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A Bayesian approach to covariance estimation and spatial prediction based on flexi-
ble variogram models is introduced. In particular, we consider black-box kriging mod-
els. These variogram models do not require restrictive assumptions on the functional
shape of the variogram; furthermore, they can handle quite naturally non isotropic ran-
dom fields. The proposed Bayesian approach does not require the computation of an
empirical variogram estimator, thus avoiding the arbitrariness implied in the construc-
tion of the empirical variogram itself. Moreover, it provides a complete assessment of
the uncertainty in the variogram estimation. The advantages of this approach are illus-
trated via simulation studies and by application to a well known benchmark dataset.
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1. INTRODUCTION

This paper aims at developing an efficient Bayesian approach to spatial prediction
based on flexible variogram models. Accurate variogram estimation is crucial for mak-
ing reliable predictions on the basis of spatially correlated data. Traditionally, isotropy
assumptions are required and variogram estimation is achieved by generalized least
square fitting procedures (see, e.g., Christensen 1991; Cressie 1991; Wackernagel 1995;
Walden and Guttorp 1992 for a complete discussion). These fitting approaches require the
construction of an empirical variogram estimator and an a priori assumption concerning
the variogram shape. However, each of these steps allows for remarkable arbitrariness.
Empirical variogram estimators are built clustering data pairs into classes according to the
distance between the two points, but the selection of such distance classes is not uniquely
dictated by the data. The choice of the distance classes as well as the variogram model to
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be used in the fit is mostly done ad hoc and requires substantial user expertise in order to
give reasonable results.

The estimation procedures can be improved in two different ways. The first way consists
of modeling within a Bayesian framework the uncertainty in the variogram parameters, in
order to estimate their posterior distribution with respect to the available data (the reader
may refer, e.g., to Bernardo and Smith 1994 for an introduction to the basic concepts and
definitions of Bayesian statistics). This leads to the so called Bayesian kriging approaches,
proposed, e.g., in Berger, De Oliveira, and Sanso (2001) and Handcock and Stein (1993).
More recently, infill asymptotic theory for random fields has provided some important re-
sults for assessment of uncertainty of parameters for models based only on the likelihood
function (see for instance Stein 1999 and Zhang 2004), but Bayesian approaches are still
easier to implement and more commonly used in literature. A second direction of improve-
ment consists of devising variogram estimation procedures that do not require too many
ad hoc assumptions. For example, more flexible variogram models have been proposed in
Shapiro and Botha (1991), where a cosine series variogram model was introduced, and in
Im, Stein, and Zhu (2007), where a semiparametric form of the spectral density was consid-
ered, consisting of a combination of cubic splines for low frequencies and of a polynomi-
ally decreasing tail for high frequencies. Other non parametric approaches were proposed,
e.g., in Gorsich and Genton (2000).

Another interesting proposal toward flexible variogram models, albeit limited to fields
with second order moments, is the black-box kriging approach introduced in Barry and
Ver Hoef (1996). This approach exploits a spectral representation theorem for variogram
functions that allows to characterize a subset of the piecewise polynomial functions as
valid variograms with sill. Functions of this shape are then fitted to the traditional empirical
variogram estimates, thus yielding a flexible procedure that does not require to specify a
variogram model of fixed functional form. Indeed, it is proven in Barry and Ver Hoef (1996)
that, in the one-dimensional case, any generic variogram with sill can be approximated by
a valid piecewise linear one.

In the present work, we propose a Bayesian approach to kriging with this class of flexi-
ble variogram models. The parameters characterizing a generic piecewise linear valid vari-
ogram, according to the representation theorem of Barry and Ver Hoef (1996), are assumed
to be random variables with a chosen a priori distribution. The a posteriori distribution of
these parameters given the available data can be computed by an appropriate Markov Chain
Monte Carlo (MCMC) scheme, and a complete assessment of the uncertainty in the var-
iogram estimation is achieved (see, e.g., Gilks, Richardson, and Spiegerhalter 1998 and
Robert and Casella 2004 for an introduction to MCMC methods). The proposed technique
addresses both previously reviewed shortcomings of traditional techniques and constitutes
a further step toward reducing the need for expert user intervention in the variogram model
choice, which restricts in many cases the applicability of spatial analysis techniques. With
respect to the standard weighted least square variogram estimation used in Barry and Ver
Hoef (1996), the present Bayesian approach does not require the computation of an em-
pirical variogram estimator, thus avoiding the potential arbitrariness implied in the con-
struction of the empirical variogram itself. Furthermore, as in Barry and Ver Hoef (1996),
anisotropy can be accounted for in a very straightforward way.
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Another model that combines a Bayesian approach with a flexible variogram model was
proposed by Ecker and Gelfand (1997). In this work, exploiting the well known Bochner’s
representation theorem (see, e.g., Cressie 1991, p. 84), a mixture of Bessel functions was
used to model the variogram, thus allowing for a non parametric representation. An advan-
tage of the black-box kriging approach considered in the present paper, over the model pro-
posed by Ecker and Gelfand (1997), is that the latter is limited to isotropic fields, whereas
black-box kriging handles quite naturally non isotropic random fields.

