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ABSTRACT

The authors describe a new approach for emulating the output of a fully coupled climate model under

arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and

precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations,

and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful

and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial

patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all

circumstances and substantially better in many; it is not computationally demanding; and, once the statistical

model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide ap-

plication in climate impacts assessments and other policy analyses requiring rapid climate projections.

1. Introduction

The wide consensus among the scientific commu-

nity that climate is changing and will almost certainly

produce detrimental impacts for humanity [from

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4; Meehl et al. 2007)]

means that attention is increasingly turning to evaluat-

ing the magnitude of those impacts and possible policies

to reduce them. Atmosphere–ocean general circulation

models (AOGCMs) are state-of-the-art tools for pro-

ducing climate predictions based on our best under-

standing of the radiative effects of CO2 and other

anthropogenic forcing agents and the complex dynamical

feedbacks of the earth’s climate system. However, the

computational demands of AOGCMs preclude or limit
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their use in the context of integrated assessment models

(IAMs) used to estimate climate damages and the cost–

benefit trade-offs of potential mitigation actions. Analy-

ses that involve optimal policy determination or un-

certainty quantification require repeated iterations of

climate projections in response to forcing trajectories

over the decadal or centennial time scale, which is

computationally prohibitive with AOGCMs. For IAMs

whose only climate input is global mean temperature

(GMT), climate projections can be provided instead

by simple energy-balance models tuned to the climate

sensitivity of AOGCMs. Climate changes and impacts

will not be uniform across the earth, however, and more

advanced IAMs may require regional climate predictions.

There is increasing need for techniques that can capture the

regional information provided by AOGCMs and produce

tools useful for the impacts assessment community.

The most common approach for producing such re-

gional projections has been to use ‘‘pattern scaling’’ to

downscale the projections of simple global energy-balance

models. Pattern scaling relies on the assumption that

regional climate responses are a linear function of global

climate response, so that regional climate evolution

can be captured by scaling a single pattern to the global

mean temperature. The technique was introduced by

Santer et al. (1990) as a means of comparing spatial pat-

terns of climate response from different GCMs and has

been widely used in subsequent years (e.g., Hulme and

Raper 1995; Hulme and Brown 1998; Cabre et al. 2010;

Dessai et al. 2005; Fowler et al. 2007; Harris et al. 2006;

Murphy et al. 2007). Different possible techniques for

obtaining patterns are reviewed in Mitchell (2003).

The linearity assumption has been shown to be rea-

sonable for centennial-scale projections (e.g., Mitchell

et al. 1999; Giorgi 2008), but on some time scales the

technique will be inappropriate, since different parts of

the earth warm at different rates. Furthermore, if the

regional pattern of climate response were a function of

the magnitude of warming, a single pattern would also

not accurately capture the climate response to arbitrary

CO2 scenarios even in equilibrium cases. Using the

Hadley Centre Coupled Model, version 2 (HadCM2),

Mitchell (2003) showed that both the rate and the

magnitude of forcing changes influence patterns of re-

gional climate and suggested approaches to pattern

construction to minimize errors.

We propose to overcome some of the limitations of

pattern scaling through an alternative emulation ap-

proach based on a collection of precomputed climate

model runs that allows us to capture rate dependencies

in regional climate evolution. This collection of runs, or

training set, is used to obtain estimates of the parameters

in simple statistical models that describe temperature

and precipitation as a function of past trajectories of

radiative forcing due to CO2. The resulting tool allows

us to reproduce (emulate) the output of an AOGCM un-

der a large range of forcing scenarios. Once the emulator is

constructed, emulation of a climate scenario is effectively

instantaneous, as it would be under pattern scaling. In

contrast, climate projection from a state-of-the-art model

can still take days to weeks even on the most powerful

platforms. Since our training set is used only to estimate

statistical parameters, the emulator is determined by a set

of regional parameter values and requires negligible data

storage. The simplicity and robustness of statistical emu-

lation based on a modest training set makes it a promising

tool for impacts assessment. Similar ideas have been pre-

viously proposed byMitchell (2003), though executionwas

precluded because of lack of suitable collection of model

runs, and recently explored by Holden and Edwards

(2010) (see section 5 for comparison of approaches).

In the remainder of this paper, section 2 describes the

collection of climate runs on which our emulator is

based; section 3 introduces the statistical models for

annual temperature and precipitation at a regional level

and shows an example of emulation; and section 4 de-

velops emulation diagnostics and uses themboth to assess

the influence of training set size on emulation quality

and to compare our emulation to pattern scaling. Fi-

nally, section 5 discusses our approach in comparison to

other techniques for computer model emulation. We

describe the particular requirements and characteristics

of climate emulation over forcing scenarios, for which

both the inputs and outputs are time series, and provide

suggestions to guide future emulation approaches.

2. Precomputed climate runs

To explore the problem of emulating climate under

arbitrary forcing scenarios, we built a collection of cli-

mate model runs to be used for training and prediction.

These runs are driven by different trajectories of future

CO2 concentration and have different initial conditions

but all are performed with the same model and same

representation of model physics. Simulations were per-

formed with the Community Climate System Model,

version 3 (CCSM3; Yeager et al. 2006; Collins et al.

2006), at a relatively modest T31 atmospheric resolution

(’3.758 3 3.758) and nominally 38 ocean resolution, a

configuration that allows us to run multiple realizations

of a wide range of multicentury scenarios. Since we are

interested in capturing the effects of changing CO2 on

climate, in all runs all other greenhouse gases and aero-

sols are held fixed at their preindustrial values.

The AOGCM runs used in the work described here

consist of five scenarios: three with gradual rise and

1830 JOURNAL OF CL IMATE VOLUME 27



then stabilization of CO2 and two with abrupt changes

(Fig. 1). All scenarios follow estimated historical CO2

concentrations from 1870 to 2010 and then branch off

into different future trajectories of evolving CO2 over

the subsequent 189–439 years (end years range from

2199 to 2449). We denote the five scenarios as ‘‘fast,’’

‘‘moderate,’’ ‘‘slow,’’ ‘‘jump,’’ and ‘‘drop.’’ To enhance

our ability to distinguish changes in mean climate from

internal variability, we simulated five realizations of

each scenario with different initial conditions: specifi-

cally, we used restart files from years 410, 420, 430, 440,

and 450 of the National Center for Atmospheric Research

(NCAR) preindustrial control run b30.048 (Collins et al.

