2.

For fixed h1 and h2 values, the density estimates are averages of independent and identically distributed random
variables. Thus, we use a normal approximation to evaluate the above mentioned probability for moderate training
sample sizes. The asymptotic normality follows from the standard central limit. Using such a normal approximation
with estimated means and variances, we get

Ph1,h2(x) ' Φ

π1ψ̂1h1{D(x, F1,n1)} − π2ψ̂2h2{D(x, F2,n2)}√
π21s

2
1h1
/n1 + π22s

2
2h2
/n2

 ,
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where Φ is the standard normal distribution function, n1 and n2 are the training sample sizes for the two classes,
and si is the variance of ψ̂ihi (·), which can be estimated from the training sample using the sample variance of
its ni components (i = 1, 2). Ghosh et al. (2006) proposed this discrimination measure for multiscale analysis of
kernel discriminant analysis and used static images for visualization. In this article, we use animations to explore the
visualization aspect of the proposed classifier.

We first considered data for the two classes from Nd(0d , Id) and Nd(1d , Id), where Nd is the d-dimensional normal
distribution. Here 0d and 1d are d-dimensional vectors of zeros and ones and Id is the d × d identity matrix. Taking an
equal number of observations from each of the two classes, we generated a training set of size 200. The sequence of test
points is from the set, {x = (x, . . . , x)T ∈ Rd : x ∈ (−3, 3)}, and the set of bandwidths, H = {h : log h ∈ (−5, 3)}. As
a second example, the distribution of the first class is Nd(0d , Id), while that for the second class is t3,d(0d , Id). Here
tm,d(0d , Id) denotes the d-variate Student’s t distribution with m degrees of freedom, and the vector of non-centrality
parameters is 0d . We considered both examples for d = 2.

The results of multiscale analysis are presented using 2D plots in Movie 2. Each frame in a figure corresponds to a
specific observation that will be classified; we have a sequence of such frames to constitute this animation. The colored
representation of posterior probabilities shows the natural logarithms of the bandwidths of the first and second classes
plotted along the horizontal and vertical axes, respectively. Red (i.e., high posterior) indicates regions in favor of the
first class, whereas blue (i.e., low posterior) points towards the second class. Color intensity varies with the magnitude
of posterior probabilities, which helps us to determine the regions for strong evidence in favor of one of these two
classes.

The first example (a location problem) shows an equal balance of red and blue regions in the case of x = −3 and
x = 3. This is expected as none of the classes are favored when observations are far away from the center. For x = 0.5

Movie 2.Multiscale analysis of two-class classification: first example (left) and second example (right). Red indicates regions
in favor of the first class, whereas blue points towards the second class. Color intensity varies with the magnitude of posterior
probabilities.
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(which lies on the intersection of the two class boundaries), the evidence does not strongly favor either of the two
classes; however, we see a dominance of red (respectively, blue) for x lying in the interval (−1.5, 0.5) (respectively,
(0.5, 2.5)). These regions correspond to respectively higher probability regions for the two distributions. The second
example (a classification problem with difference only in shapes) illustrates that the posterior probability is in favor
of the first (respectively, second) class in the x ∈ (−1.25, 1.25) region (respectively, x ∈ (−3,−2) ∪ (2, 3)). This is
explained in view of the fact that the Gaussian density dominates the t3 density only in a closed region. Movies allow
for comparison of evidence in favor of either of the two classes for a sequence of points from the sample space in a
continuous fashion.

4. Visualizing the effects of an explosive volcanic eruption
Global and regional climate models produce a large amount of complex-structured data. Most of the simulated variables
are 4D, with both a spatial (horizontal and vertical) and a temporal component. Many different models have been
developed and used extensively to address open questions in atmospheric science; for example, those related to an
improved understanding on how the climate system is changing and which variables most strongly affect it, those
that plan for adaptation and mitigation strategies in response to these changes, and those for weather forecast
purposes. Despite their wide application, the output format is strongly model dependent; therefore, sophisticated, ad-
hoc methodologies are needed to analyze them. Thus, it is essential to find an effective way to explore the large amount
of data generated by these models. We propose the use of virtual reality environments to visualize complex-structured
data such as those generated by global and regional models.

