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ABSTRACT. We present an algorithm that finds all toric noncommutative crepant reso-
lutions of a given toric 3-dimensional Gorenstein singularity. The algorithm embeds the
quivers of these algebras inside a real 3-dimensional torus such that the relations are homo-
topy relations. One can project these embedded quivers down to a 2-dimensional torus to
obtain the corresponding dimer models. We discuss some examples and use the algorithm
to show that all toric noncommutative crepant resolutions of a finite quotient of the conifold
singularity can be obtained by mutating one basic dimer model. We also discuss how this
algorithm might be extended to higher dimensional singularities.

1. INTRODUCTION

In [39] Van den Bergh introduced the notion of a noncommutative crepant resolution of
a singularity, which is an algebra that can act as a substitute of an ordinary commutative
crepant resolution. A noncommutative crepant resolution of a singularity with coordinate
ring R is a homologically homogeneous algebra of the form A = EndR(T ) where T is a a
reflexive R-module. In the case of three-dimensional terminal Gorenstein singularities, the
derived category of representations of A is equivalent to the derived category of coherent
sheaves of a commutative crepant resolution.

The algebra A can be seen as a path algebra of a quiver Q with relations. The vertices
of this quiver correspond to the direct summands of T and the arrows to a basic set of maps
between them. One can also define a dimension vector α which assigns to each vertex
the rank of the corresponding summand. With these data the singular variety specR can
be recovered as a moduli space parameterizing α-dimensional semisimple representations
and in many cases a commutative resolution can be constructed by taking a moduli space
parameterizing α-dimensional stable representations for some stability condition.

If R is a toric singularity, we would like our noncommutative resolution to carry an
additional toric structure. This can be done by asking that all summands of T are have
rank 1 and are graded. This ensures that the moduli spaces can be constructed as toric
quotients of toric varieties. If this is the case we call End(T ) a toric noncommutative
crepant resolution.

An interesting problem is to classify all possible toric noncommutative crepant resolu-
tions of a given singularity. In this paper we will describe an algorithm that does this for
any toric three-dimensional Gorenstein singularity. We then use a method by Craw and
Quintero-Velez [8]to embed the quivers of these algebras inside a real 3-torus, such that the
relations are precisely the homotopy relations. If the singularity is Gorenstein the quiver
can be projected to a 2-torus to obtain a dimer model. This is a combinatorial gadget that
was originally introduced in string theory [19, 13, 18]. We illustrate the power of the al-
gorithm by looking at some special examples: singularities from reflexive polygons and
abelian quotients of the conifold. In these cases we can prove that all the dimer models
corresponding to such a singularity are connected by mutations.

Finally we study the possible generalization of this algorithm to the case where the toric
singularity is not Gorenstein or has higher dimension.
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3. PRELIMINARIES

3.1. Noncommutative crepant resolutions. Let R be the coordinate ring of a singular
varietyX . A proper surjective map π : X̃ → X is a resolution if it induces an isomorphism
on the function fields and X̃ is a smooth variety.

There are many different ways to resolve a singularity and therefore one wants to impose
extra conditions. A resolution is called crepant if the pullback of the canonical divisor of
X under π is the canonical divisor of X̃ . In particular if X is a Gorenstein singularity (i.e.
the canonical divisor is trivial) then X̃ must be a Calabi Yau variety (i.e. a smooth variety
with a trivial canonical bundle).

In 2 dimensions crepant resolutions are unique, in 3 dimensions a singularity can have
more than one crepant resolution but they are closely related. If X̃1 → X and X̃2 → X
are two crepant resolutions then Bridgeland [5] proved their bounded derived categories of
coherent sheaves are the equivalent.

In [39] Van den Bergh introduced special algebras which can act as a noncommutative
analogue of a crepant resolution. An algebra A is a noncommutative crepant resolution of
R if it satisfies 2 conditions

• A ∼= End(T ) where T is a finitely generated reflexive R-module (reflexive means
HomR(HomR(T,R), R) ∼= T ),

• A is homologically homogeneous i.e. all simples have the same projective dimen-
sion.

He used this definition to show that in 3 dimensions these algebras behave like crepant
resolutions:

Theorem 3.1 (Van den Bergh). For a terminal 3-dimensional Gorenstein singularity, the
bounded derived category of finitely generated modules of a noncommutative crepant res-
olution is equivalent to the bounded derived category of coherent sheaves of a crepant
resolution and vice versa. Noncommutative crepant resolutions exist if and only if a com-
mutative crepant resolution exists.

From now on we will abbreviate the term commutative crepant resolution by CCR and
noncommutative crepant resolution by NCCR.

3.2. Maximal modification algebras. A nice way to construct NCCRs was introduced by
Iyama and Wemyss in [24].

For a positively graded commutative ring R with C = R/R+ and Krull dimension n
we will call a module T Cohen-Macaulay (abbreviated as CM) if ExtiR(C, T ) = 0 for all
i < n.

An algebra A is called a modification algebra if it is of the form EndR(T ) with T a
reflexive module and A is Cohen-Macaulay as an R-module. EndR(T ) is called a maxi-
mal modification algebra (abbreviated as MMA) if for every reflexive module U such that
EndR(T⊕U) is Cohen-Macaulay then U is a direct sum of summands of T . In other words
one cannot add anything new to T such that its endomorphism ring stays Cohen-Macaulay.
If End(T ) is a (maximal) modification algebra we will call T a (maximal) modification
module.

An NCCR is always an MMA, but the converse is not true: it might be the case that
a singularity has an MMA that does not have finite global dimension. But as soon as a
modification algebra has finite global dimension then it is an NCCR (see Lemma 4.2 in
[39]).

In three dimensions we have the following:
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Theorem 3.2 (Iyama-Wemyss [24]). If R is a 3-dimensional Gorenstein singularity for
which there exists an NCCR, then the NCCRs are precisely the MMAs.

3.3. Toric geometry. Let M be a group isomorphic to Zn and let N = Hom(M,Z), we
use 〈, 〉 denote the pairing between M and N and between M ⊗ R and N ⊗ R. Now let
v1, . . . , vk be vectors in N such that the R+vi form the rays of an integral polyhedral cone
σ ⊂ N ⊗R. We also assume that λvi ∈ N ⇐⇒ λ ∈ Z, so the vectors are irreducible. We
write σ = [v1, . . . , vk] := R+v1 + · · ·+ R+vk.

The dual cone σ∨ is defined as

σ∨ := {x ∈M ⊗ R|∀u ∈ σ : 〈x, u〉 ≥ 0}.

If we intersect this cone with M we get a semigroup and we can use this semigroup to
construct a semigroup algebra Rσ := C[σ∨ ∩ M ]. This ring is positively graded and
normal. A cone τ = [vi1 , . . . , vil ] is called a face of the cone if and only if there is an
m ∈ σ∨ such that τ = {x ∈ σ|〈m,x〉 = 0}. A face τ of σ will give an embedding
σ∨ ⊂ τ∨ and a inclusion Rσ ⊂ Rτ and one can see Rτ as a localization of Rσ . This gives
an embedding SpecRτ ⊂ SpecRσ .

A fan F is a collection of integral polyhedral cones in N ⊗ R such that
• if τ is a face of σ ∈ F then τ ∈ F and
• if σ1, σ2 ∈ F then their intersection is a face of both σ1, σ2.

If F is a fan we get a variety XF by taking the direct limit of the SpecRτ with respect to
the embedding maps SpecRτ ⊂ SpecRσ .

To every cone σ we can associate its fan Fσ = {τ |τ is a face of σ}. The variety Xσ :=
XFσ is SpecRσ . Xσ will be singular if and only if the v1, . . . , vk do not form a basis for
N . To construct a resolution of Xσ we need to subdivide the cone σ in smaller cones that
all correspond to smooth varieties. The fan F containing all these cones will then give us a
variety XF which is a resolution of Xσ .

A toric singularity Xσ with σ = [v1, . . . , vk] will be called Gorenstein if and only if
there is an element m in M such that 〈m, vi〉 = 1 for all vi. This means that all vi lie in a
common hyperplane and they form the vertices of a convex k − 1-dimensional polytope.

If the dimension of the singularity is 3 this polytope is a convex polygon in a plane with
integral coefficients. Subdivide the polygon into triangles with size 1

2 and take the cones
over these triangles to obtain a subdivision of σ. The size of the triangles implies that the
cones all give smooth varieties, so this subdivision gives rise to a resolution ofXσ . Because
the vectors that generate the subcones all lie in the same plane the resolution is Calabi-Yau
and hence it is a CCR.

3.4. Quivers and Dimers. As usual a quiver Q is an oriented graph. We denote the set
of vertices by Q0, the set of arrows by Q1 and the maps h, t assign to each arrow its head
and tail. A nontrivial path p is a sequence of arrows a1 · · · ak such that t(ai) = h(ai+1).
A trivial path is just a vertex. We will assume that our quivers are strongly connected i.e.
there exist a path from each vertex to each other vertex.

