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An important class of models for data on a spherical domain, called axially symmetric, assumes stationarity across
longitudes but not across latitudes. The main aim of this work is to introduce a new and more flexible class of models
by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate model output. In
this investigation, two other related topics are discussed: the lack of fit of an axially symmetric parametric model
compared with a non-parametric model and to longitudinally reversible processes, an important subclass of axially
symmetric models.Copyright © 2014 John Wiley & Sons, Ltd.
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1 Introduction
In comparison with theoretical and practical developments of data on the plane, data on a spherical domain have
received considerably less attention from the space–time statistics community. Recently, Gneiting (2013) provided an
overview of theoretical challenges for some classes of data in this domain, with a list of open problems that still need
to be addressed. On the applied side, the most common assumption for data on spherical domain is axial symmetry
(Jones, 1963); that is, data are stationary across longitudes. To generate positive definite covariance functions with
axial symmetry, Jun & Stein (2007,2008) proposed to define an isotropic process in R3, restrict it over the sphere,
and apply derivatives to obtain non-stationarity across latitudes. This approach has been applied to climate model
output (Jun et al., 2008) and has been extended to the multivariate setting (Jun, 2011). More recently, Castruccio &
Stein (2013a) proposed a spectral-based model in the special case of gridded data.

In this work, we aim to address some fundamental issues in the use of axially symmetric processes in the gridded
setting. In particular, we demonstrate that in the case of temperature simulated by a climate model, the fit can be
greatly improved if a broader class of models is considered. Moreover, we show that the likelihood for this class can be
obtained in a computationally convenient form, and a dataset of 25 million points can be fit. We also show how the
parametric assumption of an axially symmetric model implies a small loss of information compared with a fully non-
parametric model, and how restricting the analysis to a subclass of models with symmetry with respect to longitude
(longitudinal reversibility; Stein (2007)) is an adequate practice with temperature data.

The remainder of this paper proceeds as follows: Section 2 describes the dataset; Section 3 reviews some previous
results that will be used in the model fit; Section 4 introduces the steps of the model fit and, for the spatial part, it
discusses and compares different classes of models. Section 5 concludes with a discussion.
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Figure 1. Annual mean temperature (in Celsius) for the first run for the year 2014.

2 The dataset
We focus on the Coupled Model Intercomparison Project Phase 5 (Taylor et al., 2012), the reference multi-model
ensemble for the fifth Intergovernmental Panel on Climate Change Assessment Report (Cubasch et al., 2013). In
particular, we focus on yearly temperature at the Earth’s surface (at a reference height of 2 m above ground level) of the
National Center for Atmospheric Research Community Climate System Model 4 (NCAR CCSM4; Gent et al. (2011)).
The output is considered for the Representative Concentration Pathway 85 scenario (Van Vuuren et al., 2011). The
data are on a regular latitude-by-longitude grid with 192 latitudinal points and 288 longitudinal points. The scenario
comprises 95 years, between 2006 and 2100, and the ensemble consists of six runs with different initial conditions.
As the statistical behaviour in the Antarctic region is very different from the rest of the data and as latitude bands near
the poles are physically very close and this leads to numerical instabilities, we remove the data south of �62ı latitude
and north of 82ı latitude. The dataset thus consists of 155 latitudinal bands, for a total of 155 � 288 � 95 � 6 � 25

million data points. In Figure 1, we see an example of a temperature field for the first run for the year 2014.

3 The setting
Our model assumes that, conditionally on the knowledge of the mean, the output variability can be considered
independent across initial conditions, and we therefore refer to the runs as realizations. This assumption relies on the
deterministically chaotic nature of the primitive equations in climate models (Lorenz, 1963), and its validity has been
discussed in several works (Collins & Allen, 2002; Collins, 2002; Branstator & Teng, 2010). Denote by Tr the vector
of temperatures for realization r, by � its expected value across realizations, by `n the longitude, by Lm the latitude,
and by tk the time, where n D 1, : : : , N, m D 1, : : : , M and k D 1, : : : , K. We assume that

Tr D �C "r, "r
iid
� N .0,†/, (1)

for r D 1, : : : , R, and

Tr D ¹Tr .L1, `1, t1/ , : : : , Tr .LM, `1, t1/ , Tr .L1, `2, t1/ , : : : , Tr .LM, `2, t1/ , : : : , Tr .LM, `N, tK/º
> .
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Under this setting, if r > 1, it is possible to estimate the space–time structure † without estimating � since Tr � Tr0 �

N .0, 2†/ if r ¤ r0. More formally, suppose that † D †.�/, where � is the vector of parameters of the covariance
structure. If we define Dr D Tr �

1
R

PR
r0D1 Tr0 , then we have

Result
Let D D

�
D>1 , : : : , D>R

�>
. The restricted loglikelihood for (1) is

l.�; D/ D �
1

2
KMN.R � 1/ log.2�/ �

1

2
.R � 1/ log j†.�/j �

1

2
KMN log.R/ �

1

2

RX
r0D1

D>r0†.�/
�1Dr0 . (2)

Also, the corresponding estimator for �, obtained by generalized least squares, is O� D 1
R

PR
r0D1 Tr0 .