The advantages of the present method are illustrated by simulation studies with one-
dimensional and two-dimensional data. In particular, it is shown that the estimates obtained
by the present approach yield significant improvements over the fitting technique used in
the original black-box kriging approach. Also an application to the well known Wolfcamp
aquifer benchmark dataset (see, e.g., Harper and Furr 1986 and Cressie 1991) is presented
and compared to the results obtained by Barry and Ver Hoef (1996) with the original black-
box kriging approach.

In Section 2, the flexible black-box variogram models are reviewed. In Section 3, the
Bayesian approach to flexible black-box variogram estimation is introduced, while in Sec-
tion 4 the MCMC algorithm used to implement the proposed Bayesian model is described.
The results of simulation studies and of applications to real data are presented in Section 5,
while in Section 6 we draw some conclusive remarks.

2. FLEXIBLE BLACK-BOX VARIOGRAM MODELS

Spatial prediction is usually formulated assuming that the data consist of a realization of
a scalar random field Z, defined on a d-dimensional subset D ⊂ R

d , and a valid semivari-
ogram function γ (h) = E[(Z(x + h)−Z(x))2]/2, for x ∈ D and h ∈ R

d (with x + h ∈ D).
The classical characterization of valid variograms is given in terms of conditionally nega-
tive definite functions, i.e., γ is a valid semivariogram function if and only if

n∑

i=1

n∑

j=1

bibj γ (xi − xj ) ≤ 0,

for all n ∈ N, all xi ,xj ∈ D and all b1, . . . , bn ∈ R such that
∑n

i=1 bi = 0. In general, a
piecewise linear function (in more than one dimension, a piecewise multilinear one) is not
conditionally negative definite, so that simple interpolation of the values of an empirical
variogram estimator does not yield a valid variogram function.

It was proven in Barry and Ver Hoef (1996) that, for d = 1, under the assumption that the
semivariogram is constant for h > c, with c ∈ R given, the function 2γ can be represented
as

2γ (h) =
∫

R

[
f (x) − f (x − h)

]2
dx, (2.1)

where f is a measurable function. The main point of the flexible variogram model consists
of choosing a piecewise constant function f, to yield as a consequence piecewise linear
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valid variogram. More specifically, for any positive integer k and vector of positive real
numbers a = (a1, . . . , ak), define the function f with support [0, c] with c > 0 by

f (x;a, c, k) =
k∑

j=1

aj I

(
(j − 1)c

k
< x ≤ jc

k

)
, (2.2)

where I (·) denotes the indicator function. The function f is piecewise constant. Using
(2.2) in the representation theorem (2.1), after some algebra we have an explicit expres-
sion of the semivariogram. For convenience, values at the nodal points h = mc/k, for
m = 1, . . . , k, are first computed, and the remaining values are then recovered by linear
interpolation, which is justified since the resulting function is indeed piecewise linear. The
resulting semivariogram can then be described as follows for h > 0:

• if h ≥ c

2γ (h;a, c, k) = 2c

k

k∑

i=1

a2
i ;

• if h < c and there exists an integer m such that h = mc/k,

2γ (h;a, c, k) = 2c

k

k∑

i=1

a2
i − 2c

k

k∑

i=m+1

aiai−m;

• if h < c, but h is not an integer multiple of c/k,

2γ (h;a, c, k) = (1 − V )2γ

(
mlc

k
;a, c, k

)
+ V 2γ

(
muc

k
;a, c, k

)
,

where ml = �hk/c� and mu = �hk/c	 and V = (h − mlc/k)/(c/k), that is, the value
of the semivariogram is given by linear interpolation of the two values at the nearest
multiple integers of c/k enclosing h.

In Barry and Ver Hoef (1996), specific variograms were then obtained by fixing k and
c and estimating the ai from the data, starting from standard empirical estimators such
as those proposed in Cressie and Hawkins (1980) and Hawkins and Cressie (1984), and
applying a weighted least square (WLS) algorithm. The integer k represents the number of
equal size intervals in which [0, c] is divided and over which the variogram is represented
by a different linear function; hence, k influences directly the complexity of the variogram
model. In general, k has to be smaller than the number of different lags used in an empirical
variogram estimator.

The representation theorem introduced above also holds in the multidimensional case,
so that for d > 1 one has

2γ (h) =
∫

Rd

[
f (x) − f (x − h)

]2
dx. (2.3)

In the following, only the two-dimensional case shall be considered. More specifically,
along the lines of Barry and Ver Hoef (1996), we can define piecewise constant functions
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on the two-dimensional rectangular domain [0, c1] × [0, c2] as

f
(
(x1, x2);A, c,k

)

=
k1∑

i=1

k2∑

j=1

ai,j I

[(
(i − 1)c1

k1
< x1 ≤ ic1

k1

)(
(j − 1)c2

k2
< x2 ≤ jc2

k2

)]
(2.4)

where c = (c1, c2), k = (k1, k2) with k1, k2 positive integers, and A is a matrix of posi-
tive real numbers with entries {A}ij = ai,j . Substituting (2.4) into (2.3) yields then a valid
variogram function; notice that its definition is coordinate dependent. Since in general
γ ((h1, h2)) = γ ((−h1,−h2)) and γ ((h1, h2)) 
= γ ((h1,−h2)), it is sufficient to compute
the variogram for h1 > 0 only. As for the one-dimensional case, values at the nodal points
(h1, h2) = (m1c1/k1,m2c2/k2), for m1 = 1, . . . , k1 and m2 = −k2, . . . , −1,1, . . . , k2, are
first computed, and the remaining values are recovered by bilinear interpolation. The re-
sulting anisotropic piecewise bilinear semivariogram can be described as follows:

• if h1 ≥ c1 or |h2| ≥ c2,

2γ
(
(h1, h2);A, c,k

) = 2c1c2

k1k2

k1∑

i=1

k2∑

j=1

a2
i,j ;

• if 0 < h1 < c1 and 0 < h2 < c2, with h1 = m1c1/k1 and h2 = m2c2/k2 for some
positive integers m1 and m2,

2γ
(
(h1, h2);A, c,k

) = 2c1c2

k1k2

k1∑

i=1

k2∑

j=1

a2
i,j (2.5)

− 2c1c2

k1k2

k1∑

i=m1+1

k2∑

j=m2+1

ai,j ai−m1,j−m2; (2.6)

• if 0 < h1 < c1 and −c2 < h2 < 0, with h1 = m1c1/k1 and h2 = m2c2/k2 for some
integers m1 > 0 and m2 < 0,

2γ
(
(h1, h2);A, c,k

) = 2c1c2

k1k2

k1∑

i=1

k2∑

j=1

a2
i,j (2.7)

− 2c1c2

k1k2

k1∑

i=m1+1

k2+m2∑

j=1

ai,j ai−m1,j−m2 . (2.8)

In the case of arbitrary lag values, the semivariogram is computed by bilinear interpolation
between the values of the variogram at the corners of the rectangle containing (h1, h2)

whose vertices are the nearest integer multiples of c1/k1 and c2/k2.
The variograms obtained by this procedure are clearly anisotropic. An interesting point,

apparently not dealt with in the original paper, is whether the isotropic piecewise linear
one-dimensional model could be extended to define an isotropic multidimensional model.
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Following the same approach as in the one-dimensional case, one could define a function
that is piecewise constant in the radial direction

f̃ (x;a, c, k) =
k∑

i=1

aiI
(
(i − 1)c/k < ‖x‖ ≤ ic/k

)
. (2.9)

However, substitution of (2.9) into (2.3) does not yield a piecewise linear variogram, be-
cause when using polar coordinates to carry out the integration analytically, the Jacobian
factor ρ dρ dθ leads to a piecewise quadratic function. More generally, for a generic d-
dimensional field the Jacobian of the coordinate transformation to hyperspherical coordi-
nates with angles φ1, . . . , φd would be given by

ρd−1 sind−2(φ1) sind−3(φ2) . . . sin(φd−2) dρ dφ1 . . . dφd−1,

so that piecewise polynomials of increasing order would arise. Thus, it appears to be im-
possible to have a multidimensional variogram that is both isotropic and piecewise linear
using this representation theorem. Although the piecewise quadratic form could possibly
turn out to be useful, we have not pursued its application within this work. It should be men-
tioned that Ver Hoef, Cressie, and Barry (2004) use piecewise bilinear variogram models
that are nearly isotropic. In particular, by constraining the black-box parameters aij to lie
on a symmetric surface, they obtain variograms whose behavior is close to isotropic when
k is large.

It should also be noticed that the flexible variogram model defined by (2.1) and (2.2) is
not identifiable in the black-box parameters ai, i = 1, . . . , k, and the same can be said for
the two-dimensional flexible variogram model defined by (2.3) and (2.4). For example, in
the one-dimensional case with k = 2 one has

2γ

(
c

2
; (a1, a2), c, k

)
= c

2
a2

1 + c

2
a2

2 − c

2
a1a2,

that implies 2γ (c/2; (a1, a2), c, k) = 2γ (c/2; (a2, a1), c, k). In this very simple case, iden-
tifiability of the black-box parameters could be achieved by enforcing a constraint such as
a1 > a2. However, for k > 2 the class of k-tuples which yield the same value of γ is not
just the class of permutations of the vector (a1, . . . , ak), but a rather more complex sym-
metry class, which cannot be simply specified by some identifiability constraints. On the
other hand, the real target is the estimation of γ itself (i.e., in other words, the estimation
of the nodal semivariogram values γ (ic/k), i = 1, . . . , k), rather than the estimation of the
parameters ai. Thus, we shall regard the parameter space of the ai, i = 1, . . . , k, as a quo-
tient space with equivalence classes identified by the corresponding values of γ (h;a, c, k)

(and similarly for the two-dimensional case).
Notice that the black-box variogram model is mean square continuous but is not mean

square differentiable, since the second order derivative of the variogram does not exist at
the origin (see, e.g., Stein 1999). Barry and Ver Hoef (1996) show that this limitation in the
behavior near the origin of this piecewise linear variogram can be mitigated considering
linear parts of unequal lengths.



A BAYESIAN APPROACH TO SPATIAL PREDICTION 215

3. A BAYESIAN APPROACH FOR THE ESTIMATION OF
FLEXIBLE VARIOGRAM MODELS

A novel Bayesian approach for the estimation of flexible black-box variogram models is
now introduced. The model for spatially distributed data considered in the following shall
consist of realizations of a Gaussian random field Z defined on D ⊂ R

d , where d = 1,2,
that can be written as the sum Z = μ + δ, where

– the mean field μ(x) = ∑p

j=1 βjgj (x) is given by a linear combination of known
functions gj (x) with random coefficients β = [β1, . . . , βp]T ;

– the field δ is a second order stationary zero-mean Gaussian random field with flexible
semivariogram γ (h;A, c,k), where the parameters A are random and the parameters
c and k are fixed.