The path algebra CQ is the complex vector space with as basis the paths in Q and the
multiplication of two paths p, q is their concatenation pq if t(p) = h(q) or else 0. The span
of all paths of nonzero length form an ideal which we denote by J . A path algebra with
relations A = CQ/I is the quotient of a path algebra by a finitely generated ideal I ⊂ J 2.

We will call a path algebra with relations CQ/I positively graded if there exists a grad-
ing R : Q1 → R>0 such that I is generated by homogeneous relations.

A dimer model Q is a strongly connected quiver Q enriched with a 2 disjoint sets of
cycles of length at least 3: Q+

2 and Q−2 , such that
DO Orientability condition. Every arrow is contained exactly once in one cycle in

Q+
2 and once in one in Q−2 .

DM Manifold condition. The incidence graph of the cycles and arrows meeting a
given vertex is connected.
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Considering the cycles as polygons and gluing them together by the arrows we get a com-
pact surface. We speak of a dimer model on a torus if this surface is a torus.

A consistent R-charge is a grading R : Q1 → R>0 such that
R1 ∀c ∈ Q2 :

∑
a∈c Ra = 2,

R2 ∀v ∈ Q0 :
∑
h(a)=v(1− Ra) +

∑
t(a)=v(1− Ra) = 2.

Given a dimer model we can construct its Jacobi algebra

AQ := CQ/〈p− q|∃a ∈ Q1 : pa ∈ Q+
2 , qa ∈ Q

−
2 〉

The main results concerning dimers and NCCRs

Theorem 3.3 (Broomhead-Bocklandt). The Jacobi algebra of a dimer model is an NCCR
of its center if and only if it admits a consistent R-charge. In this case the center is a toric
3-dimensional Gorenstein singularity.

Remark 3.4. Broomhead proved this theorem for geometrically consistent R-charges (i.e.
∀a ∈ Q1 : Ra < 1) in [6]. The method of this proof was later extended to include all
consistent R-charges in [3].

Theorem 3.5 (Gulotta-Ishii-Ueda). For every toric 3-dimensional Gorenstein singularity,
there is a dimer model with a consistent R-charge that has this singularity as the center of
its Jacobi algebra.

Remark 3.6. The proofs of Gulotta [16] and Ishii and Ueda [23] are constructive: they
provide an algorithm to construct at least one dimer model. Varying the starting parameters
of the algorithm one can obtain more than one dimer model for a given singularity, but it is
far from clear whether you will obtain all possible dimer models. One of the aims in this
paper is to construct a new algorithm that produces all dimer models for a given singularity.

Not every NCCR of a toric 3-dimensional Gorenstein singularity comes from a dimer
model, but if we restrict to toric NCCRs, a natural restriction we will introduce in the next
section, one has the following:

Theorem 3.7 (Bocklandt [3, 2]). Every toric NCCR of a toric 3-dimensional Gorenstein
singularity is isomorphic to the Jacobi algebra of a dimer model that admits a consistent
R-charge.

4. TORIC NCCRS AND MMAS

Now we can combine the concepts of the preliminary sections to obtain the notion of
toric NCCRs and MMAs.

LetA = EndR(T ) be an NCCR ofR = C[X]. The standard way to construct a commu-
tative crepant resolution goes as follows. First one writes A = CQ/I as the path algebra
of a quiver with relations. The vertices of this quiver will be in one-to-one correspondence
with the direct summands of T . Let Tv be the direct summand corresponding to vertex v

To this quiver we can associate a dimension vector α : Q0 → N : v 7→ rankTv , which
allows us to define the scheme RepαQ = ⊕a∈Q1

Matαh(a)×αt(a)(C), which parametrizes
all α-dimensional presentations of the path algebra CQ. This scheme contains a closed sub-
scheme repαA that parametrizes all CQ-representations that are alsoA-representations. On
both schemes there is an action of GLα =

∏
v∈Q0

GLαv (C) and the quotient repαA//GLα
is isomorphic to X = SpecR (this is because A is an R-order, see [29]).

If X is a toric variety we want the above story to happen in the toric world. This means
that the main component of repαA is a toric variety and the group GLα is a torus. This is
the same as asking that all Tv are graded by M (where R ⊂ C[M ]) and have rank 1.

Definition 4.1. An NCCR or MMA is a toric NCCR (toric MMA) if it is of the form
EndR(T ) where T is a direct sum of M -graded rank 1 R-modules.

The main questions we are interested in is the following:
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• Given a toric singularity can we find all toric NCCRs/MMAs?
• If the singularity is 3-dimensional and Gorenstein can we find the dimer models

corresponding to these NCCRs?
If T = ⊕vTv is a direct sum of reflexive graded rank one modules and U is any reflexive

graded rank one module then End(T ⊗R U) ∼= End(T ) (because U is invertible), so by
tensoring with Hom(Tv, R) we can make sure R itself is one of the summands of T . Now
End(T ) = ⊕v,wHom(Tv, Tw) and Hom(R, Tv) = Tv so if End(T ) is an MMA then it is
Cohen-Macaulay so all direct summands Tv are also Cohen-Macaulay. From [15] we have
the following theorem

Theorem 4.2 (Gubeladze). For a given toric singularity there are only a finite number of
graded rank 1 Cohen-Macaulay modules up to isomorphism.

Corollary 4.3. For any toric singularity there are only a finite number of toric MMAs and
NCCRs.

This finiteness result implies that the problem of classifying all toric NCCRs is feasible
(at least in principle) and the first step will be to obtain a list of all graded rank 1 Cohen-
Macaulay modules.

5. GRADED RANK 1 COHEN-MACAULAY MODULES

In this section we discuss a method to determine the graded rank 1 Cohen-Macaulay
modules. The main ideas go back to Stanley, Bruns and Herzog in [38] and [7]. The
method has also been described by Perling in more detail in [35], [34].

5.1. Singular and local homology. Let S = {v1, . . . vk} a set of primitive vectors in N
that are the extremal rays of an n-dimensional cone σ. For every ς ∈ Fσ we fix an ordered
basisBς for the space {x ∈M⊗R|∀u ∈ ς : 〈u, x〉 = 0} consisting of elements in σ∨∩M .
These bases can be used to define an incidence function

ε(ς1, ς2) =

{
0 if ς2 is not a codimension 1 subspace of ς1
sign detG if u ∈ Bς2 \ SpanBς1 and (GBς1 , Gu) = Bς2 .

Let G be any subset of Fσ and define Gi to be the subset of G containing all the faces of
codimension i (|Bσ| = i) and ZGi the free abelian group generated by this set. Furthermore
let

d : ZGi 7→ ZGi+1 : ς 7→
∑

κ∈Gi+1

ε(ς, κ)κ.

It is easy to check that this turns
SG := ZG• , d

into a complex and the homology of this complex is called the singular homology of G.

Lemma 5.1. Let σ be a cone. The singular homology of the fan Fσ is zero : H(SFσ ) = 0.

Proof. This is an easy consequence of the fact that a cone is contractible. �

Let R = C[σ∨ ∩M ] be the ring defined by the cone σ, for any object ς in the fan Fσ
we put

Rς := C[ς∨ ∩M ] = R[u−11 , . . . , u−1k ] where Bς = {u1, . . . , uk}
We can also define a complex of R-modules L•, d with

Li :=
⊕
ς∈Fi

Rς

for any x = (xς)ς∈Fi we set dx = ((dx)ς)ς∈Fi+1
with

(dx)κ :=
∑
ς∈Fi

ε(ς, κ)xς
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where xς ⊂ Rς ⊂ Rκ. This will give us again a complex and its homology is called
the local homology of R. If we tensor this complex with an R-module K and take the
homology we get the local homology of K.

Theorem 5.2. [7][Corollary 6.2.6] An M -graded R-module K is Cohen-Macaulay if and
only if the ith local homology of K is trivial for i = 0, . . . , d− 1, where d is the dimension
of R.

We are now going to apply this to graded rank 1 reflexive submodules of R.

5.2. Graded reflexive rank 1 modules. Starting from a cone σ = [v1, . . . , vk], we define
for each k-vector of integers b = (b1, . . . , bk) ∈ Zk

T(b) = Tb := {x ∈M |〈αi, x〉 ≥ bi} and T (b) = SpanCT(b).

The first can be considered as a semigroup module over the semigroup T(0) = σ∨ ∩M ,
while the second is an algebra module over the algebra R = T (0). For different b’s the
T (b)’s might be isomorphic as R-modules. Indeed it is well known [35] that

Lemma 5.3.
• AnM -gradedR-submodule of C[M ] is reflexive if and only if it is of the form T (b)

for some b ∈ Zk.
• If b, b′ ∈ Zk then T (b) ∼= T (c) as R-modules if and only if there is an m ∈ M

such that bi = b′i + 〈m, vi〉.