Here we describe the advantages of using virtual reality techniques to better understand and more easily communicate
atmospheric science concepts such as the global climate effects associated with the occurrence of an explosive volcanic
eruption in the tropics. We applied the Weather Research and Forecasting model coupled with chemistry (WRF-Chem)
(Grell et al., 2005) to simulate volcanic ash dispersion and sulfate aerosol formation in the stratosphere as a result
of Mt. Pinatubo’s eruption (15 June 1991, Philippines). We focused on Mt. Pinatubo’s eruption because it produced
the largest volcanic cloud of the 20th century and caused significant climatic effects that persisted for several years
(Stenchikov et al., 2004). We applied WRF-Chem over a regional domain extending along the equatorial belt, with 400
grid cells in longitude, 100 grid cells in latitude, and a spatial resolution of 100 km. We selected Mt. Pinatubo from
the Mastin & et al. (2009) database and generated the volcanic emissions using the preprocessor PREP-CHEM-SRC
introduced by Freitas et al. (2011). We defined the injected mass of volcanic ash (i.e., 2 Tg) and sulfur dioxide SO2
(20 Tg) at 20 km in the stratosphere, for an eruption duration of 8 h, and a top pressure level of 10 mbar. We specified
the ash size distribution in 10 bins according to the percentage mass fractions specified in Stuefer et al. (2013) (i.e.,
category S3=large silicic eruptions for Pinatubo). A test case simulation for Mt. Pinatubo’s eruption was run for one
month, initializing the model with NCEP-DOE Reanalysis 2 data. The purpose of this study is to (i) analyze volcanic
ash dispersion over the equatorial belt and (ii) simulate sulfate aerosol formation and dispersion in the stratosphere
as a result of Mt. Pinatubo’s eruption using WRF-Chem for the first time. We applied the RADM (Regional Acid
Deposition Model) gas-phase chemical mechanism (Stockwell et al., 1990), properly modified to take SO2 oxidation
in the stratosphere into account and the MADE/SORGAM (Modal Aerosol Dynamics Model for Europe/Secondary
Organic Aerosol Model) mechanism for aerosol processes (Ackermann et al., 1998; Schell et al., 2001).

In order to analyze the output from these simulations we compare traditional visualization techniques with those
offered by virtual reality environments. Using traditional visualization software, we cannot investigate a 4D variable
with a single image. When using a 2D plot, we can display a variable, such as volcanic ash, over the simulated domain
for a specific height and time step. The frames for each simulated time step can then be collected into a movie to
describe the dispersion of volcanic ash at a specific height. For example, Movie 3 was produced from Matlab frames
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Movie 3. 2D dispersion of volcanic ash particles with a diameter smaller than 3 µm at a height of approximately 20 km during
the month following Mt. Pinatubo’s eruption.

to visualize the dispersion of volcanic ash particles with a diameter smaller than 3 µm at a height of approximately
20 km during the month following Mt. Pinatubo’s eruption. This type of visualization effectively communicates why
this eruption so strongly affected the earth’s climate. The evolution of the eruption shows that after one month of
simulation both volcanic ash and newly formed sulfate aerosol particles are globally distributed along the equatorial
belt, indicating implications for the global climate. These particles remain in the atmosphere for some time, scattering
solar radiation and thus cooling the earth’s surface (Stenchikov et al., 2004). However, this technique does not help
describe how these particles are vertically distributed in the atmosphere or how quickly they are deposited (as a function
of their size). Investigating the vertical component of these particles is crucial to determine their residence time in the
atmosphere and, thus, their impacts on the earth’s radiative balance. A 3D plot can be used to effectively represent
fields with both a spatial component and a vertical profile, although still static in time. When entering a virtual reality
environment, these limitations are overcome by the possibility of interactively exploring the data set simultaneously
in space and time. This environment also allows for an effective representation of the vertical profile of volcanic ash
and sulfate aerosol particles and their transport at different levels in the atmosphere. Given the possibility of fully
investigating a single variable, these techniques represent a unique tool for quick explorative analyses. Furthermore,
multiple variables can be displayed simultaneously for comparison purposes, whereas with a 2-3D plot those features
may be confounded. A 3D earth allows for an effective display of atmospheric particles of different sizes; smaller and
lighter particles are located higher in the stratosphere and above larger particles (Movie 4). This demonstration was
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Movie 4. 3D dispersion of volcanic ash particles during the month following Mt. Pinatubo’s eruption: smaller and lighter particles
are located higher in the stratosphere and above larger particles. Available under CC BY-NC-ND 4.0.

part of a spatial statistics workshop at KAUST in March 2014 and is a joint collaboration with the KAUST visualization
laboratory. During this showcase, each guest was provided with 3D glasses and entered the virtual reality environment
to explore the data interactively; multiple cameras in the environment were able to track head movement and to adjust
perspective accordingly.