As a result, the data Z = [Z(x1), . . . ,Z(xN)]T , at N distinct locations xi , . . . ,xN in space,
can be represented as

Z = Xβ + ε, ε ∼ N (0,�A),

where {X}ij = gi(xj ) is the design matrix and the covariance matrix has entries

{�A}ij = γ (∞;A, c,k) − γ (xi − xj ;A, c,k).

The likelihood function is thus given by

l(Z|β,A) = 1

(2π)N/2
√|�A| exp

[
−1

2
(Z − Xβ)T �−1

A (Z − Xβ)

]
. (3.1)

Recall that k influences directly the complexity of the model; this parameter can thus
be chosen via a model selection criterion such as the Bayes factor.

We assume that γ and β are stochastically independent a priori, i.e. that the parameters
A and β are a priori independent. For simplicity, we also assume that the black-box param-
eters in A are a priori independent among themselves. It should be noticed that incorporat-
ing prior information on the black-box parameters is not easily feasible, since such priors
should be consistent with the complex symmetry characterizing the equivalence classes
identified by the corresponding values of γ (h;a, c, k); see Section 2. On the other hand,
this is not a limitation of the black-box model, since this model has been mainly proposed
to deal with cases where one has no prior information on what could be an appropriate
parametric form for the variogram. We hence prefer to assume priors on the black-box pa-
rameters that in turns induce a non-informative prior on the semivariogram. The parameter
specifying the prior on the black-box parameters (e.g., the mean of the exponential used in
the simulation and application in Section 5) could for instance be chosen checking visually
the induced prior on the semivariogram, computed via simulations; graphical comparison
with an empirical semivariogram might also be useful.

For β we choose a Gaussian prior distribution with mean m and covariance matrix G
(with m and G fixed). This prior distribution has the advantage of being conjugate with
the likelihood, so that it is possible to derive analytically the conditional distribution of β
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given Z and A. If a priori information on β is available, it can be easily incorporated in
this prior. Denoting by πβ and πA the priors of β and A, respectively, we thus see that the
joint posterior distribution of β and A is given by

π(β,A|Z) = C πβ(β)πA(A) l(Z|β,A), (3.2)

where C is a normalizing constant. This posterior distribution cannot be easily computed
analytically, so that an appropriate MCMC sampler must be employed. In the next section
we shall describe in detail a MCMC scheme that can be used for sampling from (3.2). As
a result of this numerical sampling, information about the a posteriori variability of γ can
be recovered. In particular, the posterior estimate of the semivariogram γ̂ is computed by
averaging the semivariograms determined along the Markov chain:

γ̂ (·) = 1

V − W

V∑

v=W+1

γ
(·;A[v], c,k

)
,

where A[v] are the black-box parameters sampled at the v-th iteration, V is the total number
of iterations and W is the number of initial iterations discarded as burn-in of the Markov
chain. To reduce the correlation among adjoining values of the chain, the estimate γ̂ may
also be computed averaging only the semivariograms computed each M iterations, for
M large enough. Furthermore, the predictive distribution and the posterior kriging vari-
ance distribution can be recovered by solving the standard universal kriging equations.
More specifically, we can compute the optimal linear estimate Ẑ(x0) = ∑N

i=1 λiZ(xi )

at some point x0 where no data are available, proceeding as follows. Define the vector
γ̂ U = [γ̂ (x0 − x1), . . . , γ̂ (x0 − xN),1, . . . ,1] and the universal kriging matrix

�̂U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̂ (0) . . . γ̂ (x1 − xN) g1(x1) . . . gp(x1)

γ̂ (x2 − x1) . . . γ̂ (x2 − xN) g1(x2) . . . gp(x2)

. . . . . . . . . . . . . . . . . .

γ̂ (xN − x1) . . . γ̂ (0) g1(xN) . . . gp(xN)

g1(x1) . . . g1(xN) 0 . . . 0
. . . . . . . . . 0 . . . 0

gp(x1) . . . gp(xN) 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.3)

The kriging coefficients λ1, . . . , λN can then be computed by solving the linear system
�̂UλU = γ̂ U , where λU = [λ1, . . . , λN ,β0, . . . , βp]T ; furthermore, the kriging variance
can be computed as

σ̂ 2
U(x0) = E

(
Z(x0) − Ẑ(x0)

)2 = λT
U γ̂ U = γ̂ T

U �̂
−1
U γ̂ U .

This is one of the distinctive advantages of Bayesian kriging, since in this way the com-
plete one-dimensional distribution of the reconstructed field is estimated, which is exactly
the type of information required in many applications. It should be remarked that, in this
estimation process, no empirical variogram estimator is employed, thus avoiding the po-
tential arbitrariness implied in the construction of the empirical variogram itself. Ver Hoef,
Cressie, and Barry (2004) also avoid use of the empirical variogram by means of restricted
maximum likelihood estimation of A.
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4. THE MCMC SAMPLER

We now give the details of a MCMC algorithm that samples from the posterior dis-
tribution of β and A. A Gibbs sampling algorithm for sampling from (3.2) alternates the
following steps:

1. simulation of β , conditional on the observations Z and the current value of the black-
box parameters A;

2. simulation of A, conditional on the observations Z and the current value of the pa-
rameter β .