The proof can be found in the work of Castruccio & Stein (2013b). In this work, we obtain the parameters for all the
models we present in the next sections by maximizing (2).

4 The model
In this section, we introduce the three-step model used to fit the data. Each step estimates the parameters along one
dimension conditionally on the previous ones. While discussing the spatial part of the model, we relax the assumption
of stationarity across longitudes and show the substantial improvement with respect to an axially symmetric model.
We also discuss the appropriateness of parametric models and a subclass of axially symmetric processes in terms of
lack of fit compared with a fully non-parametric model.

4.1. Temporal part
We assume that the model has an autoregressive AR(2) structure, with different parameters for each grid point. A
diagnostic analysis similar to that of Castruccio & Stein (2013a) has shown that this is a reasonable assumption.
Denote by ".t; r/ the component for time t and realization r. Then,

".t; r/ D ˆ1".t � 1; r/Cˆ2".t � 2; r/C �.t; r/,

�.t; r/ iid
� N .0, SCS/,

where ˆ1 and ˆ2 are NM � NM diagonal matrices with the autoregressive coefficients, S is a NM � NM diagonal
matrix with the standard deviations for each grid point, and C is the correlation matrix. We use (2) to estimate the
components for ˆ1,ˆ2, and S separately for every n and m. Each fit is performed for the six independent time
series of length 95 at the chosen locations. As our workstation has multiple processors, we perform the maximization
of (2) in parallel, a procedure that greatly reduces the total computational time. Throughout this work, we define
H.t; r/ D ¹".t; r/ �ˆ1".t � 1; r/ �ˆ2".t � 2; r/ºS�1 and OH.t; r/ D

°
D.t; r/ � Ô 1D.t � 1; r/ � Ô 2D.t � 2; r/

±
OS�1. The

next two sections describe several models for C, which are estimated using OH.t; r/. As the distributions of H.t; r/ and
OH.t; r/ do not depend on time or realization, these two indexes will be dropped for simplicity.

4.2. Latitudinal bands: stationarity and beyond
We first consider a model for Hm D ¹H .Lm, `1/ , : : : , H .Lm, `N/º

>, the vector of the components of H across a single
band. A convenient assumption for the process is stationarity across longitude (axial symmetry; Jones (1963)). In this
setting, with points equally spaced on a circle, the matrix is exactly circulant (Davis, 1979), and it is more natural
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to model the process in the spectral domain, as the wavenumbers are uncorrelated. We denote by QHm the band-wise
Fourier transformed vector and by fm.c/ D var

°
QHm.c/

±
the spectral density at wavenumber c D 0, : : : , N � 1.

In past work (Castruccio & Stein, 2013a), a parametric model for fm was proposed. This model is similar to the
Matérn family but accounts for the circular geometry and avoids loss of regularity at high wavenumbers:

fm .c;�m,˛m, �m/ D
�m®

˛2m C 4 sin2
� c

N�
�¯�mC1=2

, c D 0, : : : , N � 1. (3)

In this section, we seek to understand

� if (3) is a reasonable approximation of the periodogram;
� if the stationarity assumption is valid.

For the first task, as independent replicates of OHm occur across realizations and time, the periodogram can be estimated

as the sample variance of its band-wise Fourier transform
�
denoted by QOHm

�
, across these two dimensions at each

wavenumber c. In Figure 2, we compare the restricted loglikelihoods (2) between (3) and the model with the empirical
periodogram, for all bands (in blue and red, respectively). It is apparent from this plot that the choice of a parametric
periodogram implies no loss of information in the model for all latitudes other than at 50ıS, where a small drop
in likelihood appears. This comparison confirms the diagnostic in Castruccio & Stein (2013a) who argued that a
parametric model exhibits good fit by visually comparing the fitted periodogram with the empirical estimate.

