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Global climate models aim to reproduce physical processes on a
global scale and predict quantities such as temperature given some
forcing inputs. We consider climate ensembles made of collections of
such runs with different initial conditions and forcing scenarios. The
purpose of this work is to show how the simulated temperatures in
the ensemble can be reproduced (emulated) with a global space/time
statistical model that addresses the issue of capturing nonstation-
arities in latitude more effectively than current alternatives in the
literature. The model we propose leads to a computationally efficient
estimation procedure and, by exploiting the gridded geometry of the
data, we can fit massive data sets with millions of simulated data
within a few hours. Given a training set of runs, the model efficiently
emulates temperature for very different scenarios and therefore is an
appealing tool for impact assessment.

1. Introduction. There is a wide consensus among the scientific commu-
nity that climate is changing and this will bring significant imbalance to the
present state of the system [IPCC AR4; Meehl et al. (2007)]. In order to
assess the potential impacts of climate change both on the environment and
human life, the geophysical community is providing constantly growing en-
sembles of climate models that include different scenarios of changing green-
house gases (e.g., the CMIP5 archive [Taylor, Stouffer and Meehl (2012)]).
The advantages of a statistical analysis of climate data lie in a framework
that not only can provide insights about the ability to reproduce the real
climate, but also has crucial practical advantages. If the climate output can
be reproduced efficiently with a simple statistical model under some scenar-
ios, then it is possible to predict how the output will behave for a different

Received October 2012; revised May 2013.
1Supported in part by US NSF Grant 09-544(RDCEP) and by STATMOS, an NSF

funded Network (NSF-DMS awards 1106862, 1106974 and 1107046).
2Supported by US NSF Grant 09-544(RDCEP).
Key words and phrases. GCM, climate ensembles, global space–time model, massive

data set.

This is an electronic reprint of the original article published by the
Institute of Mathematical Statistics in The Annals of Applied Statistics,
2013, Vol. 7, No. 3, 1593–1611. This reprint differs from the original in pagination
and typographic detail.

1

http://arxiv.org/abs/1311.7319v1
http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/13-AOAS656
http://www.imstat.org
http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/13-AOAS656


2 S. CASTRUCCIO AND M. L. STEIN

scenario, both in terms of its mean and its covariance structure. In other
words, a statistical model can be used to fit some climate model output
under some scenarios and reproduce (emulate) the behavior of the climate
model under a new forcing in much less time than the original computer
run. This approach can provide policy makers with a powerful tool for im-
pact assessment. This work focuses on temperature at surface for an initial
condition/scenario ensemble of a single General Circulation Model (GCM),
where the scenarios differ only in the trajectory of annual values of CO2

concentrations. The ultimate goal is to provide a statistical model and to
show how, given a small training set, it is possible to reproduce the computer
output of other scenarios with only a small number of parameters for the
mean and the covariance structure and a reasonable computational effort.
Annual averages of temperature at the pixel level are well-approximated by
a Gaussian distribution and we will use Gaussian process models throughout
this work. A further simplification that we will examine and make use of is
that the covariance structure is independent of the scenario.

To date, most work on climate model emulation has been done on Re-
gional Circulation Models (RCMs); see Sain, Furrer and Cressie (2011), Sain,
Nychka and Mearns (2011) and especially Greasby and Sain (2011) for a sta-
tistical model of RCMs, and Berrocal, Craigmile and Guttorp (2012) for a
model to adjust RCM output to real observations. Only a few studies have
been conducted on statistical analysis of GCMs [see, e.g., Jun, Knutti and
Nychka (2008) for a statistical model for a multi-model GCM ensemble],
and this is likely due to the dearth of literature regarding modeling data
on the sphere×time domain. Recently, Lindgren, Rue and Lindström (2011)
introduced a Stochastic Partial Differential equation approach to fit random
fields. Jun and Stein (2007, 2008) proposed a model for processes on this
domain based on taking derivatives of simpler models and Jun (2011) ex-
tended it to the multivariate case. The latter approach relies on embedding
the sphere in R

3, selecting an isotropic model, and then applying partial
derivatives to account for anisotropies, directional effects and nonstationar-
ities. This procedure generates flexible models with explicit forms for the
covariance function, but its coefficients are difficult to interpret so that it
can be a challenge to specify forms of the model that would be appropriate
in any particular setting. The main contribution of our work is to intro-
duce a spectral approach in modeling GCM output that results in more
interpretable coefficients, improved fits and reduced computational cost for
parameter estimation.

Since a single climate run can contain several million simulated values or
even more for annual averages, care must be taken in fitting a model. Current
statistical methods to deal with massive space time data sets often rely on
different forms of a reduced rank approach, from fixed rank kriging [Cressie
and Johannesson (2008)] to predictive processes [Banerjee et al. (2008)].
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Such methods are effective in fitting models in a feasible amount of time,
but can result in loss of information and misfit [Stein (2008)]. In this work,
the particular geometry of the data set and the use of parallel computing
achieve the goal of fitting the mean and covariance structure of a massive
data set in a few hours, by using a two-stage procedure that estimates some
latitude specific parameters separately for each latitude and then estimates a
few parameters describing dependence across parameters. The fitted model,
although not exactly the global maximizer of the likelihood under the model,
has a much higher likelihood than the maximized likelihoods under current
alternative models in the literature.

Section 2 presents the ensemble and explains how the data are prepro-
cessed. Section 3 introduces a general framework for the statistical analysis
of this ensemble. Section 4 reviews the approach in Jun and Stein (2007)
for data on a spherical domain. Section 5 presents our spectral model, the
spectral decomposition of a class of spatial processes on a regular grid and
finally shows some results on the fit compared to current alternatives in the
literature. In order to emulate, Section 6 gives a parametric model for the
mean, extending the work in Castruccio et al. (2013), and shows an exam-
ple of extrapolation for a different forcing scenario. Section 7 draws some
conclusions.