The update of β is straightforward. Having chosen a conjugate prior for β , it is possible to
derive analytically the conditional distribution of β given Z and A, which is still Gaussian
with mean vector

(
G−1 + XT �−1

A X
)−1(G−1m + XT �−1

A Z
)

and variance matrix

(
G−1 + XT �−1

A X
)−1

.

The first step is thus performed by sampling directly from this conditional distribution.
The update of the semivariogram γ (·;A, c,k), which is performed via the update of the

black-box parameters A, is computationally more demanding. If the parameters ai,j in A
are chosen to be a priori independent, i.e. πA(A) = ∏k1

i=1

∏k2
j=1 πa(ai,j ), where πa is the

common prior distribution of the parameters ai,j , then step 2 can be carried out as follows:

2. for i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2}, simulation of ai,j conditional on the observa-
tions Z and the current values of the parameters β and A∼(i,j), where A∼(i,j) is the
set of parameters in A with ai,j removed.

The conditional distribution of ai,j given Z, β and A∼(i,j) is proportional to π(ai,j ) l(Z|A,β),
and cannot be sampled directly. An appropriate Metropolis-Hastings step is thus required.
We can for example use a multiplicative random walk sampler. Setting wi,j = log(ai,j ),
from the current state ai,j = exp{wi,j } we propose a move to a∗

i,j = exp{wi,j + N} where
N ∼ N (0, σ 2), for some fixed σ . With the change of variable from ai,j to wi,j the invariant
distribution becomes ai,jπa(ai,j )l(Z|A,β), so that the move is accepted with probability

min

{
1,

a∗
i,j πa(a

∗
i,j ) l(Z|A∗,β)

ai,j πa(ai,j ) l(Z|A,β)

}
,

where A∗ coincides with A apart for the (i, j)-entry which is replaced by a∗
i,j . In particular,

σ can be chosen by tuning its value over short chains, in order to achieve a sufficient
acceptance ratio. Note that instead of updating the parameters ai,j in some fixed order,
these can also be updated in a random order, by sampling, at each MCMC iteration, a
random permutation of the indices. In fact, since there is no 1-1 correspondence between
black-box parameters and nodal values of the variogram, there is no reason to prefer one
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particular ordering of the ai,j . Randomly permutation of the update order prevents any bias
that might be originated by some specific fixed ordering of these parameters.

Notice that the Markov chains of the parameters ai,j will be multimodal, since as previ-
ously remarked, the black-box parameter space is partitioned in equivalence classes yield-
ing the same variogram values. Multimodality of these chains suggests that the algorithm
is correctly exploring the parameter space, without getting stuck in one of the modes but
rather visiting multiple equivalence classes. In fact, this results in good mixing for the
values of the variogram of the nodal points.

Though we have not considered this in the current work, a nugget effect can be included
in our framework. In particular, the covariance matrix �A should be modified by addition
of the nugget γ0 along the diagonal. The nugget parameter could for simplicity be assumed
stochastically a priori independent of the parameters A and β . The MCMC sampler should
thus be modified either to update γ0 jointly with A in the current step 2, or to update γ0

separately via a further Gibbs step, preferably previous to the current step 2. Simulation
studies could suggest which one of these two updating strategies was to be preferred.

5. SIMULATION STUDIES AND APPLICATIONS TO REAL DATA

We now illustrate the Bayesian flexible black-box variogram estimation via simula-
tion studies and an application to a real data set. In particular, Sections 5.1 and 5.2 deal
with simulated one-dimensional and two-dimensional Gaussian random fields, while Sec-
tion 5.3 shows an application to a well known benchmark in spatial data analysis, the
Wolfcamp aquifer dataset, that was originally described in Harper and Furr (1986).

We thoroughly compare the proposed technique to the original flexible variogram esti-
mation procedure used in Barry and Ver Hoef (1996), highlighting the advantages of the
Bayesian approach.

5.1. ONE-DIMENSIONAL SIMULATED DATA

Consider the model Z = μ + δ, where μ = β is a constant mean field and δ is a station-
ary zero-mean Gaussian random field over the real line, with semivariogram γ . We shall
simulate observations from this field with semivariogram γ of the Matern class

γ
(
h | σ 2, φ, ν

) = C
(
0 | σ 2, φ, ν

) − C
(
h | σ 2, φ, ν

)
,

C
(
h | σ 2, φ, ν

) = σ 2 1

�(ν)2ν−1
(φh)νKν(φh),

where Kν denotes the modified Bessel function of the second kind (see, e.g., Abramowitz
and Stegun 1965, pp. 374–379) the parameters (σ 2, φ, ν) are the scale, inverse range and
smoothness parameter, respectively (with σ 2, φ, ν > 0). In particular, we shall simulate
observations from three fields with Matern semivariograms corresponding to the following
choices of the parameters (σ 2, φ, ν): γ1 with (L

2 ,1/L, 1
2 ), γ2 with (L

2 , 4
L
, 1

2 ), and γ3 with
(L

2 ,1/L, 3
2 ), i.e.,

γ1(h) = L

2

(
1 − exp

{
− h

L

})
, (5.1)
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Figure 1. Bayesian and WLS black-box estimates obtained for the first simulation repetition in the case γ1,
N = 100 and k = 8; the plot also shows 95 % pointwise credibility bands for the Bayesian black-box estimate.