Because all Cohen-Macaulay modules are reflexive, the problem of determining graded
rank 1 Cohen-Macaulay modules reduces to checking which T (b) are Cohen-Macaulay or
in other words when L• ⊗R T (b) has trivial homology.

If m ∈M we can look at the degree m part of the complex L• ⊗R K.

Lemma 5.4 (Bruns-Herzog [7], Perling [35]). For any module T (b) we have that (L• ⊗R
T (b))m = SGm where

Gm = {ς ∈ F|∀vi ∈ ς ∩ S : 〈m, vi〉 ≥ bi}

To check whether a given T (b) is Cohen-Macaulay we must check that H((L• ⊗R
T (b))m) = 0 or equivalently that H(SGm) = 0 for all the Gm defined above.

For a given m ∈ M and a T (b1, . . . , bk) we denote the signature of m for vi + if
〈m, vi〉 ≥ bi (here positive includes zero) and − otherwise.

Given T (b1, . . . , bk) we define for every given signature s ∈ {+,−}k the cell Cs as

Cs :=

{
x ∈M ⊗ R|〈vi, x〉

{
≥ 0 si = +

< 0 si = −

}
The homology of the cell is defined as the homology of SG where Fs contains only the
faces in F spanned by vectors with positive sign.

Fs := {ς ∈ F|∀i ∈ [1, k] : vi ∈ ς =⇒ si = +}

With this definition T (b1, . . . , bk) is Cohen-Macaulay if and only if the cells with non-
trivial homology in degrees i = 0, . . . , d − 1 contain no lattice points of M . In general
checking the Cohen-Macaulay property reduces to checking whether integral solutions to a
large set of inequalities exist (see also [35][Theorem 7.2]). This can become quite complex.
In dimension 3 things can be done to simplify the problem a lot.

5.3. Some facts about Cohen-Macaulay modules in dimension 3. Let Rσ be a toric
singularity with cone σ = [v1, . . . , vk] ⊂ R3. We can choose a plane that intersects the
cone transversally in a polygon P . Without loss of generality we can choose the plane
given by z = 1 (i.e. the third coordinate is 1). If the singularity is Gorenstein we can
assume all vectors v1, . . . vk lie in this plane. In general the vertices of the polygon P are
of the form vi

ci
where ci ∈ N and (all ci = 1 in the Gorenstein case).
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The standard orientation of z = 1-plane will give us cyclic (clockwise) order to the
vectors vi, which we will identify with the index i ∈ Z/kZ. Using this cyclic order, it is
easy to see that

F := {0, [v1, . . . , vk]} ∪ {[vi]|i ∈ Z/kZ} ∪ ∪{[vi, vi+1]|i ∈ Z/kZ}
This has an interesting consequence:

Lemma 5.5. If s ∈ {+,−}k is a signature then Fs has trivial singular homology if and
only if the i with positive signature si consist of a sequence of numbers mod k.

sj = + ⇐⇒ j = i, i+ 1, . . . , i+ u mod k

Proof. It is clear that all s of this form have trivial homology in degrees 0, 1, 2. If s is not
of this form Fs consists of different connected components so the zeroth homology will be
nontrivial. �

Theorem 5.6. If the singularity is 3-dimensional a nonempty cell has nontrivial homology
if and only if it is bounded.

Proof. Note that because no 3 vi are sitting are linearly dependent, every 4 planes 〈vi, x〉 =
bi will either go through a common point or bound a tetrahedron.

Suppose a cell Cs has nontrivial homology then the sequence of vi with positive signa-
ture is not connected, so we can find i1 < i2 < i3 < i4 with alternation signs − + −+.
Then Cs is contained in

B = {x ∈M ⊗ R|〈x, (−1)uviu〉 ≥ (−1)ubiu , u = 1, . . . , 4}
We will now show that if this set is nonempty it is a solid tetrahedron or a point. So let y
be in this set, if B is not a tetrahedron or a point the there would be a direction z such that
y + λz ∈ B for all λ ∈ R+. I.e. 〈z, (−1)uviu〉 > 0 for all u = 1, . . . , 4. However because
the cone spanned by v1 and v3 intersects the cone by v2 and v4, there are positive λi such
that λ1v1−λ2v2 +λ3v3−λ4v4 = 0, taking the inner product with z gives a contradiction.

On the other hand if a cell Cs has trivial homology, the cone σ contains two cones: The
one generated by the vi with positive signature, the one generated by the ones with negative
signature. Because of lemma 5.5 these 2 cones only intersect in the zero and therefore we
can find a plane through the origin in N ⊗ R such that the two cones lie on different sides
of the plane. The normal to this plane in the direction of the positive cone will give us an
element z ∈M ⊗R such that 〈z, vi〉 > 0 for vi with positive signature and 〈z, vi〉 < 0 for
vi with negative signature. Therefore if y ∈ Cs then y + λz ∈ Cs for all λ > 0 so Cs is
not bounded. �

The previous theorem can be used to show that the Cohen-Macaulay property remains
true if we remove one of the vi from the cone of the singularity.

Corollary 5.7. If T (b1, . . . , bk) is a Cohen-Macaulay module for the 3-dimensional sin-
gularity generated by v1, . . . , vk, then T (b1, . . . , bi−1, bi+1, . . . , bk) is a Cohen-Macaulay
module for the singularity generated by v1, . . . , vi−1, vi+1, . . . , vk.

Proof. Any cell C ŝ for the singularity generated by v1, . . . , vi−1, vi+1, . . . , vk is the union
of two cells Cs (one of which might be empty) for the original singularity. If C ŝ was
bounded and contained lattice points, then both Cs would be bounded and at least one of
them will contain a lattice point. �

In the other direction we can show that if we add an extra ray to the singularity every
Cohen-Macaulay module lifts to a discrete interval of Cohen-Macaulay modules.

Corollary 5.8. Let v1, . . . vk the vectors in cyclic order for a given 3-dimensional singu-
larity and k > 3. If T (b1, . . . , bi−1, bi+1, . . . , bk) is a Cohen-Macaulay module for the
singularity generated by v1, . . . , vi−1, vi+1, . . . , vk, then there are numbers l, u ∈ Z such
that the module T (b1, . . . , bi−1, bi, bi+1, . . . , bk) is Cohen-Macaulay for the original sin-
gularity if and only if l ≤ bi ≤ u.
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Proof. For each of them inM we can look at the signs of 〈m, vi−1〉−bi−1 and 〈m, vi+1〉−
bi+1.

In order to be Cohen-Macaulay 〈m, vi〉 − bi must have the either the same sign (+,−)
as 〈m, vi−1〉−bi−1 or 〈m, vi+1〉−bi+1. This gives us a condition of the form bi ≥ 〈m, vi〉
if both have positive sign and bi ≤ 〈m, vi〉 − 1 if both have negative sign. The intersection
of all these conditions is an interval. This interval must be bounded because by theorem
4.2 the number of Cohen-Macaulay graded rank 1 modules is a finite set. �

It is important to note that theorem 5.6 and its 2 corollaries only hold in dimension 3.
We will discuss this further in section 9.

6. ENDOMORPHISM RINGS OF REFLEXIVES AND EMBEDDED QUIVERS

An embedded quiver consists of a manifold M and a quiver Q such that Q0 ⊂ M
and every a ∈ Q1 is a continuous map a : [0, 1] → M with h(a) = a(1) and t(a) =
a(0). In this way every path in the quiver corresponds to a path in M. The homotopy
algebra of an embedded quiver is the quotient of the path algebra by the ideal generated
by the expressions p− q where p and q are homotopic paths. The universal cover Q̃ of an
embedded quiverQ is by definition the pullback of the embedded quiver under the universal
covering map M̃→M.

In general if T = T (b1)⊕· · ·⊕T (b`) is a direct sum of nonisomorphic graded reflexive
rank 1 modules of a toric ring R then EndRT is isomorphic to an embedded quiver. This
can be seen as follows: choose for each T (bi) a point in pi ∈ M ⊗ R and make sure
pi − pj 6∈ M for i 6= j. If we shift T(bi) to T(bi) + m with m ∈ M we get a new graded
reflexive rank 1 module, which is isomorphic to T (bi). We will assign to this module the
point pi +m.

Every homogeneous homomorphism from T (bi)→ T (bj) corresponds to shifting T (bi)
by a vector m ∈ M such that it lies in T (bj). Therefore it makes sense to identify a
homomorphism φ with the path aφ in M ⊗R from pi +m to pj . We will denote the vector
from pi +m to pj by aφ.