2006). In total, our collection of runs consists of more

than 10 000 model years, though individual emulators

used in this paper are trained using subsets of the runs.

Multiple realizations of each scenario are useful both

in producing emulators and in evaluating emulator per-

formance. We treat the five realizations of each scenario

as statistically independent because they were generated

with decadally spaced restart files. The chaotic nature of

the climate system means that changes in any initial

conditions other than those of the deepest ocean are

expected to produce essentially independent results af-

ter approximately a decade (e.g., Branstator and Teng

2010; Collins 2002; Collins and Allen 2002), so we be-

lieve that this assumption of independence is reason-

able. For similar reasons, runs under different scenarios

but the same restart year should be very nearly indep-

endent within a few years after the scenarios diverge but,

since all scenarios are identical before 2010, the results

for runs with the same restart year are also identical until

2010.We avoid this problem by using runs with different

restart years in our training sets.

The choice of scenarios for the precomputed runs was

not based on any formal design criteria and is not meant

to be optimal in any sense. We deliberately chose some

scenarios that were somewhat realistic and others with

large changes in CO2 in order to be able to distinguish

short- and long-term effects, but in general we sought

simply to reproduce the kind of runs that would typically

be available in preexisting archives of climate model

output. Impacts assessments often require emulation of

multiple AOGCMs, but it would be prohibitively diffi-

cult for an individual research group to run multiple

climate models to generate optimal libraries for emula-

tion. It is therefore useful to develop emulation techniques

that are not critically sensitive to the characteristics of

their training sets and that can make use of existing

community multimodel resources such as the archive

from phase 5 of the Coupled Model Intercomparison

Project (CMIP5; Taylor et al. 2012).

3. Statistical models for temperature and
precipitation

In this work, we emulate annual mean temperature

and precipitation in climate projections with simple

statistical models that involve a mean function that varies

in time plus a stochastic term. For the mean function,

we chose simple functional forms relating temperature

T and precipitation P to past trajectories of CO2 that

capture physically justified relationships. We train em-

ulators based on various subsets of our precomputed

climate model runs, fitting the parameters of the statis-

tical models using standard statistical methods (see

supplementary material for more details). The resulting

emulators can then predict annual temperature and pre-

cipitation for arbitrary climate forcing scenarios. In the

emulations shown here, we fit the statistical models not

at native climate model spatial resolution (48 3 96 grid

points for T31 resolution) but aggregated at subcon-

tinental scale in 47 regions. The regions are modifications

of those defined by Ruosteenoja et al. (2003), subdivided

over the oceans to ensure that we separately emulate re-

gions of qualitatively different precipitation response

(e.g., see Fig. 4 or Fig. S1 in the supplemental material for

regional codes). Without regional aggregation, obtaining

a stable fit of the statistical models parameters forT andP

would require a significantly larger training set. Emula-

tion can be extended to the grid scale through regional

pattern scaling (see section 4).

a. Temperature

A long body of research suggests that within the range

of CO2 concentrations likely to be produced by an-

thropogenic activity, equilibrium global mean temper-

ature change is proportional to log[CO2r], where [CO2r]

is the ratio between current and preindustrial CO2 con-

centrations (Manabe and Wetherald 1967; Forster et al.

2007). For policy analysis purposes, however, emulating

FIG. 1. The CO2 scenarios used for building the collection

of runs. We refer to these throughout the paper as the 1) slow,

2) moderate, 3) fast, 4) jump, and 5) drop scenarios. All scenarios

start at year 1870. Some scenarios extend beyond the range shown

here: slow, moderate, and fast end at year 2449, whereas jump ends

at 2199 and drop ends at 2399.
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equilibrium climate is less relevant than understanding

the spatiotemporal climate changes that populations will

face over the next century. We seek here to emulate the

transient climate response when climate is a function not

only of the present value of [CO2r] but also of its past

history. As mentioned before, even if pattern scaling

were sufficient to reproduce equilibrium climate (i.e., if

the equilibrium spatial distribution of temperature were

linear with log[CO2r]), it would not be sufficient in tran-

sient climates. Because different regions of the earth

warm at different rates, the spatial distribution of tem-

perature anomalies in a given year during warming will

not be a multiple of the equilibrium pattern.

For emulation of temperature, we propose a repre-

sentation that captures this dependence on past trajec-

tories of CO2 via an infinite distributed lagmodel (Judge

1980, chapter 10) in which current temperature is de-

pendent on a weighted sum of past log[CO2r](t),

T(t)5b01b1

1

2
flog[CO2r](t)1 log[CO2r](t2 1)g

1b2 �
1‘

i52

wi log[CO2r](t2 i)1 «(t) , (1)

where T(t) is the temperature at year t. Because tem-

peraturemay show some autocorrelation, we assume the

stochastic term «(t) is an autoregressive model of order

1: «(t) 5 f«(t 2 1) 1 n(t), where n is a Gaussian white

noise with unknown variance s2. This model is able to

capture the modest dependence in temperatures across

years.

The b coefficients in Eq. (1) are physically interpret-

able: b0 is preindustrial temperature, b1 is the near-term

response to changes in CO2, and b2 is the slower re-

sponse dependent on CO2 levels in prior years. This

form gives us the flexibility to represent a temperature

response characterized by multiple adjustment time

scales and is especially important when emulating sce-

narios with abrupt CO2 changes. Using the average

log[CO2r] over years t and t2 1 for the short-term effect

is somewhat arbitrary, but we have experimented with

other forms for this term and not found anything clearly

superior. Because we expect the influence of past radi-

ative forcing to decrease as we go back in time, the

weightswi in the long-term component should be chosen

to decrease with the trajectory year i. We choose here

a simple exponential decay of the weighting of past

years: wi 5 r22(1 2 r)ri with 0 , r , 1 so �‘
i52wi 5 1.