γ2(h) = L

2

(
1 − exp

{
− h

L/4

})
, (5.2)

γ3(h) = L

2

(
1 − exp

{
− h

L

}(
1 + h

L

))
, (5.3)

where we set L = 100. The mean β is set equal to 10.
For each semivariogram, we simulate the field at N equispaced locations on the interval

[0,N ], as described e.g. in Cressie (1991). The sample is thus divided in a training set
and a testing set, with the N/4 observations composing the testing set randomly selected
among the N simulated observations. Using the observations in the training set, we esti-
mate the semivariogram by a black-box semivariogram with k black-box parameters, using
the WLS technique described in Barry and Ver Hoef (1996), and using the Bayesian ap-
proach proposed here. In particular, the Bayesian black-box kriging estimates are obtained
by running the Hastings-within-Gibbs algorithm that has been described in Section 4, un-
der the following specifications: the priors for the black-box parameters are independent
exponentials with mean 10; the prior for β is Gaussian, with mean 11 and standard de-
viation 10; the algorithm is run for 5000 iterations and estimates are obtained using the
values sampled every 50 iterations of the chain. The estimates obtained by Bayesian black-
box kriging and by WLS black-box kriging are thus compared in terms of the Root Mean
Squared Prediction Error (RMSPE) over the N/4 observations in the testing set. Moreover,
to compare the prediction variances of the two methods, we consider 95 % prediction in-
tervals for observations in the testing set, and compute their empirical coverages, counting
how many of these observations fall within the corresponding prediction interval.

For each of the three semivariograms, γ1, γ2, γ3, this simulation scheme is repeated for
two different values of N , N = 100 and N = 160; moreover, each simulation is repeated
100 times. Also, different values of k are used for the black-box kriging estimates: when
N = 100 we consider k = 6 and k = 8; in the case N = 160 we consider k = 8 and k = 12.
Figure 1 shows the Bayesian and WLS black-box estimates obtained for the first simu-
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lation repetition in the case γ1, N = 100 and k = 8. Table 1, reports, for each of the 12
cases (depending on the semivariogram, the sample size N , and the value of k used for the
estimates), the median and inter-quantile range of the RMSPE for the 100 semivariogram
estimates obtained by Bayesian and WLS black-box kriging. For each of the 12 cases, we
perform a one-sided nonparametric paired Wilcoxon test (see, e.g., Hollander and Wolfe
1999) to verify if the distribution of the RMSPE for the Bayesian estimates is stochasti-
cally lower than the distribution of the RMSPE for the WLS estimates. The p-values of
these tests, reported in the eighth column, show that the RMSPE of Bayesian black-box
kriging estimates are uniformly significantly lower than the ones of WLS black-box krig-
ing estimates. A look at the inter-quantile ranges also highlights that the errors of Bayesian
black-box estimates have a smaller variability, i.e., Bayesian black-box kriging estimates,
besides being more precise, are also more robust than WLS black-box kriging estimates.
The ninth and tenth columns show the average empirical coverages across the 100 simu-
lations. We can see that for γ1 and γ2 the empirical coverage of the Bayesian black-box
is very close to the 95 % nominal value, whereas the WLS black-box underestimates the
variance, therefore resulting in a smaller empirical coverage. In the case of γ3, both the
Bayesian and WLS black-box overestimate the variance; this is due to the fact that the
black-box variogram is less regular at the origin than γ3, the variogram used to simulate
the data. As commented in Section 3, in the proposed Bayesian framework it is possible
to select the best value of k via Bayes factor. For instance, in the first replicate of the first
simulation case (γ1,N = 100), considering a priori equivalent the two Bayesian black-box
kriging models with k = 6 and k = 8, the Bayes factor

BF = probability density of data under BBK model with k = 6

probability density of data under BBK model with k = 8

gives the posterior odds in favor of the model with k = 6 vs. k = 8. This quantity does
not have a closed form expression and both numerator and denominator are integrals over
the parameter space that can be computed separately via numerical methods. We used a
Monte Carlo importance sampling algorithm (see e.g. Gilks, Richardson, and Spiegerhal-
ter 1998) with proposal distribution being that of independent exponentially distributed
parameters. The computed Bayes factor (BF = 84.75) provides strong evidence in favor
of k = 6. As an optimal reference benchmark, Table 1 also shows the RMSPE for the
estimates obtained with a Bayesian model with a Matern semivariogram γ (h | σ 2, φ, ν).
This model has been implemented using the function spLM in the spBayes package in R,
R Development Core Team (2010). The spLM function assumes an inverse-Gamma prior
for σ 2, uniform priors for φ and ν, and an improper uniform prior for β . We specified the
following prior hyperparameters: σ 2 ∼ IG(2.0001,10.001) (prior mean 10, prior variance
104), φ ∼ U(0.00001,2) and ν ∼ U(0.1,3). The algorithm is run for 5000 iterations and
estimates are obtained using the values sampled every 50 iterations of the chain. Since this
model assumes the true variogram form that was used to generate the data, it is expected to
provide the best possible estimates. The seventh column of Table 1 reports the p-values of
one-sided nonparametric paired Wilcoxon tests verifying that the distribution of the RM-
SPE of Bayesian Matern estimates are stochastically lower than those of Bayesian black-
box estimates. It is interesting to note that, for data generated using the semivariograms
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Table 2. Two-dimensional simulated data: median (inter-quantile range) of the RMSPE for Bayesian Matern
estimates (third column), Bayesian black-box kriging estimates (fourth column), WLS black-box krig-
ing estimates (fifth column); p-values of nonparametric one-sided paired Wilcoxon tests verifying that
distribution of the RMSPE of Bayesian Matern estimates is stochastically lower than the distribution
of the RMSPE of Bayesian black-box estimates (sixth column) and that the distribution of the RMSPE
of Bayesian black-box estimates is stochastically lower than the distribution of the RMSPE of WLS
black-box estimates (seventh column).