Because pi and pi + m correspond to isomorphic modules, we can take the quotient of
M ⊗R by M to obtain an n-dimensional torus. Now let Q0 be the set of the images of the
pi in this quotient. Fix a set of homogeneous morphism that generate EndRT and we take
for Q1 the images of the paths aφ in (M ⊗R)/M .

It is easy to check that EndRT is isomorphic to the homotopy algebra of this embedded
quiver and its universal cover is the infinite quiver we started from.

Although the embedding of the quiver depends on the choice of the pi, different choices
will give rise to homotopic embeddings (i.e. there is a one parameter family of embedded
quivers connecting them). The aim is to find embeddings that look nice, i.e. such that the
arrows do not wind more around the torus than needed.

One way to do this is the following construction, which appears in work by Craw and
Quintero-Velez [8]. Given vectors v1, . . . , vk that generate a cone in N we have a map
from φ : Zk → N by mapping (b1, . . . , bk) to

∑
i bivi and a dual map φT : M → Zk :

m 7→ (〈m, v1〉, . . . 〈m, vk〉). Now φφT : M → N will give us an embedding of M in N
and φφT ⊗ R : M ⊗ R→ N ⊗ R will be an isomorphism.

The map φ allows us to associate to each graded reflexive submodule T (b1, . . . , bk) a
point in N and the inverse (φφT ⊗ R)−1 embeds N inside M ⊗ R, so we can assign to
T (b1, . . . , bk) the point

κ(b1, . . . , bk) := (φφT ⊗ R)−1φ(b1, . . . , bk).

This assignment has the property that if you shift T(b1, . . . , bk) by m ∈ M , the corre-
sponding point will also shift by m, which is precisely what we want. After factoring out
M we get a map κ̄ : Zk →M⊗R/M . It is clear that if all T (bj) are mapped by to different
points in the torus under this map, End(⊕jT (bj)) will be isomorphic to homotopy algebra
of the embedded quiver we constructed.
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In dimension 3 this is indeed true because of the following lemma.

Lemma 6.1. If b1, . . . , bk are such that
∑
bivi = 0 then T (b1, . . . , bk) cannot be Cohen-

Macaulay unless all the bi are zero.

Proof. If T (b1, . . . , bk) were CM, then the bi ≥ 0 must form a segment, so the cone
spanned by the vi with nonnegative bi and the cone spanned by the vi with negative bi only
intersect in the top. So

∑
bi≥0 bivi and

∑
bi<0−bivi can only be the same if they are both

zero. �

Corollary 6.2. If End(
⊕

j T (bj) is a 3-dim NCCR, then every T (bj) will be mapped by κ̄
to a different point in the torus.

Proof. If T (bj) and T (cj) we mapped to the same point then T (bj − cj) would be mapped
to the zero, but we know the only Cohen-Macaulay sitting on the zero is the trivial one so
this would mean that T (bj) ∼= T (cj). �

7. THE ALGORITHM FOR DIMENSION 3

The first thing we need is a procedure to check whether two reflexives T (b) and T (c)
are isomorphic. If we fix a basis for M , we can look at the corresponding half open unit
cube in D = [0, 1)3 ⊂ M ⊗ R. This cube is a fundamental domain for the quotient
M ⊗ R/M , so for every T (b) there is a unique m ∈ M such that κ(b) + m lies inside
D. The module T (b + φT (m)) will be the unique graded reflexive module isomorphic to
T (b) that is mapped to a point inside the unit cube. Therefore it make sense to define the
function

normalize : Zk → Zk : b 7→ b+ φT (m).

Two vectors in Zk will define isomorphic modules if and only if there image under the map
normalize is the same.

The algorithm now consists of 3 steps
Step 1 Generate the set CM := {normalize(b)|T (b) is Cohen-Macaulay}.
Step 2 Find the maximal modifying sets: these the are subsets S ⊂ CM such that 0 ∈ S

and ∀b, c ∈ S, normalize(b− c) ∈ CM.
Step 3 For every maximal subset S we construct the quiver of End(⊕b∈ST (b)).

We will now discuss these 3 steps in a bit more detail.

7.1. Generating the Cohen-Macaulays. Because the 3-dimensional situation is special in
the sense that the Cohen-Macaulay Property is maintained after removing one of the vi, we
can use an inductive procedure to generate CM. We order the vi cyclicly. The singularity
generated by the first 3 vectors is a quotient singularity C3/G where G ⊂ GL3(C) is
abelian. This is because the cone is simplicial. This implies that every reflexive is Cohen-
Macaulay, so CM(v1, . . . , v3) = normalize(Z3).

Given CM(v1, . . . , vi) we can construct CM(v1, . . . , vi, vi+1) as follows. For each
(b1, . . . , bi) we know from Lemma 5.8 that we there is an interval [l, u] such that the module
T (b1, . . . , bi, bi+1) is Cohen-Macaulay if and only if bi+1 ∈ [l, u]. To find this interval we
start with a given z ∈ Z check whether (b1, . . . , bi, z) is Cohen-Macaulay or not.

This check is done by making looking at all 4-tuples of planes 〈x, vij 〉 − bij − ε = 0
where one of ij = i + 1 and check whether the tetrahedron they bound does not contain
any lattice points. (The ε is just a tiny number (ε < 1) to compensate the fact that the cells
are half open.)

A If it is CM we put normalize(b1, . . . , bi, z) in CM(v1, . . . , vi, vi+1) and we check

(b1, . . . , bi, z + 1), (b1, . . . , bi, z + 2), . . .

until we get a vector that does not give a Cohen-Macaulay. Then we do the same
with

(b1, . . . , bi, z − 1), (b1, . . . , bi, z − 2), . . .
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and by lemma 5.8 we can be sure all Cohen-Macaulays are found once we get to a
vector that is not Cohen-Macaulay.

B If (b1, . . . , bi, z) is not Cohen-Macaulay, there were lattice points in some of the
tetrahedra. Chose such a lattice point m and change z to z′ = 〈m, vi+1〉 if
〈m, vi+1〉 < z or z′ = 〈m, vi+1〉 − 1 〈m, vi+1〉 ≥ z (to remove m from the
tetrahedron). Now check whether (b1, . . . , bi, z

′) is Cohen-Macaulay.
B.1 If it is CM proceed according to paragraph A.
B.2 If it is not CM we take again a lattice point in a tetrahedron an use it to modify

z′ to z′′ as above, and continue like this until we hit a Cohen-Macaulay.
If the sequence z, z′, z′′, . . . is not monotone we stop. This means we cannot
make a Cohen-Macaulay of the form (b1, . . . , bi, z). Note that the sequence
can not continue monotonely indefinitely. Indeed, we start with a finite num-
ber of lattice points in the tetrahedra and changing z will remove some lattice
points from the tetrahedra and maybe add some new ones, but in order to
remove the new ones we have to move z in the opposite direction.

7.2. Finding the maximal subsets. Choose any indexing e0, e1, . . . of the elements in
CM such that e0 = 0. We are going to construct generations of pairs of subsets of CM,
(S, T ) satisfying the following conditions:

S ∩ T = {} and ∀b ∈ S : ∀b ∈ T, b− c, c− b ∈ CM

The first generation only contains the pair ({e0}, {e1, e2, . . . }). Given a generation we
construct the next generation by constructing for every pair (S, T ) in this generation and
for every ej ∈ T with j bigger than all indices in S, a new pair

(S ∪ {ej}, {c ∈ T \ {ej}|ej − c, c− ej ∈ CM}).

As S increases and T decreases, there will be a last nonempty generation.
The algorithm returns the set MM containing all first entries of the pairs of this last

generation.

7.3. Constructing the quiver. Following section 6, we construct an embedded quiver for
every S ∈ MM. As vertices it will have the set Q0 = {κ̄(b)|b ∈ S} ⊂ M ⊗ R/M
(which by corollary 6.2 are all different) and the arrows Q1 come from a minimal set of
graded algebra generators for EndR(⊕b∈ST (b)). If the arrow a corresponds to a graded
homomorphism Tb → Tc we define ~a = κ̄(c − b). Using this notation we identify a with
the map

a : [0, 1]→M ⊗ R/M : t 7→ κ(b) + t~a.

Many maximal modifying sets S will give isomorphic homotopy algebras. In order to
remedy this, we introduce the notion of affine equivalence.

An affine transformation Ψ of M ⊗R (considered as an affine space) is compatible with
the quotient M ⊗ R/M if it maps fibers to fibers. This allows us to see it also as a map
Ψ : M ⊗R→M ⊗R. We will call two embedded quivers Q and Q′ in M ⊗R/M affine
equivalent if there is an affine transformation Ψ compatible with the quotient such that

a ∈ Q1 ⇐⇒ Ψa ∈ Q′1

For each S the algorithm will now construct the quiver and check whether it is affine equiv-
alent to one of the quivers already constructed. If not this quiver will be added to the list
NCCR. The complexity of checking affine equivalence of 2 embedded quivers is propor-
tional to the number of arrows in the quiver because an affine transformation is fixed once
we know the image of one arrows.