[Note that we could also have taken the infinite sum in

Eq. (1) to start at 0 rather than 2. The resulting fitted

models would be negligibly different.] The model pa-

rameters are then the three bj’s, r, f, and s2. The first

four parameters capture themean evolution of the climate

system averaged over initial conditions, a deterministic

function of CO2 trajectory, and the final two parameters

describe the stochastic variability in the climate state about

this mean, which differs between realizations (initial con-

ditions). We discuss emulation of the stochastic behavior

of both temperature and precipitation in section 3c.

It is important to point out several assumptions implicit

in the choice of our functional form for temperature. First,

the model assumes that, on average, equilibrium spatial

temperature patterns are linearwith log[CO2r] since, when

sufficient time has passed after stabilization of CO2 con-

centration, emulated mean temperature approaches

b01 (b11b2)log[CO2r]stab ,

where the subscript ‘‘stab’’ indicates the CO2r level after

stabilization. This assumption would likely break down

in cases of extreme CO2 changes. Second, our functional

form is appropriate only for centennial-scale or shorter

emulation scenarios. Although in principle our ap-

proach allows us to emulate climate in any year for ar-

bitrary CO2 scenarios, Eq. (1) should not be used for

emulating considerably beyond the several-century time

span of the training runs. This constraint arises not only

because statistical models cannot be expected to capture

processes not represented in the training set but also

because the simple exponential weights used here do

not capture well the combined behavior of the decadal/

centennial-scale warming of the upper ocean and the

long-tail warming of the deep ocean over thousands of

years (see Fig. S4 in the supplemental information).

To construct an emulator, we derive parameter esti-

mates from one or more training runs. (By ‘‘run’’ we

mean a climate projection driven by a given scenario and

begun from given initial conditions.) Throughout this

manuscript, we focus on an emulator generated with

a training set consisting of two runs: one realization each

of the fast and jump scenarios with different restart years.

The resulting emulator appears to track accurately the

overall trend of out-of-training set climate scenarios.

Figures 2a,b show emulations of the mean temperature

trajectory for the slow and drop scenarios, superimposed

with all five realizations of actual CCSM3output for these

scenarios. Emulation of the drop scenario does show

slight misfit immediately following the sudden drop in

CO2. This misfit can be reduced by using a more complex

functional form, but introducing additional terms can

lead to instability of the fit and we consider the emulation

of this physically extreme scenario to be reasonably good

under the circumstances. (See section 4 for a more ex-

tensive evaluation of emulation fidelity, and see Table S1

in the supplemental material for parameter estimates and

their standard errors for all regions.)
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b. Precipitation

Precipitation in transient climates has been frequently

described as a combination of a fast response that is

a function of the changed forcing agent and a slow linear

response to evolving temperature. The fast response is

negative in the case of CO2, so that, in scenarios with

rising CO2, precipitation at a given temperature is lower

than it would be at equilibrium for that temperature

(Andrews and Forster 2010). The transient precipitation

response was first discussed in detail byAllen and Ingram

(2002), and the fast–slow framework became commonly

accepted in later works (e.g., Bala et al. 2010; Cao et al.

2011). These findings motivate the following regression

model for precipitation [though seeMcInerney andMoyer

(2012) for further discussion of underlying physics],

P(t)5 g01 g1T̂(t)1 g2 log[CO2r](t)1h(t) , (2)

where g1T̂(t) and g2 log[CO2r](t) are the slow and fast

terms, respectively, and T̂(t) is the mean emulated

temperature from Eq. (1). We use T̂(t) rather than T(t),

the actual temperature in year t, because the physical

processes underlying the model are likely distinct from

those driving stochastic interannual variability. Since we

found no clear evidence for dependence in the stochastic

terms for precipitation in this model, the stochastic term

h(t) is simply assumed to be Gaussian white noise with

unknown variance t2. Once T̂(t) is obtained from fitting

Eq. (1), the parameters in Eq. (2) are estimated using

linear regression. Joint emulation of temperature and

precipitation including their stochastic components would

require modeling the corresponding stochastic terms «(t)

for temperature and h(t) for precipitation jointly, which

we do not attempt here.

The resulting emulated mean precipitation again

matches well the overall trend in the CCSM3 output,

although variability in precipitation is much larger than

in temperature and trend prediction is therefore less

informative (Figs. 2c,d). We chose to show the equato-

rial west Pacific in Fig. 2 because this region demon-

strates one feature of our emulation that stands out in

scenarios of abrupt CO2 change: a sharp spike in pre-

cipitation coincident with a drop in CO2 (Fig. 2d), such

that precipitation momentarily increases even while tem-

perature is decreasing. This effect has a well-founded

physical interpretation and has been shown clearly

above variability in AOGCM output in more extreme

scenarios in several recent works (e.g., Wu et al. 2010;

McInerney and Moyer 2012). Linear pattern scaling

with global mean temperature change cannot capture

this effect.

c. Stochastic temperature and precipitation
components

While the mean emulations shown in Fig. 2 capture

the dependence of temperature and precipitation on

FIG. 2. Examples of (a),(b) temperature emulation for the North Pacific west (NPW) region, chosen as repre-

sentative of a region with significant change, and (c),(d) precipitation emulation for the equatorial Pacific west

(EPW) region, chosen to highlight interesting transient precipitation behavior. Panels (a) and (c) show the emulated

slow scenario, and (b) and (d) show the drop scenario. The emulator was trained by one realization each of the fast

and jump scenarios. The solid red line represents the emulatedmean function and the gray lines show the fiveCCSM3

realizations for the scenarios. Emulation captures expected transient precipitation behavior in which precipitation

anomaly is a function of the rate of change in radiative forcing. Note that the trend in temperature is larger relative to

stochastic variability than it is for precipitation. We define diagnostics of emulation goodness-of-fit I1 and trend-vs-

variability I2 in section 4a. Values of (I1, I2) for the emulations shown here in (a)–(d) are (1.01, 11.23), (1.94, 35.82),