Bayes Matern Bayes BBK WLS BBK Bayes Matern Bayes BBK
θ λ RMSPE RMSPE RMSPE vs Bayes BBK vs WLS BBK

0 1 0.0126 (0.0016) 0.0185 (0.0039) 0.0222 (0.0055) < 0.0001 < 0.0001
0 3 0.039 (0.007) 0.038 (0.007) 0.042 (0.009) 0.931 < 0.0001
0 5 0.0781 (0.0197) 0.0486 (0.0105) 0.0549 (0.0153) 1 < 0.0001
π/16 5 0.0820 (0.0178) 0.0799 (0.0196) 0.0870 (0.0220) 0.532 0.007
π/4 3 0.049 (0.007) 0.079 (0.014) 0.097 (0.022) < 0.0001 < 0.0001
π/4 5 0.1033 (0.0177) 0.1621 (0.0221) 0.2142 (0.0517) < 0.0001 < 0.0001

γ1 and γ2, the proposed Bayesian black-box kriging model, in correspondence of the best
value of k (k = 6 when N = 100 for both γ1 and γ2, and k = 12 when N = 160 for both
γ1 and γ2), is able to attain the optimal performances of the Bayesian Matern model, that
is, assuming the true semivariogram form. Notice that the semivariogram γ1 and γ2 have
a locally linear behavior at the origin that is well captured by the black-box model. In the
case of γ3, which has instead a quadratic behavior at the origin, both the Bayesian black-
box kriging estimates and the WLS black-box kriging estimates could in fact be improved
by using black-box semivariograms with linear parts of unequal length, shorter near the
origin and then progressively larger (see discussion in Barry and Ver Hoef 1996).

5.2. TWO-DIMENSIONAL SIMULATED DATA

We now compare the models in a two-dimensional setting. Let Z = μ + δ, where
μ = β is a constant mean field over the plane and δ is a stationary zero-mean Gaus-
sian random field over the plane with semivariogram γ . We shall simulate observations
from this field with a geometrically anisotropic Matern semivariogram with parameters
(σ 2, φ, ν) = (L

2 , 1
L
, 3

2 ),

γ4(h) = L

2

(
1 − exp

{
−‖Qh‖

L

}(
1 + ‖Qh‖

L

))
,

Q =
(

1 0

0 λ

)(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
,

where we set L = √
2 · 20 and consider different values of the parameters (θ, λ) in the

matrix Q regulating the anisotropy, as shown in Table 2. The mean β is set equal to 10.
The field is simulated on a lattice of N × N equispaced locations on [0,N ] × [0,N], with
N = 20, and the sample is then divided in a training set and a testing set, with 1/4 of
the observations composing the testing set, randomly selected among the N2 simulated
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observations. Each simulation case is repeated 100 times. From observations in the train-

ing set, we obtain Bayesian and WLS black-box estimates, setting k1 = k2 = 4. Bayesian

black-box estimates are obtained under the same specifications as for one-dimensional

simulations. We also obtain estimates from a Bayesian model assuming an isotropic

Matern semivariogram, always using the R function spLM, with the following specifica-

tions for the prior hyperparameters: σ 2 ∼ IG(2.1,11) (prior mean 9.1 prior variance 104),

φ ∼ U(0.00001,2) and ν ∼ U(0.1,3).

The third, fourth and fifth columns of Table 2 report the medians and inter-quantile

ranges of the RMSPE, computed on observations of the testing set, for the 100 semivari-

ograms estimates obtained by Bayesian Matern, Bayesian black-box and WLS black-box

models, respectively. The sixth and seventh columns show the p-values of one-sided non-

parametric paired Wilcoxon tests verifying, respectively, if the distribution of the RMSPE

of Bayesian Matern estimates is stochastically lower than the distribution of the RMSPE

of Bayesian black-box estimates (sixth column), and if the distribution of the RMSPE of

Bayesian black-box estimates is stochastically lower than the one of WLS black-box es-

timates (seventh column). These results show that Bayesian black-box kriging uniformly

outperforms WLS black-box kriging, as the distribution of RMSPE of the former is signif-

icantly lower than that of WLS black-box estimates in all simulation cases; also, likewise

for the simulations in the one-dimensional setting, a look at the inter-quantile ranges of

RMSPE highlights that the errors of Bayesian black-box estimates have a smaller variabil-

ity, i.e., Bayesian black-box kriging estimates, besides being more precise, are also more

robust than WLS black-box kriging estimates.