GENERATING TORIC NONCOMMUTATIVE CREPANT RESOLUTIONS 11

7.4. Effectiveness of the algorithm.

Theorem 7.1. Given the toric data {v1, . . . , vk} ⊂ Z2 × {1} for a toric 3-dimensional
Gorenstein ring R, the algorithm stops and gives 3 lists CM, MM and NCCR.

(1) The list CM contains vectors b ∈ Zk corresponding to all graded rank-1 Cohen-
Macaulay modules T (b1, . . . , bk) up to isomorphism.

(2) The list MM will correspond to all maximal modifying modules that decompose
as a direct sum of graded rank-1 Cohen-Macaulays, one of which is R itself.

(3) The list NCCR contains all embedded quivers (inside the three-dimensional torus)
for the toric NCCRs up to affine equivalence.

Proof.
(1) Lemmas 5.7 and 5.8 and the monotony requirement for the sequence z, z′, . . . ,

ensure that step 1 stops and CM contains all graded rank-1 Cohen-Macaulay mod-
ules. Steps 2 and 3 also clearly stop.

(2) If R is Gorenstein, then by theorem 3.5 we know that there is at least one toric
NCCR, which by theorem 3.2 is given by a maximal modifying module (consisting
of graded rank-1 Cohen-Macaulays because it is toric). This maximal modifying
module will be contained in MM. By construction the MM contains sets of the
same size, these must all be maximal modifying: if they were not, they were con-
tained in a maximal modifying with more summands. The corresponding NCCR
would then have a higher rank Grothendieck group than the one toric NCCR we
already had. This is impossible because by [39] all NCCRs are derived equivalent.

(3) This is by construction.
�

We can also recover the dimer models from the embedded quivers in the following way:

Theorem 7.2 (Craw-Quintero-Velez [8] Theorem 5.9). Given any embedded quiver Q in
the list NCCR, one can project it down to the twodimensional torus by forgetting the third
coordinate. After this projection the arrows will cut the 2-torus in polygons which are
bounded by cycles. These turn Q into a dimer model.

As we already mentioned these dimer models are all consistent so this means there must
exist consistent R-charges for these dimer models.

Theorem 7.3. Choose a basis for M such that the Gorenstein vector is (0, 0, 1). Let Q be
any embedded quiver in the list NCCR. For any x in the interior of σ∨ we can construct a
consistent R-charge for Q by putting

Ra = 2〈x,~a〉/〈x, (0, 0, 1)〉.
where the inner product on M ⊗ R comes from the basis and ~a is as defined in 7.3.

The proof of this theorem is postponed to the end of this section because it uses the
techniques of perfect matchings and zigzag paths.

A perfect matching is a set of arrows P ⊂ Q1 meeting every cycle in Q2 in precisely
one arrow. It gives us a degree function on AQ by giving the arrows in the matching degree
1 and the others degree 0. We denote the degree of an element u ∈ AQ under P by P(u).
P gives a degree function on AQ so by restriction also on Z(AQ) = Rσ . This degree
function on Rσ ⊂ C[M ] comes from an element in N which we denote by P̄ . Note that
different perfect matchings can have the same vector in N .

The convex hull of all these vectors P̄ forms a polygon inN . We call a perfect matching
extremal if its vector lies on a corner of this polygon.

Theorem 7.4 (Broomhead). [6] Let Q be a consistent dimer model and AQ its Jacobi
algebra. There is a one to one correspondence between the corners of the polygon that
defines R = Z(AQ) and the extremal perfect matchings. More precisely

R = Rσ with σ = [P̄|P is an extremal perfect matching].
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Remark 7.5. The proof of the statement is done for geometrically consistent dimer models,
but using section 8 of [3] it works for all consistent dimer models.

We order the extremal prefect matchings cyclicly according to the polygon P1, . . . ,Pk
and vi is the coordinate (Pi(x),Pi(y), 1) of the ith vertex of the polygon.

Theorem 7.6. Let Q be a consistent dimer model and AQ its Jacobi algebra. Fix a vertex
v ∈ Q0.

AQ = End(⊕u∈QTu)

with Tu := T (P1(pu), . . . ,Pk(pu)) where pu is any path from v to u.

Proof. Because AQ is a toric NCCR we know it is of the form AQ = End(⊕u∈QTu) for
some Tu. It is clear that uAQv = EndR(Tv, Tu).

Suppose we put Tv = R. Given any path pu from v to u, we can embed Tu = uAQv in
R = vAQv by multiplication with pu. This shows that Tu ⊂ T (P1(pu), . . . ,Pk(pu)). To
show that this is an equality we need to prove that for every extremal perfect matching Pi
there is a path in uAQv withP-degree zero. The proof of this follows from an adaptation of
the proof of proposition 6.2 in [6] and theorem 8.7 in [3] which states that given a homology
class of paths from u → v (on the 2-torus) we can find an extremal perfect matching Pi
and a path with that homotopy class p ∈ vAQu such that Pi(p) = 0. Now from the
construction in these proofs it is clear that every extremal perfect matching Pi will occur if
one varies the homology class. This shows that T (P1(pu), . . . ,Pk(pu)) = Tu. �

Corollary 7.7. Let Q be a consistent dimer model then every arrow a is contained in at
least 1 extremal perfect matching and at most k − 2. Moreover

~a = (φφT ⊗ R)−1

(
k∑
i=1

Pi(a)vi

)
Proof. because a is a path from h(a) to t(a) we know that if Tt(a) = T (b1, . . . , bk) then

Th(a) = T (b1 + P1(a), . . . , bk + Pk(a)). Therefore ~a = (φφT ⊗ R)−1
(∑k

i=1 Pi(a)vi

)
.

Because Tt(a) 6= Th(a), a is contained in at least one extremal perfect matching.
Every arrow a, is contained in a cycle c in Q2 of length at least 3, because Pi(c) = 1

for all i and the two other arrows in c are each contained in at least 1 extremal perfect
matching, a is contained in at most k − 2 extremal perfect matchings. �

Lemma 7.8. Let Q be a consistent dimer model. For every extremal perfect matching Pi
and every vertex we have the following property∑

h(a)=v

Pi(a) +
∑
t(a)=v

Pi(a) = #{a ∈ Q1|h(a) = v} − 1

Proof. See the proof of theorem 8.7 in [3]. �

Proof of theorem 7.3. We can rewrite the equation in the previous lemma as∑
h(a)=v

(
1

2
− Pi(a)) +

∑
t(a)=v

(
1

2
− Pi(a)) = 1.

If we multiply this with vi, take the sum over i and apply (φφT ⊗ R)−1 we get

(φφT ⊗R)−1
∑
i

(
∑

h(a)=v

(
1

2
vi−Pi(a)vi) +

∑
t(a)=v

(
1

2
−Pi(a)vi)) = (φφT ⊗R)−1

∑
i

vi.

The special choice of basis gives∑
h(a)=v

((0, 0,
1

2
)− ~a) +

∑
t(a)=v

((0, 0,
1

2
)− ~a) = (0, 0, 1).
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If we now take the inner product of this with x and rescale by 2/〈x, (0, 0, 1)〉, we get the
consistency condition for the R-charge. Note that x needs to sit in σ∨ for the charges to be
positive. �

8. EXAMPLES

8.1. Reflexive polygons. If a convex integral polygon in Z2 has exactly one internal lattice
point it is called a reflexive polygon. Up to an integral affine transformations, there are
precisely 16 reflexive polygons. We will choose the internal lattice point to be (0, 0) and
let v1, . . . , vk be the lattice points on the boundary of the polygon in cyclic order. The fan

{0, [v1] . . . , [vk], [v1, v2], . . . , [vk, v1]}
in R2 will define a projective smooth toric variety. This surface is a Fano surface if all vi
are corners of the polygon and a weak Fano surface otherwise. To the fan we can associate
a sequence of numbers

(a1, . . . , ak) such that vi−1 + aivi + vi+1 = 0.

And this sequence (up to cyclic shifts and inversion of the order) determines the isomor-
phism class of the Fano variety. Every divisor vi defines a line bundle Ei and these generate
the Picard group. On the Picard group we have the intersection form:

〈Ei,Ej〉 =


1 i = j ± 1

ai i = j

0 |i− j| > 1.

In [21] Hille and Perling studied full cyclic strongly exceptional sequences of line bun-
dles associated to weak Fano surfaces. Full strongly exceptional sequences are infinite
sequences of line bundles . . . ,Li,Li+1, . . . such that

• Extr(Li,Lj) = Extr(Lj ,Li) = 0 if r > 0 and i ≤ j < i+ k,
• Hom(Li,Lj) = 0 if i > j,
• Li+k = Li ⊗K −1.