(1.02, 1.18), and (1.09, 1.41), respectively; I2 is much larger for temperature, as expected.
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CO2 trajectories, impacts assessments may require em-

ulation that fully reproduces an actual climate simula-

tion, including short-term variability. Many applications

would therefore require addition of stochastic compo-

nents to the mean emulator. A simple initial approach is

to simulate this variability from our stochastic models

and estimated parameters. This method implicitly as-

sumes that the statistical characteristics of the error terms

are invariant over time for any scenario and are the same

for all scenarios. That assumption is unlikely to be exactly

true but appears to provide a satisfactory approximation

for most regions in the scenarios tested here. That is, the

simple stochastic model appears to capture the variability

in the actual realizations of the CCSM3 temperature and

precipitation (Figs. 3a,b, which show emulated full sim-

ulations including stochastic components for the cases

of Figs. 2a,c, along with corresponding actual CCSM3

realizations). More quantitatively, CCSM3 output can

be compared with the 95% prediction bands based on

the emulators (Figs. 3c,d). For the cases shown, the em-

pirical coverage of the prediction intervals are 0.9531 and

0.9545 for temperature and precipitation, respectively,

very close to the nominal coverage of 0.95. Figure S3 in

the supplemental material shows empirical coverage for

temperature for all regions and both the slow and drop

scenarios; the results are close to 95% in all regions other

than the Southern Ocean. The fact that our model does

not provide an accurate substitute for CCSM3 output in

the Southern Ocean is not unexpected because upwelling

from the deep ocean complicates temperature evolution

there.Misfit for the SouthernOcean is evident inmultiple

diagnostics of emulation performance (see section 4).

4. Diagnostics, training set size, and comparison
with pattern scaling

a. Evaluating the fit

The appropriate evaluation of emulator performance

depends on the purpose for which the emulator is used.

For impacts assessments that have previously relied on

global pattern scaling, one possible performance crite-

rion is exceeding the emulation fidelity provided by

pattern scaling. Other criteria could be that emulation

error is small relative to differences in climate projec-

tions between AOGCMs or small relative to initial

conditions uncertainty in the emulated AOGCM. We

discuss here various approaches to evaluating emulator

performance. Evaluations are aided by having multiple

realizations for each prediction scenario, allowing us to

distinguish the mean climate trajectories from the sto-

chastic component without assuming our mean model is

FIG. 3. Examples of uncertainty quantification (a),(c),(e) for temperature in the North Pacific west (NPW) region

and (b),(d),(f) for precipitation emulation for the equatorial Pacific west (EPW) region. All panels show the emu-

lated slow scenario. The emulator was trained by one realization each of the fast and jump scenarios. In (a),(b), an

example of emulated realizations is shown. The gray lines represent the five CCSM3 realizations and the red lines

represent the five emulated realizations (with an offset of 18C for temperature and 1000mmyr21 for precipitation).

The actual runs and those simulated via the emulator appear to be qualitatively similar. In (c),(d), the five super-

imposed CCSM3 realizations are shown in gray, and the dashed red lines denote the 95% prediction bands from the

emulator. Empirical coverage is 0.9531 for (c) and 0.9545 for (d), very close to the nominal 95% level. In (e),(f), the

mean across the five CCSM3 realizations of the slow scenario is shown in gray, and the dashed red lines represent the

pointwise 95% confidence bands based on the emulator. The bands are very narrow, especially for temperature,

highlighting the ability of the emulator to capture the mean trend with very high precision.
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correct. The test of empirical coverage of 95% predic-

tion intervals discussed in section 3 is one type of emu-

lator evaluation, but not the most relevant for the main

focus of this work, emulation of change in mean climate.

We therefore seek additional diagnostics.

Even if our emulation model Eq. (1) were strictly

correct for all scenarios, the mean emulator generated

from it would retain some uncertainty because of the

limited size of the training set used to estimate themodel

parameters. Confidence bands for the estimated re-

gression function provide a natural way to quantify this

uncertainty. Figures 3e,f shows the pointwise 95% con-

fidence bands along with the average of the five avail-

able CCSM3 realizations. (See supplementary materials

for details.) The widths of these bands are small relative

to internal variability and agree well by eye with the

average of the five CCSM3 realizations.

These confidence bands assume that the underlying

statistical model is correct. We consider two additional

indices whose validity does not depend on knowing the

form of the mean function. The index I1 measures em-

ulation performance relative to the optimal emulation

possible given initial condition uncertainty and I2 mea-

sures the trend in the data relative to initial condition

uncertainty (i.e., how much of the variation in a climate

time series could be explained by an emulator).

The first index is related to what statisticians call the

lack-of-fit statistic (e.g., see Montgomery 2012). Let

Tr(t) denote temperature for year t5 1, . . . , n (here t5 1

corresponds to the year 2010, the year the scenarios di-

verge) and realization r 5 1, . . . , R (here R 5 5). We

compare the sum of squared deviations of the actual

realizations from the emulated mean temperatures T̂(t)

to the sum of squared deviations of realizations from the

average across realizations T(t)5 1/R�R
r51Tr(t),

I15

�
R

r51
�
n

t51

[Tr(t)2 T̂(t)]2

R

R2 1
�
R

r51
�
n

t51

[Tr(t)2T(t)]2
5

N1

O1

. (3)

The numerator N1 measures the actual performance

of the emulator. The denominator O1 makes use of the

multiple realizations we have under each scenario to

give an unbiased estimate of the sum of squared errors

for a hypothetical ‘‘perfect’’ emulator that, for each year

t, reproduces the average temperature over an infinite

number of realizations. The factor of R/(R2 1) in O1

takes account of the fact that we do not know this perfect

emulator but use T(t) as an estimate of it. A value of 1

for I1 is therefore the best possible performance from

an emulator. (Occasional values less than 1 may how-

ever arise because of random variation in N1 and O1.)

A value for I1 close to 1 has different implications

depending on the noise in the model output being em-

ulated. In particular, if the noise is large compared to the

trend in the data, then I1 will likely be close to 1 even if

the emulation poorly captures the small underlying

trend. To quantify the degree of variation in the data

attributable to the trend, we construct an index whose

denominator is that of I1 but whose numerator now de-

scribes the trend itself,

I2 5

n

n2 1
�
R

r51
�
n

t51

[Tr(t)2Tr]
2

R

R2 1
�
R

r51
�
n

t51

[Tr(t)2T(t)]2
, (4)

where Tr is the mean across time of each realization,

Tr 5 1/n�n
t51Tr(t). Note that this index depends only on

the AOGCM data and is completely independent of the

emulation. If the mean AOGCM data show no trend,

then the numerator and the denominator are unbiased

estimates of the same quantity and I2 should be close

to 1. The conditions I2 � 1 and I1 ’ 1 would mean that

there is a trend to emulate and that the emulator cap-

tures it well. If I1 is comparable to I2, then the emulator

would not be useful for tracking the evolution of the

mean. As interannual variability in precipitation is

larger relative to trend than it is in temperature (e.g.,

Fig. 2; see also Deser et al. 2012), I2 values tend to be

much smaller for precipitation than for temperature (cf.