2. The ensemble. We use the Climate Simulation Library of the Cen-
ter for Robust Decision Making on Climate and Energy Policy (RDCEP)
consisting of model runs made with the Community Climate System Model
Version 3 [CCSM3; Yeager et al. (2006), Collins et al. (2006)] at T31 reso-
lution (48× 96 grid points on a resolution of ≈3.75◦ × 3.75◦). The ensemble
consists of multicentury model forecasts for a variety of CO2 trajectories (see
Figure 1 for some examples), with all other greenhouse gas concentrations
held constant at preindustrial values. The relatively coarse spatial resolution
allows generation of a rich library for statistical analysis.

Our ensemble consists of multiple realizations for each scenario: R = 5
initial conditions are sampled from the restart files of well spaced out years
of the NCAR b30.048 preindustrial control run [Collins et al. (2006)]. For
the purpose of this work these runs will be treated as statistically indepen-
dent, an assumption consistent with a preliminary analysis of the data and
physically realistic given the extreme sensitivity to the initial conditions of
the climate system. From the CCSM3 output files we considered only the
yearly average temperature at surface, which we denote as T. We also re-
moved the three northernmost and southernmost latitude bands to avoid
having to model the process in the narrow strips that form pixels near the
poles. A typical length of a single run is 500 years with M = 42 latitudes
and N = 96 longitudes, so the data set has 42× 96× 500≈ 2 million model
simulated temperatures for each realization.
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Fig. 1. Examples of CO2 scenarios in the Climate Simulation Library. We refer to these
as 1: slow, 2: moderate, 3: high and 4: drop scenario. This work mostly focuses on drop
and slow (in red), while moderate and high scenarios (in blue) will only be used in the
introduction of Section 6.

3. Statistical analysis of a climate ensemble. In this section we explore
some consequences of having independent realizations of random fields in
the ensemble. We consider runs with the same forcing and treat them as in-
dependent and identically distributed. We denote with Lm for m= 1, . . . ,M
the latitude, with ℓn for n= 1, . . . ,N the longitude, with tk for k = 1, . . . , T
the time. The latitude bands do not need to be equally spaced in this frame-
work.

We will assume that the rth realization has distribution

Tr = µ+ εr, εr ∼N (0,Σ)(1)

for r = 1, . . . ,R, where

Tr = (Tr(L1, ℓ1, t1), . . . ,Tr(LM , ℓ1, t1),Tr(L1, ℓ2, t1), . . . ,Tr(LM , ℓN , tT ))

is the vector of temperatures, E(Tr) = µ is a mean, and εr is the mean
0 stochastic component, which is assumed to be normally distributed and
with covariance matrix Σ. We denote by T̄ the mean across realizations
and by S = TNMR the size of the data set made up of all realizations of
a scenario. If the data set consists of more than one realization, we have
that Tr −Tr′ ∼N (0,2Σ) for r 6= r′. Therefore, it is possible to estimate the
covariance structure without specifying a model for the mean.

3.1. The restricted likelihood approach for the covariance structure. Sup-
pose now that the field has a parametrized covariance structure Σ = Σ(θ)
that needs to be estimated. Also, define T = (T1, . . . ,TR)

′, Dr = Tr − T̄

and D = (D1, . . . ,DR)
′. By merging all the different realizations, we can
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reformulate (1) as the following linear model:

T= (1R ⊗ ITNM )(1R ⊗µ) + ε, ε∼N (0, IR ⊗Σ(θ)),(2)

where IR is the R×R identity matrix and 1R is a column vector of length
R with all entries equal to 1. The design matrix is 1R ⊗ ITNM , each column
allowing for different means for every location in the grid and year, and µ

the mean parameter vector of length TNM .
A natural way to estimate θ is by restricted likelihood, and the following

result gives an explicit formula.

Result 1. The restricted loglikelihood for (2) is

l(θ;D) =−
TNM(R− 1)

2
log(2π)−

1

2
(R− 1) log(det(Σ(θ)))

(3)

−
1

2
TNM log(R)−

1

2
D

′(IR ⊗Σ(θ))−1
D.

Also, the corresponding estimator for µ obtained by generalized least squares
is µ̂= T̄.

The proof can be found in the supplementary material [Castruccio and
Stein (2013)], along with further theory on how the variogram can be esti-
mated without bias in this context. Result 1 shows how adding independent
realizations reduces to summing R quadratic forms for Dr with the same
matrix Σ−1(θ), therefore, it does not require storing matrices larger than in
the case of a single realization. Moreover, the REML estimate of the mean
vector µ does not depend on the covariance structure and is just the sample
average, which is expected since we assume the realizations are independent
and identically distributed.

4. Processes on a spherical domain. Throughout this section we only
consider the spatial part of the process, so we drop the time index. As the
data have global coverage, a specific statistical theory for random fields on
a sphere is required. The theory of valid covariance functions on a sphere
is different from that of the plane [see Gneiting (2013) for a complete dis-
cussion]. Furthermore, an isotropic process on a sphere is not the natural
choice in our case, as we expect temperature fields to behave differently at
different latitudes. A more natural starting point is the following:

Definition 1. A Gaussian process Z on a sphere is axially symmetric
[Jones (1963)] if it has mean only depending on latitude and

cov(Z(L1, ℓ1),Z(L2, ℓ2)) =K(L1,L2, ℓ1 − ℓ2).

Furthermore, the process is longitudinally reversible [Stein (2007)] if

K(L1,L2, ℓ1 − ℓ2) =K(L1,L2, ℓ2 − ℓ1).
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In this work we only focus on axial symmetry although we believe that
such models are not fully adequate to describe surface temperatures. In par-
ticular, accounting for land/sea differences may be one of the most promising
avenues for improving what we present here.