Volcanic eruption is an ideal test case to illustrate the advantages of a virtual reality environment. It is characterized
by high concentrations of both ash and sulfate aerosols in specific regions of the stratosphere and near zero values
elsewhere. Movie 4 also includes clips showing the workshop participants moving virtually on the earth’s surface, looking
at the sky above their heads, and watching the volcanic cloud pass over Saudi Arabia.

5. Visualizing and comparing global climate data
Data are commonly displayed using a spherical domain. Visualizing data, such as temperature in this context, requires
a choice of a map projection that necessarily implies a distortion. 3D fields present the added challenge of representing
temperatures at different heights. For extreme events, such as heat waves, floods, or volcanic eruptions, most spatial
locations are uninvolved, making it possible to effectively visualize the fields with appropriate volume rendering.
However, this is not possible for temperature fields where the point value at each location is of interest because
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any transfer function would result in an overall opaque field at the top of the atmosphere.

In climate science, data on a 3D sphere×time domain naturally occur as output from global climate models. These
models represent the state of the earth’s system as coupled partial differential equations but, given the high spatio-
temporal resolution, a single run could require weeks or months with state-of-the-art computational facilities. To avoid
running a climate model for many input values, it is possible to define a statistical model that approximates the behavior
for some input and extrapolates the behavior for different inputs. These statistical models, called emulators, are useful
tools for global sensitivity analysis and parameter calibration (Sacks et al., 1989; Santner et al., 2003; Kennedy &
O’Hagan, 2001; Oakley & O’Hagan, 2002; Rougier et al., 2009; O’Hagan, 2006) and impact assessment (Holden &
Edwards, 2010; Castruccio & Stein, 2013; Holden et al., 2014; Castruccio et al., 2014). It is of interest to compare
the emulated output with the original climate model, to understand how well the emulator approximates the original
climate model and to detect possible differences. However, such a comparison is complicated by the geometry of the
domain and the nature of the data. Firstly, two temperature data sets on a 3D sphere×time must be compared, but
it is neither possible to effectively visualize temperature fields for different heights at the same time nor to visualize
global data on a flat surface without distortion of some areas. Secondly, a sensible comparison of a climate model and
an emulator cannot simply be based on a visual comparison of temperature fields for every time point, since both are
weather events and the accuracy of the approximation of the emulator must be based on climate characteristics, that
is, on statistical summaries.

Although some limitations are intrinsic in the nature of the data, it is possible to produce animations that allow
qualitative comparison of two data sets. In this example, we build an annual 3D sphere×time temperature emulator

Movie 5. Temporal evolution of climate model output and emulation of a 3D global temperature anomaly at a given height.
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of the National Center for Atmospheric Research (NCAR) CCSM4 (Gent et al., 2011) under the RCP 8.5 scenario
(Van Vuuren et al., 2011) using a multi-resolution statistical model; full details can be found in Castruccio & Genton
(2015). In Movie 5, two global data sets are visualized in two different boxes and show how the temperature anomaly
(with respect to the first simulation year) field evolves at a given height. As time progresses, the two spheres revolve
until they have rotated a full 360◦ by the last simulation year; rotation of the two spheres is synchronized. This movie
allows the viewer to qualitatively see that the heating rate is similar for the two spheres, that it is higher at the poles,
and that the spatial patterns of the two data sets do not noticeably differ. For a more formal comparison, the space-
time structure of the climate model and the emulator would need to be compared; see Castruccio & Stein (2013),
Castruccio & Genton (2014, 2015).

A fully immersive 3D environment allows for a comparison of multiple aspects of the data: Movie 6 shows a footage
about a project on visualizing emulators in virtual reality environments. This demonstration was part of the same
workshop at KAUST mentioned above. Each guest could explore the climate data and make comparisons with the
emulator. This 3D environment allowed the guests to examine multiple aspects of the data simultaneously such as the
surface temperature at a given height with a vertical profile at a given latitude.