Here K is the canonical bundle and k is the rank of the Grothendieck group (which in the
toric case equals the number of on dimensional cones in the fan).

Theorem 8.1 (Hille, Perling [21]). Given a cyclic full strongly exceptional sequence (Li)
on a toric surface, The sequence of numbers

〈Li+1 −Li,Li+1 −Li〉, . . . , 〈Li+k −Li+k−1,Li+k −Li+k−1〉
corresponds to the sequence a new reflexive polygon.

We will call this sequence the type of the exceptional collection. Note that this type can
be different for different exceptional collections on the same Fano. Hille and Perling also
construct a table of types that can occur for each Fano surface.

This problem is closely related to our problem. Starting from a Fano variety we can also
make a 3-dimensional Gorenstein singularity by embedding the polygon in R3 in the plane
z = 1. We denote its cone by σ := [ṽ1, . . . , ṽk] where ṽi = (vi, 1).

The vector (0, 0, 1) ∈ N gives rise to a grading on C[M ] and hence also onRσ and every
reflexive module Tb. For this grading ProjRσ gives us the Fano variety and every graded
module Tb corresponds to a line bundle Lb over ProjRσ . Two isomorphic modules Tb, Tc
can give the non-isomorphic line bundles if their grading is different. More specifically we
have that

Lb
∼= Lc ⇐⇒ Tb ∼= Tc and 〈κ(b), (0, 0, 1)〉 > 〈κ(c), (0, 0, 1)〉.

Let T = Tb1⊕· · ·⊕Tbk be a maximal modifying module forRσ . Without loss of gener-
ality we can assume that the bi are normalized (κ(bi) ∈ [0, 1)3) and ordered by increasing
〈κ(bi), (0, 0, 1)〉. We now define a sequence of line bundles (Lj)j∈Z:

Lj+`k := Lbj+`(1,...,1) for 1 ≥ j ≥ k and ` ∈ Z.
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Theorem 8.2. This sequence is a cyclic full strongly exceptional sequence of line bundles.

Proof. We can cover the Fano variety by its basic affine open sets coming from the fan.
This cover can be used to calculate the Čech complex Č•(Lb) of a line bundle Lb. The
ith component of this complex can easily be seen to be the (0, 0, 1)-degree zero part of the
(i+ 1)th component of L⊗ Tb. The fact that Tb−c is CM for all Lb,Lc ∈ H gives us that
Exti(Lb,Lc) = 0 if i 6= 0, 2.

Now Hom(Lb,Lc) = [Tc−b]0 which is zero if 〈κ(c− b), (0, 0, 1)〉 > 0 because all ho-
momorphisms have positive R-charge. Finally because of Poincaré duality Ext2(Lb,Lc) =
Hom(Lc+(1,...,1),Lb)∗ and this is zero if 〈κ(b − (1, . . . , 1) − c), (0, 0, 1)〉 > 0 or 〈κ(c −
b), (0, 0, 1)〉 < 1. �

Remark 8.3. In the weak Fano case a similar result holds but one needs to tweak the method
to extract Lbi from Tbi : because ProjRσ is now singular and one needs to use its minimal
resolution to pull back to the weak Fano. This can be done using a moduli construction.
For more info see [22] and [30].

Using our algorithm we can determine all maximal modification modules of Rσ . For
each maximal modification module we choose a compatible index and let wi be the vertex
in corresponding the NCCR according to T (bi). From [21] we get

〈Li −Li−1,Li −Li−1〉 = #{arrows from wi−1 to wi in the NCCR} − 2.

The corresponding dimer models and their types can be found in the appendix and on
www.algebra.ua.ac.be/dimers.

8.2. Mutations. An important thing that has been noticed is that it is possible to turn a
consistent dimer model Q into another consistent dimer model mutvQ such that AQ and
AmutvQ. This process is called mutation. It orginates from cluster algebras [12] and is
applied to algebras with a superpotential in [11].

For dimer models on a torus the procedure restricts to the following construction. Let v
be a vertex without loops or cycles of length 2 and with exactly 2 arrows a1, a2 leaving and
two arrows b1, b2 arriving 1. The toricly mutated dimer mutvQ has the same vertices as Q
and to obtain a list of all arrows and faces for mutvQ̃ we apply the following procedures.

• Replace the arrows a1, a2, b1, b2 by a′1, a
′
2, b
′
1, b
′
2 in the opposite direction.

• For each the path aibj add an arrow uij with the same head and tail.
• If aibjs is a face in Q±2 change it to uijs and add a cycle b′ja

′
iuij to Q∓2 .

• If there are faces of length 2, remove them and stick the 2 faced that bound them
together.

mutv↔
Another way to describe this toric mutation procedure, which relates to the viewpoint

of the dimer as an MMA can be found in [24]. If A = End(⊕i∈Q0
Ti) where the Tv

are the Cohen-Macaulays, a mutation of v will correspond to construction a new algebra
A′ = End(⊕i∈Q0\{v}Ti ⊕ T ′v) where T ′v is the kernel of the map

b1 + b2 : Tt(b1) ⊕ Tt(b2) → Tv : (x, y) 7→ x+ y (note that Tt(bi) ⊂ Tv)

If Tt(b1) = T(r1,...,rk) and Tt(b2) = T(s1,...,sk) then the kernel can be identified with the
overlap of the two modules as submodules of Tv , so T ′v = T(max(r1,s1),...,max(rk,sk)). This

1the requirement on the amount of arrows arriving and leaving is not needed to define a mutation, however the
mutated quiver will usually not be a dimer model any more
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second procedure gives the same result for the dimer model as the first, note however that
the new vertex v′ is not necessarily embedded on exactly the same spot as the original one.

We have the following fact:

Theorem 8.4 (Iyama-Wemyss). The mutation of an MMA is again an MMA for the same
singularity.

From this and theorems 3.2 and 3.7 we can deduce that the procedure of toric mutation
turns consistent dimer models into consistent dimer models.

The analogy of this with the commutative case is remarkable. A toric crepant resolution
of a 3-dimensional toric Gorenstein singularity corresponds to a subdivision of its polygon
in elementary triangles. Given one such subdivision one can construct a new one by looking
at a quadrangle consisting of 2 two elementary triangles and switching the diagonal so see
this quadrangle as a union of 2 different triangles (for a picture see section 9.1). This is
called a toric flop [17] and every two toric crepant resolutions can be transformed into each
other by a sequence of flops.

In the noncommutative situation we have the notion of a dimer model and again there
is a procedure that can transform one dimer model into another: the toric mutation. The
question now is very similar

Question 8.5. Can any 2 dimer models for the same singularity be transformed into each
other by a sequence of toric mutations?

Using our algorithm we can already answer this question affirmatively for the singular-
ities from reflexive polygons.

Theorem 8.6. 2 dimer models for a singularity coming from a reflexive polygon can trans-
formed into each other by a sequence of toric mutations.

Proof. The algorithm gives us a finite list of dimer models for which we can check the
statement manually. �

In the two following subsections we are going to explore this question for another very
special type of singularities: quotients of the conifold singularity. In this situation we will
also be able to prove a positive result.

8.3. Quotient singularities. Suppose R = Rσ with σ = [v1, . . . , vk] ∈ N . We will
identify N with Zn as column vectors and M as row vectors. Let U be a matrix with
integer coefficients which has a nonzero determinant. If all Uvi are primitive vectors, then
we can define a new singularity with a cone Uσ = [Uv1, . . . , Uvk].

This new singularity is isomorphic to a quotient singularity of SpecR. Let MU be the
sub-lattice of M of all mU for which m ∈ M . The group G = {ρ ∈ Hom(M,C∗)|∀m ∈
MU : ρ(m) = 1} has an action on R ⊂ C[M ] by setting (xm)ρ = ρ(m)xm.

From the construction it is clear that the ring of invariant functions RG is isomorphic to
the ring RUσ:

RG = SpanC{x ∈MU |〈x, vi〉 ≥ 0} ∼= SpanC{x ∈M |〈x, Uvi〉 ≥ 0}.
Choose representatives in {m1, . . . ,mg} ⊂ M for the elements in the quotient group

M/MU . If Tb is a graded reflexive R-submodule of C[M ], then it decomposes into graded
reflexive RG-submodules

Tb = SpanCTb =
⊕
j

SpanCTb ∩mj +MU

∼=
⊕
j

SpanC{x ∈M |mj + xU ∈ Tb}

=
⊕
j

Tb,j

where Tb,j is the RUσ-module SpanC{x ∈M |〈x, Uvi〉 ≥ bi − 〈mj , vi〉}.
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Lemma 8.7. Let T be a direct sum of graded rank one reflexive modules.