Axially symmetric models have seen a noticeable development recently.
Jun and Stein (2007) proposed a constructive approach for generating such
processes, which results in an explicit form for the covariance function:

• define k independent isotropic random fields Z̃j , j = 1, . . . , k on R
3,

• consider its restriction on the unit sphere,
• define

Z(L, ℓ) :=
k

∑

j=1

(

aj(L)
∂

∂L
+ bj(L)

∂

∂ℓ
+ cj(L)

)

Z̃j(L, ℓ),(4)

where

aj(L) =

naj
∑

i=1

ai,jP
i(sin(L)),

bj(L) =

nbj
∑

i=1

bi,jP
i(sin(L)),

cj(L) =

ncj
∑

i=1

ci,jP
i(sin(L))

and P i are Legendre polynomials of order i.

We will refer to this modeling framework as the partial derivative (PD)
approach. Using the PD approach guarantees that Z is axially symmetric; it
can be extended to more general processes if aj and bj depend on longitude
and Jun (2011) extends the approach to the multivariate setting. Despite
this flexibility, it has some disadvantages. First, by starting out with models
that must be valid in R

3, some possible models are lost, especially models
with substantial negative spatial correlation at some lags, which could occur
for quantities for which mass or energy are approximately conserved over
time. More importantly, the interpretation of the coefficients aj and bj is
not straightforward and limits the flexibility of the model.

5. Spectral modeling of axially symmetric processes. We propose to rep-
resent the process in the spectral domain, and we show how this results in a
more flexible and interpretable model. We first present the temporal part of
the model, then define the model for a single latitudinal band, a model for
multiple latitudinal bands, the structure of the spatial covariance matrix,
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and finally we compare this model with the PD approach. We work un-
der the assumptions of model (1). Sections 5.1–5.3 describe our model and
summarize information about the parameter estimates. Section 5.4 shows
how the axial symmetry of the spatial part of the model can be exploited
to speed up the calculations. Section 5.5 shows that our model yields much
larger loglikelihoods than some PD models.

5.1. The temporal structure. Define ε̃t = (ε(L1, ℓ1, t), . . . , ε(LN , ℓM , t)) the
vector of the variabilities at time t, and Dt;r =Tt;r − T̄t for r = 1, . . . ,R the
temperature difference. We assume that the vector-valued time series ε̃t has
the following structure:

ε̃t =Φε̃t−1 + ηt, ηt ∼N (0,Σs),
(5)

Φ= diag(ϕQ(L1,ℓ1), . . . , ϕQ(LM ,ℓN )),

where Q(L, ℓ) = 1 if pixel (L, ℓ) is land3 and Q(L, ℓ) = 0 otherwise. In other
words, we are assuming a temporal AR(1) structure with different correla-
tion parameters, ϕ0 and ϕ1, depending on whether the grid point is over land
or ocean. Diagnostic plots (see the supplementary material [Castruccio and
Stein (2013)]) show that this structure is sufficient to capture the temporal
features of the data. We also assume ε̃1 ∼N (0,Σs) so the model is not ex-
actly stationary in time, but given the weak temporal correlation for annual
temperatures, this simplification has negligible impact on the model fit. For
this section we define Ht;r =Dt;r −ΦDt−1;r and Hr = (H1;r, . . . ,HT ;r).

5.2. A model for a single latitudinal band. Assume now that ηt is axially
symmetric, as described in Section 4. If we consider a single latitudinal band,
the covariance KL is only a function of the longitudinal lag ℓn = 2πn/N ,
n= 0, . . . ,N − 1 and is symmetric about π. Therefore, we observe an evenly
spaced stationary process on a circle×time domain and we define fL(c) =
∑N−1

n=0 e−icℓnKL(ℓn) to be the spectral density on the circle at wavenumber c.
Since the grid we use here is the same grid on which a discretized version of
the partial differential equations underlying the GCM are solved, it makes
sense to work directly with this finite spectrum rather than to model a
spectrum at all integer wavenumbers c.

For observations on a line, a common spectral density is the Matérn:

f(ω;φ,α, ν) =
φ

(α2 + ω2)ν+1/2
, ω ∈R.(6)

3If the grid point is on the boundary, we will consider it as land if its percentage of
land is greater than 50%.
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Fig. 2. ( a): log(φ̂L) for different latitudes. (b): ν̂L vs latitude. (c): α̂L vs latitude. The
blue dots are the estimates and the solid red line is a fitted cubic smoothing spline. (d):
empirical and fitted log periodogram for two different latitudinal bands, computed using the

normalized differences
√

R

R−1
1
T

∑T

t=1 Ĥt;r for r= 1, . . . ,5.

We propose the following modification for fL:

fL(c;φL, αL, νL) =
φL

(α2
L +4sin2(c/Nπ))νL+1/2

, c= 0, . . . ,N − 1.(7)

The parameters have similar interpretations as for the ordinary Matérn
model, with αL an inverse range parameter, νL controlling the rate of de-
crease of the spectrum at large wavenumbers and thus the “smoothness” of
the process (even though one cannot talk about differentiability for a process
on a discrete grid), and φL the overall level of variation.

A first analysis can be done by considering each band separately from the
others. Figure 2 shows the results for a training set of five drop scenarios
in which the parameters are estimated separately for each latitude using
REML.

In this way, one can visualize how φ̂L, α̂L and ν̂L in (7) are changing across
latitude [Figures 2(a)–(c)]. All the parameters display complex patterns; it
is especially noticeable how α̂L and ν̂L have very similar behaviors, as they
both show an increase at midlatitudes. The tropical behavior is very different
from all the other latitudinal bands, as estimates of both parameters show
a sharp drop in this region.

