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Abstract. Semisimple representations of the free product Zp ∗ Zq determine
θ-semistable representations of a specific quiver Q. The dimension vectors of

θ-stable representations of this quiver were classified in [1]. In this paper we

classify the moduli spaces Mss
α (Qpq , θ) which are smooth projective varieties.

1. Introduction

Consider a cylinder with q line segments on its surface, equidistant and parallel to
its axis. If the ends of this cylinder are identified with a twist 2π p

q where p is an
integer relatively prime to q, one obtains a single curve on the surface of a torus.
Such a curve is called a torus knot, and is denoted by Kp,q. The fundamental group
of the complement R3\Kp,q is called the (p, q)-torus knot group and is equivalent
to the group

〈x, y | xp = yq〉.
The center of this torus knot group is generated by the element yq, so the quotient
of a torus knot group with its center is equivalent to the free product Zp ∗ Zq. If
one wants to study irreducible representations of such a torus knot group, it suffices
to study the representation theory of the quotient, Zp ∗ Zq. In [1], Adriaenssens
and Le Bruyn show that one can reduce the complex representation theory of the
free product of two finite cyclic groups to the representation theory of a certain
bipartite quiver.

The equivalence between representations of Zp ∗ Zq and representations of quivers
is achieved as follows. Consider a complex representation V of the free product.
By looking only at the action of Zp, one can decompose the vectorspace V into a
direct sum of eigenspaces Vξ1 ⊕ · · · ⊕ Vξp where ξ is a pth root of unity. Repeating
this for Zq, we obtain a double decomposition:

Vξ1 ⊕ · · · ⊕ Vξp

∼= // V
∼= // Wη1 ⊕ · · · ⊕Wηq

����
Vξi

?�

OO

mij

// Wηj

So the canonical situation is that we have p+ q vectorspaces and a linear map from
each of the p first spaces to each of the q last. This is in fact a representation of
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the following quiver: '&%$ !"#1
...

//

��>
>>

>>
>>
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.

'&%$ !"#1
...'&%$ !"#i

...

@@�������� //

��>
>>

>>
>>

> '&%$ !"#i

...'&%$ !"#p

GG��������������

@@�������� //'&%$ !"#q

The only restriction on the maps is that they must add up to an invertible map M
between Vξ1 ⊕ · · · ⊕ Vξp and Wη1 ⊕ · · · ⊕ Wηq , because all the maps actually are
restrictions of the indentity on V . This condition is necessary and sufficient. If we
define the dimension vector of a Zp ∗ Zq-representation as the vector

α := (DimVξ1 , . . . ,DimVξp ;DimWη1 , . . . ,DimWηq ),

we can say that there is an equivalence of categories between the category RepαZp ∗ Zq,
containing the representations with dimension vector α and the Zariski open subset
U of RepαQ, consisting of the α-dimensional representations of the quiver for which
the block matrix M is invertible. The action of GLn on RepαZp ∗ Zq translates it-
self into an action of GLα =

∏
i GLαi

on RepαQ. So classifying the representation
classes in RepαZp ∗ Zq is the same as classifying the orbit of the GLα-action in U .
Doing this we will find that issαZp ∗ Zq ≡ U//GLα is an affine variety containing
the semisimple representation classes of Zp ∗ Zq.

A geometrically more appealing approach to study this affine variety is to look
at a certain projective closure of this variety: the moduli space of α-dimensional
θ-semistable representations of the quiver.

Definition 1.1. Let θ be the following vector (−1, . . . ,−1; 1, . . . , 1) ∈ Zp+q. An
α-dimensional representation of the quiver Q is said to be θ-semistable if and only
if

• θ · α = 0;
• For every subrepresentation with dimension vector β, θ · β ≥ 0.

If we can introduce a strict inequality in the last item, the representation is called
θ-stable.

It is easy to verify that every representation in U is in fact θ-semistable. Indeed,
if there is a subrepresentation with θ · β < 0, the big map M maps a subspace
V ′1⊕· · ·⊕V ′p onto a subspace W ′

1⊕· · ·⊕W ′
q of smaller dimension, so M is definitely

non-invertible. This implies that U is an open and dense subset of the θ-semistable
representations of Q.

A second property of the θ-semistable representations is that a closed GLα-orbit in
U is also closed in the variety of θ-semistable representations. If this would not be
the case there would be (X;Y ) ∈ Matα(C) such that XMY is not invertible and
M is. This implies that either X has a kernel V ′1 ⊕ · · · ⊕ V ′p or Y has an image
W ′

1⊕· · ·⊕W ′
q. In the first case there is a subrepresentation of XMY with dimension
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vector (DimV ′1 , . . . ,DimV ′p ; 0, . . . , 0); in the second case there is one with dimension
vector (DimVξ1 , . . . ,DimVξp ;DimW ′

1, . . . ,DimW ′
q). Both will give a negative number

when multiplied by θ so if XMY is not invertible, it is also not θ-semistable.