Figs. 4 and 9).

These indices suggest that the temperature emulator

described previously in section 3 (trained by one re-

alization each of the fast and jump scenarios) produces

near-optimal mean emulation of nearly all regions in the

physically reasonable slow stabilization scenario and

only modestly degraded quality in the extreme drop

scenario (Fig. 4 shows I1 and I2 values for all regions).

For the slow scenario, the emulated mean functions are

essentially optimal (I1 very nearly 1) throughout the

Northern Hemisphere and equatorial region and close

to optimal (I1 # 1.13) everywhere except in part of the

Southern Ocean. For the drop scenario, unsurprisingly,

the emulator predictions perform substantially worse in

all regions, but even here we believe this lack of fit may

be small compared to other possible sources of error in

forecasting climate, such as differences betweenAOGCMs

or differences between AOGCMs and reality and so

would still serve as a useful emulator. The largest dis-

crepancies arise for both scenarios in a single portion of

the Southern Ocean. Values of I1 substantially larger

than 1 are not necessarily associated with a poor skill of

the emulator relative to other techniques but do indicate
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that the statistical model for the region could be

improved.

In the end, whether an emulator of an AOGCM is

adequate will depend on the specific application. Be-

cause we make no effort to capture spatial dependence

in the stochastic terms between regions, the emulator

would be less appropriate for studies that involve large-

scale spatial correlations in weather; for example, global

droughts or jet stream shifts. [See Castruccio and Stein

(2013) for one approach to emulating the stochastic

component of annual temperatures in climate model

output that captures both spatial and temporal de-

pendence.] We also do not capture any dependence

between the stochastic components of temperature and

precipitation within a region. However, for an impacts

assessment requiring annual temperatures in a given

region, any differences between the emulated temper-

ature and the AOGCM temperature showed in, for ex-

ample, Fig. 3a would most likely be inconsequential.

b. Training set size: How many scenarios/
realizations?

One of the advantages of our approach is that it per-

mits emulation with a relatively small training set of

precomputed runs. To determine the trade-off between

size of the training set and goodness of fit, we examined

the performance of the emulator with a varying number

of scenarios and realizations. Investigating the impact of

the number of realizations on emulation quality is the

more straightforward test, involving computing I1 for

temperature emulation over a range of number of re-

alizations used. Figure 5b shows results from an exper-

iment in which the moderate scenario was emulated

with from 1 to 5 realizations of the fast scenario as the

training set. Increasing the number of realizations of

each training scenario produces more accurate emula-

tions, but the difference between the use of even 1 and 2

realizations is small and there is diminishing return

gained from further increasing the number of reali-

zations in the training set. Increasing the number of re-

alizations further also does not reduce the misfit of the

outlier regions with highest I1 values, which all lie in the

Southern Ocean.

Testing the value added by additional scenarios is

a less well-defined problem, since different choices of

scenarios will affect the emulation differently. Never-

theless, we attempt a test by conducting emulations

with increasing numbers of scenarios. Again we emulate

temperature in the moderate scenario beginning with

a training set consisting of a single realization of slow

and successively adding to the training set fast, jump,

and drop (Fig. 5a), which is a rough attempt to order the

training scenarios from most to least similar to the pre-

diction scenario. The results show that the addition of

scenarios first improves and then degrades the emula-

tion. We interpret this result as implying that our simple

statistical model cannot perfectly represent all scenar-

ios; that is, the best values of b0, b1, b2, and r in Eq. (1)

vary somewhat with the scenario. Including scenarios in

the training set very different from the one emulated can

then result in worse performance. Figure 5 shows that

even a single slow or a single fast realization yields

a fairly good emulator of the moderate scenario. How-

ever, we would be cautious about building emulators

when AOGCM output is available for only one scenario

since that would leave no opportunity to check for sta-

bility of the regression parameters across scenarios.

Our tests suggest that the choice of training set is not

especially crucial if prediction and training scenarios are

similar, but more care would be needed for emulating

extreme scenarios. One approach might be to choose

different training sets according to the prediction scenario.

FIG. 4. Emulation indices for all regions for the regional tem-

perature emulation described in the text and shown in Fig. 2. The

value in large font is the ‘‘emulation optimality’’ index I1 (3100)

and in small font below is the trend index I2. Low I2 means there is

little trend relative to noise and the I1 index is not informative, even

if close to 100 (optimal emulation). Shown are the (top) slow and

(bottom) drop scenarios. Emulation is worse for the physically

extreme drop scenario, as expected, but is generally close to the

optimal value of 1 in most inhabited regions. All indices have been

computed between the year 2010 and the farthest time point (2449

for slow and 2399 for drop).
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In this case, one algorithm might be to 1) order the

available forcing scenarios in the training set by their

similarity to the prediction scenario; 2) fit the emulator

using first only the nearest training scenario, then the

two nearest, and so on; and 3) choose the emulator with

the smallest training set that offers stable parameter

estimations as measured by the width of the 95% con-

fidence bands for the mean emulator (e.g., Figs. 3e,f).

Further research would be needed to actually apply this

approach in the context of integrated assessments over

many possible scenarios, both to define the notion of

similarity and to automate implementation. In this work

we have focused simply on demonstrating that, in some

circumstances, emulation requires only a limited train-

ing set of a few scenarios and realizations. This finding

supports the utility of statistical emulation based on

modest training sets for uses such as policy analysis or

model intercomparison.

c. Comparison with pattern scaling

One of the motivations for our approach to statistical

emulation is to offer an improvement on pattern scaling

by capturing the dependencies on rate of forcing change

that make transient climates different from equilibrium

ones. We therefore test the fidelity of our mean emula-

tion against pattern scaling to global mean temperature.