Figure 2(d) shows an example of the periodogram fit for two different
bands: one near the equator and one at a northern midlatitude. The spec-
trum near the equator drops off faster at low wavenumbers, which is reflected
in the smaller value for α̂L. However, at high wavenumbers, the spectrum
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near the equator is flatter, which is reflected in the smaller value for ν̂L. The
functional form chosen is flexible enough to capture the different behaviors
across latitudes. The supplementary material [Castruccio and Stein (2013)]
provides a table of all the estimates with their corresponding asymptotic
standard deviations. The variability of these estimates is extremely small,
as we would expect from an analysis of such a large data set; therefore, the
larger differences in patterns across latitudes in Figures 2(a)–(c) are sta-
tistically significant. In the supplementary material [Castruccio and Stein

(2013)], we further show how φ̂L, α̂L and ν̂L do not substantially vary over
time.

5.3. A model for multiple latitudinal bands. To define a global model, we
need to describe the following:

• how φL, αL and νL are changing across latitude,
• how different latitude bands are correlated.

The first point could be addressed with a parametric model of the three
parameters as a function of L, but, as shown in Figure 2, the pattern is
complex and likely requires many parameters to be adequately captured.
Instead, we use the estimates obtained from the analysis of single latitudinal
bands. Computing estimates separately for each band allows the estimates
to be obtained in a parallel fashion on multiple processors. In our analysis
with 42 latitudinal bands, the entire procedure does not require more than 5
minutes on a small 4 node cluster. In contrast, the PD approach of Jun and
Stein (2008) does not lead to any obvious algorithm to fit parameters that
describe variation within latitude separately for each latitude. With higher
resolution model output, it might become more important to parametrize
how φL, αL and νL change with latitude.

As for the second point, we need to model

fLm,Lm′
(c) =

N
∑

n=1

e−icℓnK(Lm,Lm′ , ℓn), c= 0, . . . ,N − 1.

More specifically, if we denote by | · | the modulus of a complex number and
by arg its argument, we need to specify coherence and the phase

ρLm,Lm′
(c) =

|fLm,Lm′
(c)|

√

fLm(c)fLm′
(c)

,

γLm,Lm′
(c) = arg(fLm,Lm′

(c)),

where fLm(c) and fLm′
(c) are defined in (7). A null phase results in a

symmetric cross-covariance between bands, which corresponds to a sym-
metric circulant covariance matrix and therefore results in a longitudinally
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Table 1

Parameter estimates for the coherence (8) in the spectral model, for five drop scenarios.
All estimates treat φL, αL and νL for all L as fixed at the values estimated in the first

stage of fitting

Parameter Estimate sd× 10
−4

95% CI

ξ 0.9696 0.51 (0.9695, 0.9697)
τ 0.2080 2.0 (0.2076, 0.2084)
ϕ1 0.1010 3.4 (0.1004, 0.1017)
ϕ0 0.1141 3.5 (0.1134, 0.1148)

reversible process (see Section 5.4). The flexibility of spectral methods al-
lows one to account for longitudinal reversibility independently from other
features of the model. This is not possible in the PD approach: to have a
longitudinally reversible process one needs aj(L)bj(L) = 0 for j = 1, . . . , k
[Jun and Stein (2008)] and it is not straightforward to determine how such
a constraint would impact other features of the model. Since diagnostic plots
(see supplementary material [Castruccio and Stein (2013)]) show that the
phase is small, we work under the assumption of longitudinal reversibility.

We assume the following model for the coherence:

ρLm,Lm′
(c) =

(

ξ

(1 + 4sin2(c/Nπ))τ

)|Lm−Lm′ |

, c= 0, . . . ,N − 1,(8)

where ξ ∈ (0,1) and τ > 0. The proposed model has only 2 parameters: ξ
controls the overall rate of decay of coherence across all wavenumbers as the
difference in latitude increases and τ describes how much faster coherence
decays at higher wavenumbers than at lower wavenumbers. Note that we
could allow τ < 0 as long as ξ/5τ < 1 so that all absolute coherences are
bounded by 1 as they must be, but it would be very unusual for a natural
process to have stronger coherence across latitudes at higher wavenumbers.
A more flexible form for (8) has been considered but did not result in sig-
nificant improvement of the fit (see supplementary material [Castruccio and
Stein (2013)]).

Table 1 shows the estimated coefficients for the five realizations of the
drop, together with their asymptotic standard deviations and 95% confi-
dence intervals by treating the previously estimated values of φL, αL and
νL as known. We can see how all the estimates have very small variability,
which is expected since the data set is very large (≈10.7 million temper-
atures). The temporal structure is slightly different for land and ocean, as
the latter tends to show a slightly stronger temporal dependence. In the
supplementary material [Castruccio and Stein (2013)] we further show how

ξ̂, τ̂ , ϕ̂1 and ϕ̂0 are not dependent on time and, therefore, the assumption
of stationarity of the stochastic term is reasonable.
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5.4. Spectral decomposition of the covariance matrix for axially symmetric
processes. The evaluation of the likelihood in this setting is a challenging
problem, as in general it requires evaluation of a quadratic form with an
inverse covariance matrix of size TNM × TNM , and computation of a log
determinant. In this particular setting, the gridded geometry of the data and
the axial symmetry allow for some degree of sparsity of Σs, the covariance
matrix for ηt, in the spectral domain. Here we focus on describing matrix
calculations for Σs, which in turn with the AR(1) model in (5) for ηt allows
for fast calculation of the restricted likelihood. For simplicity of notation,
we drop the time index t throughout this subsection.

In general, this problem requires O((NM)3) operations and the storage of
NM(NM +1)/2 distinct values using the Cholesky decomposition. In fact,
the resolution of our model is sufficiently coarse that a general Cholesky
decomposition algorithm could be used here with some difficulty. However,
by exploiting the structure of the covariance matrices, we can greatly speed
up the computation and reduce the memory requirement, which would be
essential when modeling higher resolution of GCM output.