For the second task, instead of just considering the variance, we consider the full sample covariance matrix of QOHm

averaged over time and realizations. As the stationarity assumption is equivalent to independence across wavenumbers
in the spectral domain, if this assumption is reasonable, then the covariance matrix should be approximately diagonal,
and the corresponding likelihood should not show a noticeable change. In Figure 2, the restricted loglikelihood (2)
is shown (in black) in relation to the two previously introduced models. The stationarity assumption is remarkably
not adequate, as the difference in likelihood is overwhelmingly large compared with that of non-parametric versus
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Figure 2. Loglikelihood comparison of the parametric, non-parametric, and non-stationary models. The blue and red curves
are almost superimposed.
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parametric stationary models. This result stresses the importance of defining models for global temperature data that
are able to relax this assumption.

4.3. Multiple bands: parametric and non-parametric forms and
longitudinal reversibility

Once the model for single bands is defined, the relationship among bands must be specified. If the process is axially
symmetric, then Jun & Stein (2008) proved the following:

cov
°
QHm.c/, QHm0.c0/

±
D 0, for all c ¤ c0, (4)

for all m, m0 D 1, : : : , M. This allows for a block diagonal structure in the spectral domain since only the coherence
across Fourier transformed bands at the same wavenumber needs to be defined. When c D c0 in (4), Castruccio &
Stein (2013a) assumed that

ˇ̌̌
corr

�
QHm, QHm0

�
.c; �, �/

ˇ̌̌
D

�
�

¹1C4 sin2. c
N�/º

�

�jm�m0j

, c D 0, : : : , N � 1,

arg
°
corr

�
QHm, QHm0

�
.c/
±
D 0,

(5)

where arg¹zº is the argument of the complex number z. The second equation is equivalent to the process being
longitudinally reversible (see Stein (2007) and North et al. (2011) for a similar class of models emerging from energy
balance models considerations); that is, cov ¹H .Lm, `n/ , H .Lm0 , `n0/º D g .Lm, Lm0 , j`n � `n0 j/.

In this section, we seek to understand

� if (5) is a reasonable approximation of the cross-periodogram;
� if the assumption of longitudinal reversibility is appropriate.

For the first point, we compare the model with the optimal parameters in (5) with that obtained from a block diagonal

covariance matrix, each block corresponding to a wavenumber and consisting of the real part of corr
�
QOHm, QOHm0

�
.c/,

averaged over time and realizations; in other words, we compare the best parametric and non-parametric models in the
class of axially symmetric, longitudinally reversible processes. Table I shows the comparison between these models in
terms of number of parameters, restricted loglikelihood difference (2) normalized by the number of points, and Akaike
information criterion (AIC; Akaike (1974)). The non-parametric model shows an improvement in the fit, but at the
expense of a greatly increased number of parameters. In fact, while the parametric model requires only 3MC 2 D 467
parameters, the non-parametric model requires M.MC 1/=2 � 12, 000 parameters of the empirical cross-periodogram
for each wavenumber. Despite this increase, the AIC shows that the non-parametric model is preferable.

For the second point, we consider a block diagonal covariance matrix, each block corresponding to a wavenumber

and consisting of the complex corr
�
QOHm, QOHm0

�
.c/, averaged over time and realizations. From Table I, we see that this

results in a small improvement (0.21 loglikelihood per point with respect to the parametric model, 0.06 with respect
to the non-parametric model) but requires twice the number of parameters than in the longitudinally reversible case.
This is because the cross-periodogram has an imaginary component, which doubles the number of parameters. This
model shows a smaller AIC than that of the previous two models, thus confirming how the increase of parameters
in the non-longitudinally reversible model is not balanced by a noticeable increase in flexibility. As non-longitudinally
reversible models do not significantly improve the fit, we do not attempt to define a parametric model for this class.
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Table I. Comparison among different models in terms of number of parameters (without temporal parameters)
restricted loglikelihood (2) and Akaike information criterion (AIC). In the first row, ax/nax D axially/non-axially
symmetric, lr/nlr D longitudinally/non-longitudinally reversible, pa/npa D parametric/non-parametric model. The
best two models, both non-axially symmetric, are in bold.