Movie 6. Visualization of an emulator in a virtual reality environment. Available under CC BY-NC-ND 4.0.
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6. Modeling and visualizing space-time extremes
For risk assessment, many applications require the study of the spatial or spatio-temporal extent of extreme events
(e.g., in hydrology, duration of heavy storms over a certain catchment). From a statistical perspective, the max-stable
paradigm provides a useful asymptotic framework for tail-dependent observations, that is, random vectors or processes
with non-vanishing dependence at extreme levels. The development of theory and models for spatial extremes goes
back to de Haan (1984)’s fundamental paper, which provided a useful representation of max-stable processes (slightly
reformulated by Schlather, 2002), setting the basis for the construction of asymptotically justified models for extremes.
Specifically, under mild conditions (see de Haan & Ferreira, 2006, Chapter 9), any max-stable process, Z(x), indexed
by x ∈ X ⊂ Rd , with unit Fréchet margins (i.e., Pr{Z(x) ≤ z} = 1/z , z > 0), may be represented as

Z(x) = sup
i≥1

Wi(x)/Pi , (2)

where the Pis are the points of a unit rate Poisson process on the positive half-line, and the Wi(x)s are independent
copies of a positive unit mean stochastic process, W (x), which satisfies E{supx∈X W (x)} <∞ in order for the
supremum in (2) to be well defined. Conversely, each process with representation (2) is max-stable with unit Fréchet
margins. Equation (2) may be used to construct max-stable models by choosing flexible processes, W (x), derive finite-
dimensional joint distributions (see, e.g., Davison et al., 2012), and simulate max-stable processes (Oesting et al.,
2012; Dombry et al., 2013; Ribatet, 2013).

Since de Haan (1984)’s seminal paper, the literature on spatial extremes has grown rapidly and several stationary
max-stable models have been proposed and fitted to real data; see, for example, Smith (1990), Padoan et al. (2010),
Schlather (2002), Kabluchko et al. (2009), Reich & Shaby (2012), and the review papers by Davison et al. (2012) and
Cooley et al. (2012). Applications in the space-time framework are, however, much sparser. This may be explained by
additional theoretical complexities and practical difficulties, which include but are not limited to

1. the modeling of temporal dependence,
2. the non-isotropic (and perhaps also nonstationary) nature of the process of interest in the space-time domain,

and the presence of non-trivial space-time interactions,
3. the validity of classic large-sample properties of widely-used composite likelihood estimators (see Padoan et al.,

2010; Varin et al., 2011) when observations are time-dependent,
4. the validity of the max-stability assumption in space and time,
5. the big data problem related to the potentially very large number of space-time locations: estimation, inference,

model checking, model comparison, and simulation are computationally much more complicated and demanding
in space and time,

6. the visualization of space-time random fields.

Such issues have recently been partially addressed by Davis & Mikosch (2008), Davis et al. (2013a,b), and Huser
& Davison (2014), though questions regarding the max-stability assumption (point 4) and useful visualization tools
(point 6) have been overlooked. Next, we review the random set approach advocated by Huser & Davison (2014), used
for the modeling of extremes of hourly precipitation in Switzerland, and discuss the advantage of using animations in
the space-time context.

The best fit among the max-stable models considered by Huser & Davison (2014) is based on Schlather (2002) and
assumes that the process, W (x), appearing in (2) is expressed as

W (x) ∝ max{0, ε(x)}IA(x− X), (3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Movie 7.One realization of the space-time max-stable model (3) on a 60× 30 dimensional spatial grid for 24 hours over the
midland area in Switzerland. Monitoring stations are indicated with black dots, and quantiles of rainfall intensities are shown
using the color scale.

where ε(x) is a stationary standard Gaussian process on Rd with correlation function, ρ(h), A ⊂ Rd is a random set,
X denotes a point of unit rate Poisson process on Rd , and IA(·) is the indicator function on A. Here, the dimension is
d = 3 (plane × time), the points x = (s, t) ∈ X = S × T have a spatial coordinate, s ∈ S, and a temporal coordinate,
t ∈ T , h = (hs, ht) is a spatio-temporal separation vector, and A lives in the spatio-temporal domain. Thanks to the
random set, which induces discontinuity in realized random fields, model (3) can be shown to be mixing, that is, it
can capture independence at infinite spatio-temporal distances, a desirable feature. Furthermore, the random set, A,
can be used to mimic the underlying physical process: Huser & Davison (2014) use it to reproduce the approximate
trajectories of clouds causing extreme storms across western Switzerland during the summer months. Space-time
interactions are therefore controlled by two elements: long-range dependence is mainly governed by the random set,
A (taken to be a tilted cylinder in S × T ), while small-range dependence is driven by the non-separable space-time
correlation function, ρ(hs, ht) (taken from Gneiting, 2002). Model (3) was fitted to the Swiss hourly rainfall data using
a pairwise likelihood, censoring observations below the 95% empirical quantile; see Huser & Davison (2014) for more
detail about this approach and alternative space-time max-stable models.