• EndRGT ∼= EndRT ∗G
• If EndRT is an NCCR for R then EndRGT is an NCCR for RG.
• If Q̃ ⊂ M ⊗ R is the universal cover of the embedded quiver for EndRT , then
Q̃ · U−1 will be the universal cover of the embedded quiver for EndRGT .

Proof. All Tb are monomial submodules of C[M ] have an action ofG and therefore EndRT
also has aG-action and we can make the skew group ring EndRT ∗G. The orthogonal idem-
potents of EndRT ∗ G are products of orthogonal idempotents in EndRT and orthogonal
idempotents in CG. The former are parametrized by the direct summands of T = ⊕bTb
while the latter are parametrized by the mi:

eb = idTb and ei = emi :=
1

|G|
∑
ρ∈G

ρ(mi)ρ.

We have that xei = ei−kx if x ∈ Tb,k, so if we calculate the direct summands of EndRT ∗G
we get

eiebEndRTecej = eiHomR(Tb, Tc)ej = ei
⊕
k

Tc−b,kej = eiTc−b,j−i

which shows that EndRT ∗ G ∼= EndRGT . EndRT ∗ G is homologically homogeneous if
and only if EndRT is because the global dimension of EndRT ∗G and EndRT is the same
(see [31]). The third statement follows from the easy to check fact that the map κ for the
new singularity is the old κ multiplied with U−1. �

8.4. Parallellograms. Here we will briefly examine the case where the polygon is a par-
allelogram.

σ = [(0, 0, 1), (a, b, 1), (c, d, 1), (a+ c, b+ d, 1)]

In this case the singularity can be seen as a quotient of the conifold singularity (for which
the polygon is the unit square [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)]).

The conifold has a unique toric NCCR which corresponds to a torus tiled by 2 squares.

EndR
(
T(0,0,0,0) ⊕ T(0,0,0,1)

)

By lemma 8.7 this quotient singularity then has an NCCR which corresponds to tiling
the torus by 2|ac− bd| squares, but in general this is not the only NCCR.

E.g. for [(0, 0, 1), (2, 1, 1), (−1, 2, 1), (1, 3, 1)] we get 5 NCCRs:
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These dimers all look like the first one with some additional diagonal arrows that go around
in curves, ignoring orientation issues. One can solve the orientation issue by reversing the
directions of the diagonal arrows pointing in the “North-South” directions while keeping
the orientation of the diagonal arrows in the “East-West” directions. If one looks at the
homology of these curves with coefficients in Z, one sees that the total homology is zero.
This is not a coincidence.

Theorem 8.8. Consider Rσ with σ = [(0, 0, 1), (a, b, 1), (a+ c, b+ d, 1), (c, d, 1)].
• For each dimer model of this singularity, construct an unoriented graph by forget-

ting the orientations of the arrows. This graph consists of the tiling of the torus by
2|ac− bd| squares together with some additional non-intersecting diagonals.
• Divide the diagonal arrows in two classes D+, D− such that the directions of the

diagonals in each class are parallel. Then the homology class of∑
a∈D+

a−
∑
a∈D−

a

on the torus is zero.
• All dimer models of R can be torically mutated to the dimer model which tiles the

torus by 2|ac− bd| squares (i.e. the one without diagonals).

Proof. One can compute thata b 0
c d 0
0 0 1

κ(b1, b2, b3, b4) =

−b1+b2+b3−b42
−b1−b2+b3+b4

2
3b1+b2−b3+b4

4

 .

In the fundamental domain of the torus [0, 1)2 there are only 2|ac − bd| points with the
property

(
a b
c d

)
( xy ) ∈ 1

2Z
2, so for a dimer model, every such points must have a graded

rank one Cohen-Macaulay sitting on it. There are 4 classes of graded rank one reflexives
according to the equivalence class of 4z mod 4. Note that the class to which a graded rank
one reflexives belongs depends on the (x, y) of its point in [0, 1)2 because 2ax+2by+4z =
2b1 + 2b2 = 0 mod 2.

The directions of the arrows in the NCCR will correspond to κ(b1, . . . , b4) where by
corollary 7.7 all bi = 0 except for one or two consecutive bi that are 1.

So in total there are eight possible directions: The straight ones (only one bi 6= 0) and
the diagonal ones (2 bi 6= 0). The diagonal ones we divide in 2 classes: D+ (b1, b2 = 1 or
b3, b4 = 1) and D− (b2, b3 = 1 or b1, b4 = 1). Note that after projection onto R2 all arrows
in each class are (anti)parallel.

The consistent R-charge 1
2

∑
i Pi assigns degree 1

2 to the straight arrows and degree 1 to
the diagonal ones. The consistency condition

∑
h(a)=v(1 − Ra) +

∑
t(a)=v(1 − Ra) = 2

implies that every vertex has precisely 2 straight arrows arriving and 2 straight arrows
leaving, so ignoring orientation, the straight arrows form a square grid that tiles the torus.

The number of diagonal arrows in a vertex is either 2 or 4. Now consider a diagonal
arrow in D+ with h(a) = v and look at the next diagonal arrow b arriving in or leaving
from v, in clockwise direction from a. If this arrow is in D+ then h(a) = v because there
are 2 straight arrows between a and b. If this arrow is in D− then t(a) = v. This implies
that

∑
a∈D+

a−
∑
a∈D− a ∈ ZQ1 is a sum of cycles.
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Next we show that these cycles are boundaries. Consider 4 points on the torus that form
a grid square made of straight arrows. If the dimer model has a diagonal in that square
then the 2 vertices of the square that are not on the diagonal have reflexives with different
z-coordinates. Indeed there is a path connecting these 2 vertices consisting of 2 straight
arrows in the same direction and a diagonal arrow. The z-coordinate of such a path is in
1
2 +Z. If there is no diagonal in the square or there is a diagonal connecting the two vertices
then there is a path between them consisting of 2 straight arrows. The z-coordinate of such
a path is in Z.

From this discussion we can conclude the following:
• the diagonal arrows connecting CMs with 4z = 1, 3 form the boundary between

the region containing all CMs with 4z = 0 and the region containing all CMs with
4z = 2.
• The diagonals going between CMs with 4z = 0, 2 form the boundary between the

region containing all CMs with 4z = 1 and the region containing all CMs with
4z = 3.

Because they are boundaries the total homology with coefficients in Z is zero.
If one mutates a vertex with coordinates (x, y, z) ∈ [0, 1)3 then the first two new co-

ordinates x, y must be the same because the other possibilities are occupied. The third
coordinate must change by 1

2 because if (u, v, w) is the direction of a straight arrow and
(−u,−v, w′) is a straight arrow in the opposite direction then w − w′ = ± 1

2 . So mutation
changes the equivalence class of the vertex.

Now look at the torus R2/Z2 of the dimer model and cut it in pieces along the diagonal
arrows. If there are diagonal arrows there must be at least 2 pieces because they form
boundaries.

If there is a piece that is simply connected then we can perform a mutation on an internal
vertex contained in a triangle (so it borders the boundary of the simply connected piece).
After mutation this vertex lies outside the simply connected piece, so gradually we can
shrink the piece away.

If there is no simply connected piece, all pieces have the topology of a cylinder and are
each bounded by two curves with either the same homology class or the opposite homology
class. There must be at least one cylinder piece with opposite homology classes because
the total homology of the boundaries is zero. Using the same procedure as above we can
shrink this piece away. Eventually all pieces except one have shrunk away and we are left
with the dimer model consisting only of squares. �

9. EXTENSIONS OF THE ALGORITHM

We have seen that the algorithm we proposed worked for the three dimensional Goren-
stein case. We are now going to discuss briefly what happens in other cases.

9.1. The 3-dimensional Non-Gorenstein case. The concepts of NCCR and MMA were
originally thought of mainly in the context of Gorenstein singularities. Things work dif-
ferently in the non-Gorenstein world. Already in the 2-dimensional situation, there is no
straightforward connection between minimal commutative resolutions and NCCRs. If we
look at a 2-dimensional abelian quotient singularity usually the NCCR, which is equal to
the skew group ring, has a lot more vertices than the minimal resolution has components
and therefore the derived categories cannot be equivalent (see [41]).

In the 3-dimensional case section 5.3 still holds for non-Gorenstein singularities. So the
list CM produced by the algorithm will contain all graded rank 1 Cohen-Macaulays. Step
2 will now give a list of all toric modifying modules with the highest possible number of
summands. However we do not know whether these modifying modules are maximal (it
might be that higher rank summands are needed to maximize them). We also do not know
in general whether the endomorphism rings of these modules have global dimension 3, but
often this is indeed what happens.
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Let’s have a closer look at a small example:

τ = [(0, 0, 1), (1, 0, 2), (1, 1, 2), (0, 1, 2)]

which is the simplest example from toric geometry where flips occur (see [17]). The algo-
rithm produces one algebra:

Aτ := EndRτRτ ⊕ T(0,1,1,1).
The quiver of this algebra has 5 arrows: 3 from the first to the second vertex and 2 back.
One can check that the global dimension of this algebra is 3.