To provide a direct comparison, we first evaluate per-

formance of the regional climate projections generated

by our statistical mean emulator to regional projections

generated by pattern scaling to GMT. Second, we eval-

uate an extension of our approach that allows us to em-

ulate climate at native model spatial resolution, again

comparing toGMTpattern scaling. The latter testmay be

more relevant for policy analysis purposes, since impacts

assessments often require finescale climate projections.

We perform grid-scale emulation by a hybrid approach,

by first statistically emulating regional temperature and

precipitation and then downscaling by pattern scaling to

the regional mean temperatures.

For the comparison of regional emulation, we con-

struct patterns of temperature and precipitation for our

47 regions from all realizations in our training set (fast

and jump). Pattern scaling assumes that all regional

temperature anomaliesTi(t)2 Ti,PI are linear with global

mean temperature anomaly TGM(t)2 TGM,PI (subscripts

PI and GM denote preindustrial values and global mean,

respectively). We derive the pattern by linear regression

on all data in the training set assuming

Ti(t)2Ti,PI 5ai[TGM(t)2TGM,PI]1 «i(t) (5)

and estimating ai by least squares. Patterns for tem-

perature and precipitation are shown in Figs. 6 and 7,

with the fitted relationship between the regional climate

variable and GMT shown in red. These figures provide

a visual check on the linearity assumption behind pat-

tern scaling and on the variability in regional tempera-

ture and precipitation.

GMT in a typical pattern-scaling emulation would

usually be obtained by running an energy-balancemodel

tuned tomatch the climate sensitivity of theAOGCM to

be emulated. Here we forgo the use of an additional

external model and instead simply use the GMT from

our statistical emulator. This simplification gives pattern

FIG. 5. Boxplots of the fit index I1 for various (b) numbers of realizations and (a) scenarios in

the training set for mean emulation of the moderate stabilization scenario. The training sets for

the realization test (b) aremade up of 1–5 realizations of the fast scenario; those for the scenario

test (a) aremade up of a single realization of slow and then adding, successively, one realization

of fast, jump, and drop. Adding realizations of a single scenario offers a modest benefit as

shown in (b), and adding scenarios too dissimilar from the test case can actually degrade em-

ulator performance as shown in (a). Box-and-whisker plots exclude severe outliers, which are

shown with their regional codes. Four of the five outliers lie in the polar regions (see Fig. S1 in

the supplemental material for locations).
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scaling a slight artificial advantage over a more realistic

comparison. Nevertheless, when comparing to emula-

tion of temperature in the same scenarios shown pre-

viously (slow and drop), statistical emulationmatches or

outperforms pattern scaling in most regions (Fig. 8).

Comparing Figs. 4 and 8, we see for the slow scenario,

which has the smallest transient response and emulation

is easiest, the regional differences in performance for

our emulator and pattern scaling as measured by I1 are

small; these differences are much larger for the more

challenging drop scenario. For precipitation, I2 values

are much smaller than for temperature (see Fig. 9), so

the differences in I1 values for the two emulators are

unsurprisingly smaller. Nevertheless, in both prediction

scenarios used here, statistical emulation conveys an ad-

vantage in most regions outside of the Southern Ocean

(which is problematic for both methods).

For a grid-scale comparison, we use a hybrid approach,

emulating regional temperature and precipitation and

then downscaling by applying pattern scaling at the re-

gional level. This approach consists of four steps:

1) For each region i, use the training set to fit param-

eters for regional Ti and Pi.

2) With those parameters, statistically emulate regional

Ti and Pi for the prediction scenario.

3) For each region i, use the training set to obtain

regional patterns of grid-scale T and P.

4) Predict grid-scaleT andP bymultiplying the regional

patterns by emulated regional Ti.

This approach retains the benefits of statistical emula-

tion in capturing nonlinearities in regional climate evo-

lution but allows projections at small spatial scale.

Step 3, estimating for each region i a grid-resolution

pattern that scales with respect to regional temperature,

is mathematically similar to the global pattern scaler

described previously, where we obtained a regional-

resolution pattern that scales with respect to global

FIG. 6. Construction of regional pattern scaling for temperature: linear regressions of re-

gional temperature anomalies on GMT. Data used are 60 yr from 2010 to 2070 (we picture

a subset of the data in this figure for visualization purposes) for all 47 regions in the standard

training set consisting of the fast and jump scenarios. The two scenarios are shown in different

colors. Regions are arranged to approximate their geographic distribution (north at top) to give

an idea of spatial patterns. Panels share a consistent y-axis scale, so that differences in warming

rate and variability may be seen by eye.
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mean temperature. For T emulation, we use all data in

the training set to fit the parameters in

T[(L, ‘), t]2TPI(L, ‘)5a
(L,‘)[Ti(t)2Ti,PI]1 «

(L,‘)(t) ,

(6)

where T[(L, ‘), t] is temperature at a model grid point at

latitudeL and longitude ‘ and the i subscript again refers

to subcontinental regions. The grid-level parameters

a(L,‘) are estimated by least squares. We compare this

hybrid pattern-scaling emulator with the simple global

pattern scaling described previously: the pattern is at

grid level and the scaler is GMT, which we obtain from

our statistical emulation. In the case of temperature

emulation, the very simple hybrid approach outperforms

pattern scaling for most grid points outside of the polar

regions, particularly for the continental areas of greatest

interest for impacts assessment (Fig. 10).

5. Alternative emulation strategies

In the previous section we compared our climate

model emulation approach to pattern scaling, the most

commonly used approach for emulation of climatemodel

output in the impacts assessment community (see, e.g.,

Santer et al. 1990; Hulme and Raper 1995; Hulme and

Brown 1998; Cabre et al. 2010; Dessai et al. 2005; Fowler

et al. 2007; Harris et al. 2006; Murphy et al. 2007).