A plethora of diagnostics may be used for model checking (e.g., quantile-quantile plots, extremal coefficients, and
various tests), but nothing replaces visual assessment to verify whether the fitted model looks reasonable. Although it
might be difficult to judge by the naked eye whether a particular model fits well, it is possible to identify pathological
cases; animations are especially useful in the spatio-temporal context. As an illustration, we have simulated the fitted
max-stable model (3) on a spatial grid of dimensions 60× 30 for 24 hours, that is, at 43, 200 space-time locations;
see Movie 7. This realization was obtained using a direct simulation method that required more than 100 Gb of
memory (also indicating the need for computationally efficient simulation methods for max-stable processes). The
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simulation, when viewed above the 95% quantile (yellow areas), shows that heavy storms in summer tend to move
from the West to the East, as expected. The estimated ‘prevailing wind direction’ is 0.23 radians. Furthermore, ‘wind
velocity’ is similar to what is observed in the real data of this study, which suggests that the fitted model does not
contradict common sense. Apart from simple checks, animations allow the exploration of various features of the process
of interest, such as the spatial and temporal dependence ranges. To illustrate this, Movie 8 displays fitted extremal
coefficients, as a function of the temporal lag ht and spatial distance ‖hs‖ for two stations oriented according to the
main wind direction (West → East) and two stations in the opposite direction (East → West). To be more specific,
if Z(s, t) denotes the rainfall amount (suitably renormalized) at time t and location s, the left panel on a single
frame of Movie 8 displays estimates of the quantity θ(hs, ht) ≈ 2− Pr{Z(s+ hs, t + ht) > u | Z(s, t) > u} for large
u, as a function of the temporal lag ht . The station s+ hs is either to the East of s (solid black curves) or to the
West of s (dashed blue curves), and the different frames correspond to increasing spatial distances ‖hs‖. Similarly,
the right panel shows plots of extremal coefficients as a function of the spatial distance ‖hs‖ for increasing temporal
lags ht . The animation reveals several interesting features of the fitted model: First, extremal dependence between
the variables observed at x1 = (s1, t1) and x2 = (s2, t2) strongly depends on the relative positions of s1 and s2 (i.e.,
the model is not fully-symmetric, and not isotropic). Second, extremal dependence may be stronger at larger temporal
lags if stations are oriented as the prevailing winds. Third, for a large temporal lag, extremal dependence is very weak,
irrespective of the distance between stations. These characteristics, in agreement with the data, were already noticed
by Huser & Davison (2014) but animations allow to better identify and display them. This helps to better understand
the space-time dynamic of the fitted models.

Movie 8. Space-time extremal coefficients θ(hs, ht) estimated from the fitted model in Huser & Davison (2014), plotted against
the temporal lag (left) and the spatial distance (right). The different frames correspond to increasing spatial distances (left)
and increasing temporal lags (right). Stations are either considered in the direction of the prevailing winds (solid black curve),
or in the opposite direction (dashed blue curve).
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7. Discussion
We have explored the use of visualization through animations, coined visuanimation, with a variety of examples from
statistics. The main advantage of using animations is that temporal dynamics can be easily displayed rather than
presenting long series of static images. We have shown that animations are useful for exploratory data analyses, as
well as for model checking and comparison in complex settings such as with spatio-temporal data. More generally,
embedded animations better explain features of user-developed packages for various statistics softwares.

We have illustrated the embedding of animations in the paper itself and the storage of larger movies in the online
supplemental material. In the future, we expect that further progress will be made on the compression of movies, or
that internet download speed will become faster, so that they can all be embedded in the paper itself. We believe that
visuanimations will become the norm for many future papers in Stat.
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Supporting Information
Additional supporting information (Movies 1,3,4,5,6) may be found in the online version of this article at the publisher’s
web site. A link has been implemented from the pdf file of the paper to these movies which need to be located in
the same directory as the pdf file. In order to play these movies in the pdf file on a Windows computer with Adobe
Reader, QuickTime Player for Windows must be downloaded and installed. Further, QuickTime Player must be set as
Preferred Media Player in Edit -> Preferences -> Multimedia (legacy). Finally all the movie files must be added using
Tools -> Send File: -> + Add File. With Adobe Pro in Windows and with Apple and Linux devices the movies can be
played directly. The other Movies 2,7,8 are directly embedded in the pdf file.
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