The regular lattice geometry for GCM output over the sphere, together
with the assumption that the model is axially symmetric, allows for some
exact computations using spectral methods that drastically reduce the com-
putational time and the memory needed. This approach was first introduced
by Jun and Stein (2008) for the analysis of Total Ozone Mapping Spectrom-
eter (TOMS) Level 3 data, which are post-processed data on a regular grid.

The key idea is that a stationary process of size N on a circle results
in a (symmetric) circulant covariance matrix. The (real) eigenvalues can be
written in terms of the Fast Fourier Transform (FFT) of the coefficients of
the first row, which requires only O(N log(N)) operations, and the eigenvec-
tor matrix is simply the Discrete Fourier Transform matrix [Davis (1979),
page 72].

Over the sphere, ηLm
= (η(Lm, ℓ1), . . . ,η(Lm, ℓN )) is a process on a circle

for every m = 1, . . . ,M . The N × N covariance matrix for every ηLm
is

(symmetric) circulant and can therefore be diagonalized via FFT. The N ×
N cross-covariance matrix cov(ηLm

,ηLm′
) for m 6=m′ is circulant but not

necessarily symmetric, as

cov(η(Lm, ℓn),η(Lm′ , ℓn+s)) =K(Lm,Lm′ , ℓn − ℓn+s) =K

(

Lm,Lm′ ,2π
s

N

)

6=K

(

Lm,Lm′ ,−2π
s

N

)

=K(Lm,Lm′ , ℓn − ℓn−(N−s))

= cov(η(Lm, ℓn),η(Lm′ , ℓn−(N−s))).
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Therefore, the diagonalization via FFT results in complex eigenvalues. It
should be pointed out that the condition for the cross-covariance matrix to
be symmetric is that the process is longitudinally reversible. If we call F the
operation of FFT, we know that the covariance matrix of {FηL1

, . . . ,FηLM
}

is a block matrix with diagonal blocks, and if we rearrange rows and columns
over latitude, we have that Fη is a block diagonal matrix with N blocks with
each M ×M block being an Hermitian matrix. Therefore, the evaluation of
the likelihood requires O(M2N logN) flops for the FFT and O(M3N) for
the Cholesky decompositions of the N blocks. In terms of memory, a general
axially symmetric process requires M2N values to store, while a longitudi-

nally reversible process only requires M(M+1)
2 N values.

5.5. Comparisons to other models. We compare the spectral model
(model sp) presented in the previous two sections to several other mod-
els. For all models, the temporal structure is given by the AR(1) model (5).
To model the spatial structure of the residual term ηt in (5), we consider the
following possibilities: a model with independent and identically distributed
components (model ind), an isotropic Matérn model (model mat) and the
PD model with Matérn model for the underlying isotropic fields. Referring
to equation (4), we consider the following settings for the PD models:

• Model h3 : k = 1, na1 = 3, nb1 = 3 and nc1 = 1.
• Model h10 : k = 1, na1 = 10, nb1 = 10 and nc1 = 1.
• Model h3,2 : k = 2, na1 = na2 = 3, nb1 = nb2 = 3, nc1 = 1 and nc2 = 0.

We use 5 realizations of a drop scenario, for a total of approximately 10.7
million GCM temperatures, and we compare the results in terms of the re-
stricted loglikelihood (3). For such massive data sets, we found it helpful
to normalize differences in (restricted) loglikelihoods by the number of con-
trasts NMT (R− 1). We will write ∆loglik to generically mean a difference
in loglikelihoods. For the sp model, we first maximize the likelihood for the
single band parameters in parallel and then we maximize the likelihood for
ξ, τ,ϕ0 and ϕ1 conditional on the values of φ̂L, α̂L and ν̂L. All the other mod-
els are maximized over the full parameter space. The results are reported in
Table 2, where the number of parameters and the difference in loglikelihood

Table 2

Comparison between different models in terms of number of parameters, computational
time (hours) and restricted loglikelihood (3). For the spectral model, the actual number of

parameters for the global maximization is reported in parentheses

Model ind mat h3 h10 h3,2 sp

# param 3 5 12 26 17 130 (4)
time (hours) 0.1 7.3 60 379 880 1.8
∆loglik/NMT(R-1) −1.93 −0.32 −0.17 −0.03 −0.16 0
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(normalized with respect to the size of the data set) is shown and compared.
The model ind is clearly not adequate, and the isotropic Matérn results are a
noticeable improvement. Model h3 gives better results, therefore underlying
the need for an anisotropic model. Model h3,2 and especially h10 result in
better likelihoods but the number of parameters is very large, and the esti-
mation requires several weeks. Model sp outperforms all the previous models
and even if the actual number of parameters is 4 + 42× 3 = 130, the max-
imization is done only with the 4 parameters in Table 1 and requires only
1.8 hours. The precomputation of the parameters for the latitudinal bands
(a procedure that, as mentioned in Section 5.2, requires a few minutes using
multiple processors on a cluster) plays a crucial role in this model, as it adds
flexibility and allows for a maximization of a conditional loglikelihood with
respect to only a few parameters.

Although the model presented here already provides a substantially better
fit than even the best PD model with much less computation, one might won-
der if maximizing the restricted loglikelihood over all 130 parameters would
lead to a model with a much better fit. We ran a full parameter search over
all 130 parameters using fminsearch in MATLAB, which resulted in an im-
provement of ≈0.008∆loglik/NMT (R − 1) after approximately 1670 hours
of computation. Our goal here is to find the best-fitting model to the data
that we can for a given computational effort and it is clear that the sp model
with parameters estimated by our proposed two-stage procedure dominates
the PD models with parameters estimated by REML in this application.