However, interest is growing in alternative approaches,

and it is therefore useful to compare our technique

with more complex emulation strategies proposed in

the recent literature (Rougier et al. 2009; Holden and

Edwards 2010; Wilks 2012; Vecchi et al. 2011; Murphy

et al. 2007). These strategies include the empirical or-

thogonal function (EOF) regression of Holden and

Edwards (2010) and Gaussian process (GP) modeling, a

standard method for emulating the output of deter-

ministic computer models (Sacks et al. 1989; Santner

et al. 2003; Kennedy and O’Hagan 2001; Oakley and

O’Hagan 2002; Rougier et al. 2009; O’Hagan 2006). For

climate models, Gaussian processes have mainly been

used to emulate over physical parameters, although

Holden and Edwards (2010) raise the prospect of using

Gaussian processes for forcing scenario emulation.

Williamson et al. (2012) use Gaussian processes for forc-

ing scenario emulation, but only emulate a single output

from the model, not a time series. A number of authors

have built emulators over physical parameters in order to

FIG. 7. As in Fig. 6, but for precipitation. Because precipitation anomalies differ widely

between regions, y-axis scales are shown in percent separately for each panel.
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calibrate a climate model (Sanso et al. 2008; Sanso and

Forest 2009; Sham Bhat et al. 2012; Drignei et al. 2008).

The GP approach to computer model emulation as-

sumes that the output of interest is a Gaussian process in

some set of inputs that vary across model runs. Among

others, Challenor et al. (2010) and Rougier (2008) have

discussed extensions to the GP approach to multivariate

climate output, and several authors have proposed ap-

proaches for multivariate, time-dependent output:

projection on a lower dimensional space via principal

component analysis (Wilkinson 2010; Higdon et al.

2008) or wavelet decomposition (Bayarri et al. 2007),

choice of a single representative output (Challenor et al.

2006) or a spatial aggregated average of it (Hankin 2005),

kernel mixing and matrix identities (Sham Bhat et al. 2012),

anddynamically autoregressivemodels (Fei andWest 2009).

UsingGaussian processes to emulate computer models

is attractive in many circumstances because it does not

require the prior assumption of any particular parametric

form for the relationship between inputs and outputs and

provides an internally consistent approach to estimating

the uncertainties of the emulator based on the GP model

(Sacks et al. 1989; Oakley and O’Hagan 2002). This

flexibility comes at some cost, since it is intrinsically dif-

ficult to estimate an arbitrary function nonparametrically

in high dimensions. Nevertheless, to give a specific ex-

ample, Challenor et al. (2006) fit a GP emulator to cli-

matemodel output with 17 input parameters and only 100

model runs. This fitting is aided by the fact that most of

the input parameters appear to have little impact on the

output of interest. Emulation over physical parameters

that are globally constant has been done with very few

model runs by exploiting the information available in

a spatially resolved climate model that provides many

informative outputs about these parameters from each

run (Sanso et al. 2008; Sanso and Forest 2009; ShamBhat

et al. 2012). In contrast, for the forcing scenario emulation,

we should not assume that any of the statistical parameters

in our emulators Eqs. (1) and (2) are constant across all

regions, since accounting for regional differences in pat-

terns of climate change is the whole point of our approach.

We instead exploit themultiple observations in time rather

than in space to build an emulator with few runs.

In our view, emulating a long time series of spatially

resolved climate variables over a wide range of forcing

scenarios is a highly specialized problem, and general

techniques for multivariate computer model emulation

are not the most appropriate tools to approach it.

Choosing an appropriate emulation strategy requires

recognition of three key issues: 1) the desired output

variables are a function of the previous history of CO2 or

other forcings and so the emulator inputs should be

functions of past trajectories; 2) because climate re-

sponse is dependent only on these past trajectories, the

statistical model that relates model inputs to outputs is

the same for any given year [i.e., the bj’s and r in Eq. (1)

do not depend on t]; and 3) the appropriate means of

reducing the dimensionality of the problem is not to

limit the inputs, which would reduce the types of forcing

trajectories that can be emulated, but instead to reduce

the number of parameters that need to be fit by using a

structured model of the functional form describing cli-

mate response.

Reducing climate emulation to a tractable problem

necessarily involves some compromises. The trade-offs

of different choices are illustrated by comparing our

approach to that of Holden and Edwards (2010), whose

goal is the most similar to ours among published works

on climate model emulation of which we are aware.

Holden and Edwards (2010) share our motivation of us-

ing a collection of climate runs and relatively simple

FIG. 8. Comparison between statistical emulation and pattern

scaling for regional temperature. Training set, predicted scenarios,

and time range for calculating indices are as in Fig. 4. The top

number shown in each region is the log ratio of the temperature fit

indices I1 for the statistical model (numerator) and pattern scaling

(denominator), multiplied by 100 for clarity. Negative numbers

mean that statistical emulation outperforms pattern scaling. The

small type gives the trend index I2, which does not depend on the

emulator. (top) For the slow scenario, the median log ratio across

all the regions times 100 is 21.35 (with 10% and 90% quantiles of

22.94 and 0.93, respectively), indicating a modest advantage from

statistical emulation. (bottom) Statistical emulation provides stron-

ger benefits for the drop scenario: themedian log ratio is27.42 (with

10% and 90% quantiles of 230.08 and 10.68, respectively).
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statistical techniques to produce computationally effi-

cient climate predictions for the purposes of integrated

assessment modeling, although they include both forcing

scenarios and 19 climate model parameters as inputs,

whereas we only consider forcing scenarios. Both their

approach and our approach limit the number of param-

eters that need to be estimated in the statistical model,

although with some noticeable differences.

Holden and Edwards (2010) emulate decadal average

temperature at a single time period (2100) based on

annual CO2 levels between 2005 and 2105. If one were to

directly regress each output for this problem (tempera-

ture changes for each pixel of the model) on the 100

inputs (CO2 in each year from 2005 to 2105), the re-

sulting parameter estimates would likely be unstable

and yield problematic predictions under some CO2

trajectories. To obtain outputs with a higher signal to

noise ratio, Holden and Edwards (2010) consider just

the five principal EOFs rather than results for each in-

dividual grid point as the outputs. To reduce the number

of regression parameters that need to be estimated for

each output, they consider only CO2 trajectories fol-

lowing a specific functional form (a cubic polynomial),

so that the regression is made on the three polynomial

parameters (the polynomial is constrained to equal

a fixed value in 2005) rather than on each of the 100 yr of

the CO2 time series. The emulation problem thereby

simplifies to a regression of five outputs on three pa-

rameters of a CO2 trajectory. This simplicity permits

Holden and Edwards (2010) to extend their analysis to

include emulation over physical parameters.