This algebra is also connected to the dimer model of the conifold. Let a1, a2, b1, b2 be
the 4 arrows of the conifold dimer with h(ai) = t(bj) = v1 and t(ai) = h(bj) = v2.
By comparing generators and relations one can show that the endomorphism ring Aτ is
isomorphic to the homotopy algebra of the embedded quiver that has the same vertices as
the conifold dimer but as arrows

a1, a2, b2, b1b
−1
2 a−11 , b1b

−1
2 a−12 .

It is well-known that the conifold algebra can be seen as the non-commutative algebra
that governs the flop [40]. If one looks at the moduli space of θ-stable (1, 1)-dimensional
representations [28] of the conifold dimer then the change from θ = (−1, 1) to θ = (1,−1)
will correspond to a flop in the moduli space.

θ maximal cones in the fan of moduli space

(−1, 1) [(0, 0, 1), (1, 0, 1), (1, 1, 1)], [(0, 0, 1), (0, 1, 1), (1, 1, 1)]

(0, 0) [(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1)]

(1,−1) [0, 0, 1), (1, 0, 1), (0, 1, 1)], [(0, 1, 1), (1, 0, 1), (1, 1, 1)]

Similarly one can ask whether the algebra Aτ will give you a description of the flip.
This is however not the case. If θ = (−1, 1) one still gets a subdivision of τ in two smooth
subcones, but if θ = (1,−1) the cone is subdivided in 2 smooth cones and one singular

θ maximal cones in the fan of moduli space

(−1, 1) [(0, 0, 1), (1, 0, 2), (1, 1, 2)], [(0, 0, 1), (0, 1, 2), (1, 1, 2)]

(0, 0) [(0, 0, 1), (1, 0, 2), (1, 1, 2), (0, 1, 2)]

(1,−1) [(1, 1, 3), (1, 0, 2), (1, 1, 2)], [(1, 1, 3), (0, 1, 2), (1, 1, 2)]
[(0, 0, 1), (1, 0, 2), (1, 1, 3), (0, 1, 2)]

Remark 9.1. These subdivisions are obtained in the following way. From [29] we know
that the moduli space can be covered by representation spaces of universal localizations
of Aτ . Each of the localizations is constructed by inverting the nonzero paths p of a θ-
semistable representation. The center of the universally localized algebra Aτ [p−1] will be
of the form Rτ ′ where τ ′ is a subcone of τ and all these cones form a fan that subdivides τ .

9.2. Higher dimensions. In higher dimensions the algorithm we proposed does not work.
This is because some of the lemmas that hold in the 3-dimensional case break down.

• Proposition 5.6 only holds in one direction: a lattice point in a bounded cell will
make the module not CM. But not all T (b1, . . . , bk) that do not have lattice points
in bounded cells are CM A counterexample is the Gorenstein pyramid

[(1, 0, 0, 1), (−1, 0, 0, 1), (0, 1, 0, 0, 1), (0,−1, 0, 1), (0, 0, 1, 1)]

The reflexive module T(1,1,−1,−1,−1) is not CM but it has no bounded chambers.
• Proposition 5.7 is also false in higher dimensions A counterexample is the Goren-

stein octahedron.

[(±1, 0, 0, 1), (0,±1, 0, 0, 1), (0, 0,±1, 1)].

Here T(−1,−1,0,0,−1,0) is CM but T(−1,−1,0,0,−1) is not CM for the pyramid be-
cause {v3, v4} form a disconnected subset of the pyramid.
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We can partially solve this by using the singular homology computation to check whether
a given Tb is Cohen-Macaulay or not. However, as the second example above shows, the
procedure to construct a complete list of all graded rank 1 Cohen-Macaulays by increas-
ing the rays in the fan one by one is not exhaustive. This means that after adjusting the
algorithm with singular homology computation, it still generates an incomplete list.

One could bypass this problem by generating a list of all normalized vectors, whose
norm does not exceed a given number N and then checking which of them are Cohen-
Macaulay. As there are only a finite number of these, there will be a big enough N such
that one gets all Cohen-Macaulays. The problem is that in general, we do not yet know a
bound on the norms for Cohen-Macaulays.

Because we do not have an exhaustive list we do not know whether the modifying mod-
ules the algorithm generates are maximal (or even just maximal for graded rank one mod-
ules). However, to check whether the corresponding endomorphism ring is an NCCR on
can always check whether this endomorphism ring has finite global dimension and apply
lemma 4.2 of [39].

In many interesting cases the algorithm does provide us with nice examples of NCCRs.
(1) If the fan [v1, . . . , vn] is simplicial (the number of rays equals the dimension) then

we are in the case of McKay correspondence. Indeed we can apply subsection 8.3
for R = C[X1, . . . , Xn] and U = [v1 . . . vn].

As R is smooth it is its own NCCR. The corresponding embedded quiver has
1 vertex and n loops. Its universal cover Q̃ is the infinite embedded quiver with
vertices Q0 = M ⊂M ⊗ R an arrows

am,i : [0, 1]→M ⊗ R : t 7→ m+ t(0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
1 on spot i

)

The embedded quiver Q̃ · U−1 will be the universal cover of embedded quiver
of the NCCR. The latter is hence a torus covered with detU n-cubes. A detailed
description of this can be found in [8].

An interesting example of this is

[(0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)]

because this is a singularity which allows no CCR: it is impossible to divide this
tetrahedron into smaller tetrahedra because it has no internal lattice points. It has a
unique NCCR coming from a tiling of the 4-torus with 2 hypercubes. So this gives
us a toric Gorenstein singularity without CCR but with NCCR. If one looks at the
space of θ-stable representations for θ = (−1, 1) or θ = (1,−1), the singularity
resolves by dividing the cone in 4 and introducing 1 extra ray in the (1, 1, 1, 2)-
direction.

(2) We end with the 4-dimensional Gorenstein singularity generated by a unit cube.[
(0,0,0,1), (1,0,0,1), (0,1,0,1), (0,0,1,1),
(0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,1)

]
.

This singularity is Gorenstein and can be seen as a 4-dimensional analogue of the
conifold singularity. It does have several NCCRs. One example is given by the
following maximal modifying module

T0 ⊕ Tb7+b8 ⊕ Tb6+b8 ⊕ Tb6+b7+2b8 ⊕ Tb8 ⊕ Tb1
where bk is the 8-vector with a 1 on the kth entry and zero everywhere else. The
quiver can be projected to the 3-dimensional torus, which is depicted below as a
unit cube with the opposite faces identified. The vertices of the quiver fall in 3
classes. The vertex (1) corresponding to the trivial CM is the vertex of the cube,
three other vertices (2, 3, 4) are in the centers of the faces of the cube and form
the vertices of a octahedron. They correspond to Tb7+b8 , Tb6+b8 and Tb6+b7+2b8 .
The two vertices (5, 6) coming from Tb1 and Tb8 lie on the diagonal of the cube,
outside both sides of the octahedron and have coordinates ( 1

4 ,
1
4 ,

1
4 ) and ( 3

4 ,
3
4 ,

3
4 ).
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The quiver has 18 arrows, which we can give an R-charge in a similar way to
theorem 7.3.
• 2 loops (vertex 5, 6) that go along the X-direction (R-charge 1).
• 4 arrows along the diagonals of the faces of the cube from the octahedral

vertices 2, 3 to the cube vertex (R-charge 1
2 ).

• 2 arrows from the cube vertex to vertices 5, 6 that go along the diagonal of the
cube (R-charge 1

4 ).
• 6 arrows between vertex 5, 6 and the octahedral vertices (R-charge 14).
• 4 arrows along the edges of the octahedron from vertices 2, 3 to 4 (R-charge

12).
The relations are now given by homotopy relations in the 3-torus between paths
with the same R-charge.

1
2

3

5

6

4

10. APPENDIX: DIMER MODELS FOR FANO SURFACES

In this appendix we give a list of all reflexive polygons, the corresponding dimer models
and their type. Some dimer models are not isomorphic to their opposite (i.e. all arrows
reversed). We will include only one of the 2 orientations and denote dimer models with an
asterisk.

3a

3a

4a

4a 4c
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4b

4b

4c

4a

5a

5a 5b*

5b

5a

6a 6b 6a 6c

6c 6d*
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6b

6c* 6b 6a

6c

6b 6a

6d

6a

7a

7b* 7a* 7a

7b

7a
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8a 8a 8b 8c

8a

8b

8b 8a

8c

8a

9a

9a
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