To have a better understanding of how the model is able to capture the
local spatial dependence of the data, it is useful to show how variances of
spatial contrasts are reproduced by the model [see, e.g., Stein (2005)]. Fig-
ure 3 shows a comparison between models mat, h3, h10 and sp in terms of
their ability to reproduce the variances of some contrasts of Hr

4 (the details
about how the empirical estimates are computed are found in the supple-
mentary material [Castruccio and Stein (2013)]). Figures 3(a)–(b) represent
the east–west contrast H(Lm, ℓn)−H(Lm, ℓn−1) and the north–south con-
trast H(Lm, ℓn) − H(Lm−1, ℓn). In both cases the spectral model is able
to reproduce the patterns of the empirical contrast, therefore showing an
overall good fit of both the single band spectral model (east–west) and the
coherence (north–south). The isotropic model shows a pattern in the east–
west contrast that is only due to the geometry of the sphere: points closer
to the poles are physically closer for the same longitude spacing, therefore
resulting in smaller variances of the contrasts. Model h3 instead is able to

4The index for Hr will be dropped, as the distribution of the contrasts is independent
of the realization; note that Hr depends on the estimates of the AR(1) parameters φ0

and φ1, but the values of these parameters vary so little across models that the visual
impression of Figure 3 is unaffected by which estimates are used.
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Fig. 3. (a): estimated and fitted var(H(L, ℓ) − H(L, ℓ − ∆ℓ)). (b): var(H(Lm, ℓ) −
H(Lm−1, ℓ)). (c): var(H(L, ·)). (d): var(4H(Lm, ℓ) −H(Lm, ℓ − ∆ℓ) −H(Lm, ℓ + ∆ℓ) −
H(Lm−1, ℓ)−H(Lm+1, ℓ)). The vertical axis is plotted on a log scale. The details about
computing the empirical estimates are in the supplementary material [Castruccio and Stein
(2013)].

capture some of the features of the data, especially for the north–south con-
trast, but is overall too smooth and would require more flexibility. Model
h10 shows a decent fit in the north–south contrast, but the east–west con-
trast is significantly misfitted. Figures 3(c)–(d) represent the variance across
latitudes and the Laplacian. The spectral model can reproduce most of the
trend for the variance, therefore proving to be flexible enough to capture the
low wavenumbers behavior. The Laplacian is overestimated for the northern
hemisphere, a sign of a lack of fit for the coherence between multiple bands
that could be fixed by allowing nonstationarity across latitudes in (8), al-
though at the cost of a substantially more complex model. The model h10
shows a somewhat overall better fit for this contrast.

6. Emulation. Throughout this section, we drop the index r denoting
the realization to simplify the notation. The model we have presented can
reproduce efficiently the covariance structure for a single scenario, but in
order to emulate temperature for a different forcing, we need to determine
how the mean and the covariance structure are changing across different sce-
narios. Figure 4 addresses the latter issue. The plots represent the change
in parameter value for the single latitudinal band features across four sce-
narios indicated in Figure 1; ϕ1 is not included but shows similar patterns.
For all of them, an analysis of R= 5 different realizations is performed and
we show the differences with respect to the slow scenario, together with the
95% Bonferroni confidence bands around 0. Since all the standard deviations
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Fig. 4. Differences of parameter estimates for different scenarios (R = 5 realizations
each) for (a): logφL, (b): νL, (c): αL and (d): ϕ1. The reference is the slow scenario. The
dashed red lines represent the 95% Bonferroni confidence bands around 0. The estimates
are computed as in Figure 2.

are similar across scenarios, we choose to plot the differences of parameter
estimates between the slow and the drop scenario. The differences between
the slow and drop scenarios are significant for logφL at higher latitudes, as
shown in Figure 4(a), but all the other parameters and scenarios are largely
within the confidence bands. Therefore, it seems reasonable to assume that
differences in the covariance structure across scenarios are modest. In the
supplementary material [Castruccio and Stein (2013)], a similar diagnostic
is carried out for the coherence parameters. Therefore, only a parametriza-
tion of the mean is necessary to describe the trend of the data, train the
model with some scenarios, and then predict the temperature for an un-
known scenario. Our approach to emulation of the mean is based on the
method of Castruccio et al. (2013), where a simple model was proposed and
the analysis was performed independently for 47 regions without accounting
for spatial dependence.

6.1. A model for the mean. Before proceeding with this analysis, we
standardize to account for the different variability across different grid points.
This simple adjustment was not done in the previous sections and accounts
for some of the nonstationarity in longitude that our model is not able to
capture. In this section we consider the output of a control run with con-
stant CO2 concentration, compute its average T̄c and its standard deviation
sd(Tc) over time for every grid point, and then for every temperature vector
T in the training set normalize to T

∗ := (T− T̄c)/ sd(Tc).
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With reference to (1), the goal of this section is to give a (scenario depen-
dent) parametric model for µ in order to extrapolate the temperature value
for another given scenario. The model we use is the following:

T
∗(L, ℓ, t) = β0,(L,ℓ) + β1,(L,ℓ)

(

1

2
log[CO2](t) +

1

2
log[CO2](t− 1)

)

+ β2,c

+∞
∑

i=2

w(i− 2) log[CO2](t− i) + ε(L, ℓ, t),(9)

w(i) = λi(1− λ),

where ε is modeled as in Section 5 and c indexes the 47 predefined regions
shown in the supplementary materials [Castruccio and Stein (2013)].

The mean has three components:

• an intercept β0, different for every grid point,
• a short term effect β1, different for every grid point,
• a long term effect β2, different for the 47 regions.