The two properties mentioned above enable us to view the quotient variety U//GLα

as an open dense subvariety of Mss
α (Q, θ) := Repss

α (Q, θ)//GLα, and consequently
we have the following diagram:

U
� � //

����

Repss
α (Q, θ)

����
U//GLα

� � // Mss
α (Q, θ)

This diagram indicates that to study the representations of Zp ∗Zq, one could first
try to study the moduli space Mss

α (Q, θ).

From now on we are going to work exclusively with θ-semistable representations of
the quiver Q, so a notation has to be fixed. The vector spaces on each vertex will
be denoted by Vi, i = 1, . . . , p for the left vertices of the quiver, and Wi, i = 1, . . . , q
for the right ones.

The semistability implies that the dimension vector is of the following form

α := (a1, . . . , ap; b1, . . . , bq) where
p∑

i=1

ai =
q∑

i=1

bi =: n.

If we look at the Euler form of the quiver Q, i.e. the matrix with entries

[χQ]ij := δij −#{arrows from vertex i to j },

we can decompose it to a block matrix of the following form

1 0 −1 . . . −1
. . .

...
...

0 1 −1 . . . −1
0 . . . 0 1 0
...

...
. . .

0 . . . 0 0 1


Now consider two dimension vectors α1 and α2. One can easily compute their image
under the Euler form:

χQ(α1, α2) = α1 · α2 − n1n2,

where n1 resp. n2 equals the sum of the first p entries of α1 resp. the last q entries
of α2. For the remainder of the paper, n shall always equal the sum of the first p
(or the last q) entries of a semistable dimension vector considered.

The last convention we make is that we will write elements of GLα as follows:

g := (g1, . . . , gp;h1, . . . , hq) gi ∈ GLai , hi ∈ GLbi .
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2. The local structure of the moduli space Mss
α (Q, θ)

In [2], King showed that Mss
α (Q, θ) has the structure of a projective variety. Alge-

braically it corresponds to the graded ring of semi-invariant functions with character

χθ : GLα → C∗ : g 7→ (det g1 · · · · · det gp)−1(deth1 · · · · · dethp).

If we extend the space RepαQ to RepαQ⊕ C together with an extended action

∀(V, c) ∈ RepαQ⊕ C : (V, c)g = (V g, cχθ(g)−1),

the ring of polynomials over RepαQ⊕ C is of the form C[RepαQ][t] and becomes a
graded ring by defining

deg t = 1,∀f ∈ C[RepαQ] : deg f = 0.

We can consider the subring of invariant polynomial functions on RepαQ⊕C, which
is also graded in the same way

C[RepαQ⊕ C]GLα :=

{∑
i

fit
i

∣∣∣∣∣ ∀g ∈ GLα : fi ◦ g = χi
θ(g)fi

}
.

This graded ring corresponds to a projective variety, Proj C[RepαQ ⊕ C]GLα , con-
sisting of the graded-maximal ideals not containing the positive part C[RepαQ ⊕
C]GLα

deg>0. If M is a graded-maximal ideal in C[RepαQ ⊕ C]GLα then it is contained
in a maximal ideal of the ring C[RepαQ⊕ C] which corresponds to a couple (V, c).
Moreover if M doesn’t contain the positive part, c is definitely not zero and there
exists at least one ftn ∈ C[RepαQ ⊕ C]GLα so that f(V ) 6= 0. Such an f is called
a semi-invariant of V . Vice versa if V is a representation such that there exists a
semi-invariant then

MV :=

{∑
i

fit
i ∈ C[RepαQ⊕ C]GLα

∣∣∣∣∣ fi(V ) = 0

}
,

will be a maximal-graded ideal not containing the positive part.

A method for constructing these semi-invariants was discovered independently by
Schofield and Van den Bergh in [3], Derksen and Weyman in [4] and Domokos and
Zubkov in [5]. Take two diagonal matrices A ∈ Matp×pCQ and B ∈ Matq×qCQ
such that the diagonal elements are the vertices of the quiver. Consider a matrix
M ∈ A⊕nMatnp×nqCQB⊕n. The entry Mij is now a linear combination of paths
from vi mod p to wj mod q.

1 . . . j . . . q

1

...

i '&%$ !"#i ///o/o/o /.-,()*+j

...

p




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Using a quiver representation V of Q we can map each Mij to a linear map in
HomC(Vi mod p,Wi mod q). Putting all those maps together we get the linear map

MV : (
p⊕

i=1

Vi)⊕n → (
q⊕

i=1

Wi)⊕n.