Model
ax/lr/pa ax/lr/npa ax/nlr/npa nax/pa nax/npa

# parameters 467 1.7 � 106 3.5 � 106 12.9 � 106 14.6 � 106

�loglikelihood/{NMT.R � 1/} 0 0.15 0.21 1.11 1.24
AIC �1.120 � 108 �1.169 � 108 �1.106 � 108 �1.322 � 108

�1.347 � 108

Finally, we compare the aforementioned models with a non-axially symmetric model with correlated wavenumbers at
the same latitude as described in Section 4.2, but such that (4) would still hold for all m ¤ m0. We define this model

both with the parametric form (5) and with the matrix of the real corr
�
QOHm, QOHm0

�
.c/. A computationally convenient

evaluation of (2) is not straightforward since (4) must also hold for m D m0 to have a block diagonal covariance
matrix. Nevertheless, it is possible to retrieve a simple expression of (2) if QHm is first decorrelated band-wise and the
terms are rearranged subsequently. The expression can be found in the Appendix. The last two columns of Table I
show the results for these fits. The number of parameters is considerably larger than those of the previous models,
but the extent of the improvement is far larger than that in the previous steps. The AIC confirms a large improvement
when considering a parametric model from the non-axially symmetric class and a further, smaller improvement for
the non-parametric form. This result reinforces the findings in Section 4.2 and shows that relaxing the stationarity
assumption across longitudes allows a quantum leap in model flexibility.

5 Conclusion
In this work, we investigated the validity of several assumptions for spatial processes on the spherical domain. The
assumption of stationarity across longitude has been shown to be remarkably inadequate, at least for temperature
data. We proposed a non-stationary model that decorrelates the spectral process for each band, and we derived an
analytic expression of the likelihood that can be evaluated without noticeably increasing the computational complexity
of the fitting algorithm. Despite the significantly increased number of parameters, the gain in fit is such that this model
is preferred to the axially symmetric class according to the AIC criterion. To reduce the large number of parameters,
more effort is needed to understand which subclasses of non-axially symmetric models are more appropriate and the
factors driving the non-stationarity. We also showed how the non-parametric model for a single latitudinal band does
not result in a noticeable improvement in the fit, thus confirming how a parametric, Matérn-like model is adequate
within the subset of axially symmetric models. The non-parametric model for multiple bands instead results in a
small improvement in the AIC. Finally, this work has shown how restriction to longitudinally reversible processes is an
adequate practice: non-longitudinally reversible processes result in a significant increase in model parameters but do
not improve significantly the fit.

Appendix: Likelihood expression for the non-axially
symmetric model
Recall that

H D ¹H .L1, `1/ , H .L2, `1/ , : : : , H.LM, `1/, H.L1, `2/, : : : , H.LM, `N/º
> .
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Let P be the permutation matrix such that

PH D ¹H.L1, `1/, H.L1, `2/, : : : , H.L1, `N/, H.L2, `1/, : : : , H.LM, `N/º
> .

Moreover, let F be the matrix of the band-wise Fourier transform of H, A be the block diagonal matrix of FPH, and
A1=2 be its Cholesky decomposition. From (5), we know that

P>A�1=2FPH � N .0, B/, (6)

where B is a block diagonal matrix with N blocks, each one being M �M. From (6), we have that

H � N
�

0, P>F>A1=2PBP>
�
A1=2

�>
FP
	

.

As jPj D jFj D 1, we have

jcov.H/j D
ˇ̌̌
ˇP>F>A1=2PBP>

�
A1=2

�>
FP
ˇ̌̌
ˇ D

ˇ̌̌
ˇA1=2B

�
A1=2

�> ˇ̌̌
ˇ D jBjjAj.

The negative loglikelihood for a single time and realization can therefore be computed as

Ql.H/ D
1

2
NM log.2�/C

1

2
log jBj C

1

2
log jAj C

1

2

�
P>A�1=2FPH

�>
B�1P>A�1=2FPH.

By merging the last expression with (1), we have that the restricted negative loglikelihood is

l.D/ D 1
2
KNM.R � 1/ log.2�/C 1

2
KNM log.R/C 1

2
.R � 1/ log jBj

C1
2
.R � 1/ log j OAj C 1

2

PR
rD1

PK
kD1 v.tk; r/>B�1v.tk; r/,

(7)

where

v.tk; r/ D

8̂
ˆ̂̂<
ˆ̂̂̂:

P> OA�1=2FPD.t1; r/ OS�1, k D 1,

P> OA�1=2FP
°
D.t2; r/ � Ô 1D.t1; r/

±
OS�1, k D 2,

P> OA�1=2FP
°
D.tk; r/ � Ô 1D.tk�1; r/ � Ô 2D .tk�2; r/

±
OS�1, k > 2.

The block diagonal matrix OA is obtained in Section 4.2 by pooling all the empirical covariance estimates for QOHm for
different m. The block diagonal matrix B can be either parametrized by (5) and the optimal parameters obtained by
maximizing (7) or can be estimated via the empirical covariance function of v .tk; r/ at each wavenumber, averaged
across realizations and time.
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