The comparison with the Bayesian Matern model is also interesting. The latter model

assumes the correct semivariogram form, but does not take into account the possible

anisotropy. Notice also that the Matern semivariogram used to generate the data is locally

quadratic at the origin, likewise γ3 in Section 5.1; among the simulation cases consid-

ered in the previous section, this was the less favorable to the use of black-box kriging,

which instead assumes a less regular semivariogram. Table 2 shows that in the isotropic

case (θ = 0, λ = 1) the Bayesian isotropic Mater model correctly provides better estimates

than the black-box model, even if the significance is not particulary strong. Instead, in the

anisotropic cases corresponding to (θ = 0, λ = 3), (θ = 0, λ = 5) and (θ = π/16, λ = 5),

the Bayesian Matern model does not provide better predictions than Bayesian black-box

kriging, even if the latter model assumes a semivariogram that is only piecewise linear;

Bayesian black-box estimates are in fact significantly better than Bayesian Matern esti-

mates (in two cases) or not significantly different from Bayesian Matern estimates (in one

case). Finally, the anisotropic cases (θ = π/4, λ = 3) and (θ = π/4, λ = 5) illustrate that

the type of anisotropy that the black-box kriging is best at capturing are those deployed

mostly along one of the axes (while in the last two simulation cases the direction along

which the anisotropy is deployed is at 45◦ with respect to the two axes). This was ex-

pected, as the definition of the black-box model over a two-dimensional domain, recalled

here in Equations (2.3) and (2.4), is coordinate dependent, as commented in Section 2.
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Figure 2. Kriging reconstruction of the Wolfcamp Aquifer data: predicted values with Bayesian (left) and WLS
(right) black-box variogram estimates.

Figure 3. Kriging reconstruction of the Wolfcamp Aquifer data: standard deviation with Bayesian (left) and
WLS (right) black-box variogram estimates.

5.3. THE WOLFCAMP AQUIFER DATASET

We now show an application to a well known benchmark in spatial data analysis, the
Wolfcamp aquifer dataset (see, e.g., Harper and Furr 1986; Cressie 1991; Barry and Ver
Hoef 1996). This dataset consists of a set of 85 measurements of piezometric head scat-
tered over a rectangular domain of approximately 300 miles times 200 miles centered over
Amarillo, Texas. A thorough description of classical kriging reconstructions for these data
is presented in Cressie (1991), highlighting the need for rather complex analyses to achieve
an appropriate data detrending and to account for data anisotropy.

For the application of the flexible black-box variogram model to the Wolfcamp dataset,
we set k1 = 4, k2 = 5, as in Barry and Ver Hoef (1996). The WLS here presented is the one
computed by Barry and Ver Hoef (1996). For the Bayesian approach, we use the model
described in Section 3, with a constant mean field μ(x) = β . We run the Hastings-within-
Gibbs algorithm under the following specifications: the priors for the black-box parameters
are independent exponentials with mean 10; the prior for β is Gaussian with mean 1500
and standard deviation 1000; the algorithm is run for 7000 iterations and estimates are
obtained using the values sampled every 50 iterations of the chain.
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Figure 4. Comparison between the Bayesian (left) and WLS (right) estimated variograms.

The leave-one-out Root Mean Square Error (RMSE) of the Bayesian and WLS black-
box estimates are 175.90 and 173.22, respectively; the p-values of the Shapiro–Wilks nor-
mality test (see, e.g., Shapiro and Wilk 1965) on the rescaled residuals of Bayesian and
WLS estimates are 0.24 and 0.06, respectively. Figures 2 and 3 display the predicted val-
ues obtained with the Bayesian and WLS black-box variogram estimates, and the corre-
sponding standard deviations, showing consistency of the results provided by the two ap-
proaches. Figure 4 shows the estimated Bayesian and WLS estimated semivariograms; the
behavior is very similar, although the Bayesian variogram tends to have larger values for
large lags. On the other hand, the Bayesian approach, with respect to the WLS approach,
yields a complete assessment of the uncertainty in the variogram estimation, providing the
predicted distributions of a new realization at any location of the field.

Since Figure 2 seems to display a linear trend, we also tested a Bayesian black-box
model with mean field μ(x) = ∑4

j=1 βjgj (x) where g1 = 1, g2 = x1, g3 = x2, g4 = x1x2;
this model, as well as models nested within this one, has higher leave-one-out RMSE
than the model with constant mean field, and 95 % credibility intervals for the parameters
β2, β3, β4 crossing zero. We thus concluded that the simpler model with constant mean
field was better from a prediction point of view.

6. DISCUSSION AND CONCLUSIONS

We have developed a Bayesian approach to covariance estimation and spatial prediction
based on flexible black-box variograms. These variogram models, originally introduced
by Barry and Ver Hoef (1996), exploit a special representation theorem for variogram
functions that allows to characterize a subset of piecewise polynomial functions as valid
variograms with sill. In the Bayesian framework, the parameters characterizing a generic
piecewise linear valid variogram, according to this representation theorem, are assumed
to be random variables with a chosen a priori distribution. The a posteriori distribution of
these parameters given the available data can be computed by an appropriate Markov Chain
Monte Carlo (MCMC) scheme, yielding a complete assessment of the uncertainty in the
variogram estimation. By means of simulation studies with both one-dimensional and two-
dimensional data, we have shown that Bayesian black-box kriging yields superior estimates
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with respect to the standard WLS variogram estimation described in Barry and Ver Hoef
(1996). Bayesian black-box estimates are more precise and robust, having stochastically
lower RMSPE, and with a smaller variance; moreover, they provide a better estimation of
the field variance, as illustrated by their empirical predicted coverages.
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