The last term accounts for the long term contribution of the forcing via
the weights w(i− 2), which are expected to be decreasing as the time lag
i − 2 increases. We model this decrease exponentially with decay rate λ
identical for every grid point. The linear parameters can be profiled but
the estimation of the parameters describing the behavior of ε and of λ
requires the numerical maximization of the likelihood. The evaluation of
this likelihood for a single run requires approximately 8 minutes, so to make
the computation faster and reduce the optimization to λ, we plugged in the
estimated spatiotemporal structure of ε obtained via REML using the same
procedure as in the previous section.

We estimated the stochastic structure with R= 5 realizations of the drop
scenario, obtained λ based on a single drop scenario (estimation of λ for all
scenarios was not computationally feasible), and finally emulate for the slow
scenario. We choose the drop scenario for the training set to show the results
for a severe extrapolation and because the trend is more evident under a
forcing with an abrupt change, making the estimation of the coefficients
more stable. In order to reproduce the mean climate for less drastic scenarios
such as the Representative Concentration Pathways in the CMIP5 archive
[Van Vuuren et al. (2011)], a simpler form of the mean function is likely
preferable.

The estimated value for λ is 0.95 (0.0014) and once this parameter is esti-
mated, each conditional simulation takes only a few seconds. Given the very
large number of temperatures and the small variability of the estimates, we
choose not to account for parameter uncertainty in the simulations. The top
part of Figure 5 gives an example of emulation of the mean and conditional
simulation of the slow scenario for a grid point in the middle of the Pacific
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Fig. 5. Training set: one drop realization. Prediction set: a slow scenario. (a): an example
of a conditional simulation. The solid black line represents the fitted (emulated) value,
the gray lines represent the actual realizations from the GCM and the red lines are the
conditional simulations. (b): global plot of the lack of fit index I , which is a measure of
goodness of fit for emulation of the mean. The upper bound at I = 3 is only for visualization
purposes as the fit index can be as large as 18.9. There are 74 out of 4032 points with I > 3.

Ocean. To assess the fit, for every grid point we use, as in Castruccio et al.
(2013), the following simple lack of fit index (the indication of latitude and
longitude has been removed for simplicity):

I =

∑R
r=1

∑T
t=1(Tr(t)− T̂(t))2

(R/(R− 1))
∑R

r=1

∑T
t=1(Tr(t)− T̄(t))2

,(10)

where T̂ is the fitted value and T̄ is the average across realizations. This
index measures how close the fitted value (emulated mean) is to the average
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of the realizations. The smaller I is the better, but since the expected value
of the numerator cannot be less than that of the denominator, values of I
near 1 indicate an excellent fit.

Figure 5(a) shows an example of conditional simulation for a point in the
Pacific Ocean. The mean and variation are similar to the original simula-
tions, but there is noticeable underestimation of extreme events, especially
cold extremes. This lack of ability of the statistical model to reproduce such
features of the climate poses some problems and can limit the extent of the
use of this model on impact assessment. A possible direction to address this
issue is to fit the data with a model more general than an axially symmetric,
but this will require further advances in modeling, and substantial compu-
tational resources. Another approach is to develop direct methods to fitting
and emulating extremes along the lines of Mannshardt-Shamseldin et al.
(2010).

Figure 5(b) shows I for the slow scenario over all the regions. It is evi-
dent that the emulation does poorly in the area near the Southern Ocean
stretching from the southern tip of South Africa to near Tasmania. We spec-
ulate that the sea ice albedo effect may create strong nonlinearities in this
area, but further investigations are needed. Also, the fit is not fully ade-
quate in the equatorial regions, even though the misfit is not as strong as
in the Southern Ocean. The details about the algorithm are provided in the
supplementary material [Castruccio and Stein (2013)], and the file called cli-
mate movie shows a movie of a conditional simulation in terms of anomalies
from preindustrial conditions.

7. Conclusions. Spectral modeling is a natural choice for gridded data
on sphere×time, and we have shown how it outperforms the current alter-
natives in the literature in terms of simplicity, flexibility and computational
requirements. Although this work has focused on temperature, a similar ap-
proach can be extended to other climate variables such as precipitation [see
Castruccio et al. (2013) for an example of mean emulation] and possibly dif-
ferent time scales, as long as the normality hypothesis is tenable. On a single
latitudinal band, our model assumes independence of the spectral process
across wavenumbers, but this assumption can in principle be relaxed to ac-
count for more complex nonstationarities. We have also shown an example
of fit for climate model output of challenging size, and we have carried out
the analysis without appealing to reduced rank representations of the pro-
cess. The specific geometry of the climate output has played an important
role, but distributing some parts of the algorithm across different processors
has also contributed to reduce the computational burden, and further work
is needed to understand how parallel computation can be helpful in fitting
massive data sets.



GLOBAL SPACE–TIME MODELS 19

Acknowledgments. The authors thank Elisabeth Moyer and David McIn-
erney at the Department of Geophysical Sciences at the University of Chicago
for providing the ensemble data and for the useful discussions. This work is
part of the RDCEP effort to improve the understanding of computational
models needed to evaluate climate and energy policies.

SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/13-AOAS656SUPP; .pdf). Fur-
ther technical details and theoretical results can be found in the online
supplementary material.

REFERENCES

Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive
process models for large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70
825–848. MR2523906

Berrocal, V. J., Craigmile, P. F. and Guttorp, P. (2012). Regional climate model
assessment using statistical upscaling and downscaling techniques. Environmetrics 23

482–492. MR2958926
Castruccio, S. and Stein, M. L. (2013). Supplement to “Global space–time models for

climate ensembles.” DOI:10.1214/13-AOAS656SUPP.
Castruccio, S., McInerney, D. J., Stein, M. L., Liu, F., Jacob, R. L. and

Moyer, E. J. (2013). Statistical emulation of climate model projections based on
precomputed GCM runs. Unpublished manuscript.