These choices make emulation possible, but with sev-

eral limitations. Reducing spatial dimensionality of

grid-level output by using EOFs rather than our use of

subcontinental regions is a reasonable choice, though

we believe the regional approach makes interpretation

of results somewhat easier. However, restricting CO2

trajectories to some simple functional form described

by a small number of parameters (e.g., cubic polynomials)

forgoes the flexibility needed for integrated assessment

problems inwhichCO2 emissionsmust be allowed to vary

with economic activity, whose own growth may be com-

plex. The restriction to cubic polynomials also precludes

modeling scenarios with abrupt changes in CO2 levels.

A more fundamental set of limitations results from

formulating the output as a function of the CO2 con-

centrations for a fixed set of years (which we call a fixed

time-frame trajectory) rather than as a past trajectory of

CO2 concentrations. Specifically, when using fixed time-

frame trajectories, the only model output that can be

used for emulation are results for those years over which

the prediction is sought. In contrast, using past trajec-

tories permits use of any model runs covering any years

to build a single emulator that allows predictions for

all years. The limitation is less apparent in Holden and

Edwards (2010) because they make only a single pre-

diction in time (a change in decadal averages). If, how-

ever, their collection of climate model runs were used

to predict temperature in an earlier period such as 2021–

30, then the fixed time-frame approach would require

excluding all available model output after 2030. Fur-

thermore and perhaps more importantly, with a fixed

time-frame trajectory, one would have to build and fit

a new statistical model for each time point at which one

wants to predict, whereas past trajectories can be used to

generate a single emulator for predictions at all time

points. Because the past trajectory approach uses all in-

formation in the training runs to build a single emulator,

we can produce a stable emulator with much fewer train-

ing data. In some circumstances, we were able to build an

effective emulator based on a single run (see Fig. 5) and

can predict a whole series of annual average temperatures,

whereas Holden and Edwards (2010) use 245 runs and

predict only a single temperature (itself a decadal aver-

age). As we have noted, Holden and Edwards (2010)

also include variation in climate model parameters but,

even with a fixed climate model parameterization, they

FIG. 9. As in Fig. 8, but for precipitation. The high variability in

precipitation leads to smaller I2 values and reduces the distinction

between emulation methods. For the slow scenario, the median log

ratio of I1 across all regions (3100) is 20.40 (with 10% and 90%

quantiles of 21.74 and 0.23, respectively); for the drop scenario it is

20.93 (with 10% and 90% quantiles of 25.70 and 5.91, respectively).
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would need at least three runs to estimate the three

parameters related to their cubic polynomial represen-

tation of the forcing scenario. The requirement for

a large training set in turn led Holden and Edwards

(2010) to use a climate model of only intermediate

complexity, Grid Enabled Integrated Earth System

Model, version 2 (GENIE-2; Lenton et al. 2007).

While the functional form we chose in Eq. (1) is

somewhat arbitrary, no further increase in complexity

seemed warranted. With the runs available to us, ex-

plorations with several more complex functional forms

did not yield substantially better emulation performance

(lower I1) for centennial-scale predictions. On the other

hand,models with fewer parameters thanEq. (1) that we

have considered resulted in noticeable degradation of

prediction skills for some scenarios. Our finding that

temperature emulations in the somewhat realistic slow

scenario yield I1 values very near 1 in nearly all regions

(e.g., Fig. 4a) implies that even the simple approach we

describe leaves little room to further improve emulation

of the mean temperature evolution over time scales

typical of impacts assessments.

Although our emulators of mean trajectories worked

very well in some circumstances, there is still room

for improvement in several categories: for precipita-

tion (where trend is small relative to variability), for

scenarios with extremely rapid CO2 changes, and for

longer-time-scale scenarios. In all cases, a larger collec-

tion of climatemodel runs would be necessary to explore

these issues.Multiplemillennial-scale training runswould

allow adding a second lag term in the statistical models to

account for the qualitatively different climate response at

long time scales. Runs with substantial jumps in con-

secutive years could address the misfit after rapid CO2

changes by allowing separate contributions from each of

the two most recent years rather than taking their aver-

age. Finally, a larger collection of scenarios might make

it feasible to allow the regression parameters to vary

smoothly in some way with the prediction scenario or,

more in keeping with the approach here, the past tra-

jectory. That is, we could construct a model that views

these parameters as a function of the past trajectory,

possibly as a multivariate GP after some dimension re-

duction on the past trajectory.

6. Conclusions

Statistical emulation of climate model output from

computationally demanding AOGCMs has the poten-

tial to make climate projections capturing the full tem-

poral dynamics of transient climates readily available

for impacts assessment, policy analysis, and other ap-

plications. Developing methods that can function rea-

sonably well with very small training sets is essential,

however, to permit emulation to be a widely useful tool.

The simple statistical approach we have outlined here

permits us to credibly emulate climate model output

with a very small training set, even in some cases of se-

vere scenario extrapolations. Small training set size is

permitted by two key aspects of our approach: treating

emulation inputs (CO2 concentrations here) as past

trajectories rather than fixed time-frame trajectories and

using simple, physically based statistical models that

capture the relationships between CO2 and temperature

FIG. 10. Emulating temperature at grid resolution and comparison with pattern scaling. (left) The log ratio (3100)

of the fit index I1 for statistical emulation of the drop scenario over pattern scaling. This is the grid-scaled case of the

bottom panel in Fig. 8. Negative values (blue) indicate that statistical emulation outperforms pattern scaling. (right)

The average log ratio for different latitude bands. Statistical emulation generally outperforms pattern scaling outside

the polar regions.
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or precipitation. The consequence is that a small training

set produces rich results.

While the collection of runs used here was based on

a fairly coarse spatial resolution climate model, the

proven efficiency of our emulator should permit its use

for emulating more state-of-the-art models based on

quite small training sets. This approach performs at least

as well as pattern scaling in all circumstances we have

examined and substantially better in many. It therefore

can be seen as a natural alternative for fast climate im-

pacts assessments, saving orders of magnitude in com-

putational time over running a full AOGCM.
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