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S.,
Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B.,
Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D. and Smith, R. D.

(2006). The community climate system model: CCSM3. J. Climate 19 2122–2143.
Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data

sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 209–226. MR2412639
Davis, P. J. (1979). Circulant Matrices. Wiley, New York. MR0543191
Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres.

Bernoulli 19 1327–1349.
Greasby, T. A. and Sain, S. R. (2011). Multivariate spatial analysis of climate change

projections. J. Agric. Biol. Environ. Stat. 16 571–585. MR2862299
Jones, R. H. (1963). Stochastic processes on a sphere. Ann. Math. Statist. 34 213–218.

MR0170378
Jun, M. (2011). Non-stationary cross-covariance models for multivariate processes on a

globe. Scand. J. Stat. 38 726–747. MR2859747
Jun, M., Knutti, R. and Nychka, D. W. (2008). Spatial analysis to quantify numerical

model bias and dependence: How many climate models are there? J. Amer. Statist.
Assoc. 103 934–947. MR2528820

Jun, M. and Stein, M. L. (2007). An approach to producing space–time covariance
functions on spheres. Technometrics 49 468–479. MR2394558

Jun, M. and Stein, M. L. (2008). Nonstationary covariance models for global data. Ann.
Appl. Stat. 2 1271–1289. MR2655659

Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian
fields and Gaussian Markov random fields: The stochastic partial differential equation
approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 423–498. MR2853727

http://dx.doi.org/10.1214/13-AOAS656SUPP
http://www.ams.org/mathscinet-getitem?mr=2523906
http://www.ams.org/mathscinet-getitem?mr=2958926
http://dx.doi.org/10.1214/13-AOAS656SUPP
http://www.ams.org/mathscinet-getitem?mr=2412639
http://www.ams.org/mathscinet-getitem?mr=0543191
http://www.ams.org/mathscinet-getitem?mr=2862299
http://www.ams.org/mathscinet-getitem?mr=0170378
http://www.ams.org/mathscinet-getitem?mr=2859747
http://www.ams.org/mathscinet-getitem?mr=2528820
http://www.ams.org/mathscinet-getitem?mr=2394558
http://www.ams.org/mathscinet-getitem?mr=2655659
http://www.ams.org/mathscinet-getitem?mr=2853727


20 S. CASTRUCCIO AND M. L. STEIN

Mannshardt-Shamseldin, E. C., Smith, R. L., Sain, S. R., Mearns, L. O. and Coo-

ley, D. (2010). Downscaling extremes: A comparison of extreme value distributions in
point-source and gridded precipitation data. Ann. Appl. Stat. 4 484–502. MR2758181

Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T.,
Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A.,
Raper, S. C. B., Watterson, I. G., Weaver, A. J. and Zhao, Z. C. (2007). Global
climate projections. In Climate Change 2007: The Physical Sciences Basis. Contri-
bution of Working Group I to the Forth Assessment Report of the Intergovernmental
Panel on Climate Change (S. Solomon, D. Qin, M. Manning, Z. Chen, M. Mar-

quis, K. B. Averyt, M. Tignor and H. L. Miller, eds.). Cambridge Univ. Press,
Cambridge.

Sain, S. R., Furrer, R. and Cressie, N. (2011). A spatial analysis of multivariate output
from regional climate models. Ann. Appl. Stat. 5 150–175. MR2810393

Sain, S. R., Nychka, D. and Mearns, L. (2011). Functional ANOVA and regional
climate experiments: A statistical analysis of dynamic downscaling. Environmetrics 22

700–711. MR2843137
Stein, M. L. (2005). Statistical methods for regular monitoring data. J. R. Stat. Soc.

Ser. B Stat. Methodol. 67 667–687. MR2210686
Stein, M. L. (2007). Spatial variation of total column ozone on a global scale. Ann. Appl.

Stat. 1 191–210. MR2393847
Stein, M. L. (2008). A modeling approach for large spatial datasets. J. Korean Statist.

Soc. 37 3–10. MR2420389
Taylor, K. E., Stouffer, R. J. and Meehl, G. A. (2012). An overview of CMIP5 and

the experiment design. Bull. Amer. Meteor. Soc. 93 485–498.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hib-

bard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Mein-

shausen, M., Nakicenovic, N., Smith, S. J. and Rose, S. K. (2011). The represen-
tative concentration pathways: An overview. Clim. Chang. 109 5–31.

Yeager, S. G., Shields, C. A., Large, W. G. and Hack, J. J. (2006). The low-
resolution CCSM3. J. Climate 19 2545–2566.

Department of Statistics

University of Chicago

5734 S. University Avenue

60637 Chicago, Illinois

USA

E-mail: castruccio@uchicago.edu
stein@galton.uchicago.edu

http://www.ams.org/mathscinet-getitem?mr=2758181
http://www.ams.org/mathscinet-getitem?mr=2810393
http://www.ams.org/mathscinet-getitem?mr=2843137
http://www.ams.org/mathscinet-getitem?mr=2210686
http://www.ams.org/mathscinet-getitem?mr=2393847
http://www.ams.org/mathscinet-getitem?mr=2420389
mailto:castruccio@uchicago.edu
mailto:stein@galton.uchicago.edu

	1 Introduction
	2 The ensemble
	3 Statistical analysis of a climate ensemble
	3.1 The restricted likelihood approach for the covariance structure

	4 Processes on a spherical domain
	5 Spectral modeling of axially symmetric processes
	5.1 The temporal structure
	5.2 A model for a single latitudinal band
	5.3 A model for multiple latitudinal bands
	5.4 Spectral decomposition of the covariance matrix for axially symmetric processes
	5.5 Comparisons to other models

	6 Emulation
	6.1 A model for the mean

	7 Conclusions
	Acknowledgments
	Supplementary Material
	References
	Author's addresses