If the dimensions of the source and target of this map are the same, we can take
its determinant. This determinant varies under de action of GLα as:

det(MV g ) = det

(
(

p⊕
i=1

g−1
i )⊕nMV (

q⊕
i=1

hi)⊕n

)

=
p∏

i=1

det g−n
i

q∏
i=1

dethn
i det(MV )

= χθ(g)n det(MV )

So fM : V 7→ detMV is a semi-invariant of order n. This opens up a way to con-
struct semi-invariants and one could even prove that those semi-invariants generate
all invariants. This observation leads to the following lemma:

Lemma 2.1. If V is a θ-semistable then there is a matrix-semi-invariant M so
that

fM(V ) 6= 0.

To determine which moduli spaces are smooth projective varieties, we will use a
result by Le Bruyn and Procesi [6] determining the local structure around a point
V ∈ Mss

α (Q, θ). Let
V = S⊕a1

1 ⊕ · · · ⊕ S⊕ak

k

where Si is a θ-stable representation of dimension vector αi. The local quiver QV of
this representation is a quiver on k vertices (corresponding to the k distinct terms in
the decomposition) with the number of arrows between vertices i and j determined
by

δij − χQ(αi, αj).

Note that in the case of a bipartite quiver this number equals δij + ninj − αi · αj .
The multiplicities of each term in V yield a dimension vector for this quiver:

β = (a1, . . . , ak).

This local quiver, together with the dimension vector, determines the étale structure
of the moduli space around the representation V .

Theorem 2.2. For every point V ∈ Mss
α (Q, θ) we have an étale isomorphism

between an open neighbourhood of the zero representation in issβQV and an open
neighbourhood of V .

We now have almost everything we need to determine which moduli spaces are
smooth projective varieties. The only things left to know are the θ-(semi)stable rep-
resentations of our quiver. These were determined by Adriaenssens and Le Bruyn
in [1].
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Theorem 2.3. (1) For a dimension vector α = (a1, . . . , ap; b1, . . . , bq) such
that θ · α = 0, there always exist θ-semistable representations, in this case
we denote n =

∑p
i=1 ai.

(2) Mss
α (Q, θ) contains a non-empty subset of θ-stable representations, which

is then a dense open subset, if and only if

∀i ≤ p, j ≤ q : ai + bj ≤ n (∗∗)
unless ∀i, j : ai = bj or n = 1 in which case Mss

α (Q, θ) is just a point.

Because we use the condition (∗∗) quite often in the next section we will call a
dimension vector satisfying (∗∗) almost simple.

3. Smoothness of Mss
α (Q, θ)

In this section we use the local quivers introduced earlier to determine which of the
moduli spaces correspond to a smooth projective variety.

Suppose that Mss
α (Q, θ) is smooth in the point corresponding to a representation

V = S⊕a1
1 ⊕ · · · ⊕ S⊕ak

k ,

then the point 0 must also be smooth in issαQV . For what kind of quivers QV is
this the case?

If we look at the algebra of invariants C[issαQ], a well known-theorem of Procesi
and Le Bruyn [6] states that this algebra is generated by a finite number of traces
along cycles, ci, modulo some relations:

C[issαQ] = C[c1, . . . , ck]/(f1, . . . fl).

This algebra inherits the grading of C[RepαQ] because the action of GLα preserves
this grading. It is a well-known fact that a positively graded, connected algebra is
smooth if and only if it is a polynomial algebra (see for instance [7]).

Now we know the necessary condition for issαQ, one can try to classify all quivers
and dimension vectors for which this issαQ is indeed an affine space. Because this
is a highly nontrivial problem we will limit ourselves to certain quivers with two
vertices. These are the quivers that appear in the θ-semistable representations that
are a direct sum of two θ-stables. Demanding that the moduli space is smooth in
these of points will give us a restriction. We will consider the remaining cases in
the next section and see that they are indeed totally smooth.

Lemma 3.1. The following quiver with indicated dimension vector has as ring of
invariants a polynomial algebra if and only if there’s at most one cycle connecting
the two vertices (i.e. k ≤ 1):

��������1

k
&.

l1 7? ��������1

k

fn l1_g .

Proof. The representation space is spanned by all loops Li in both vertices and all
cycles

Xij = aibj .
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All these cycles are neccesary to generate the algebra, because the representation
for which all the arrows are zero except ai and bj , is not equivalent to the zero
and has as values in the cycles all zero’s except for Xij . The relations between the
cycles are of the form

XijXkl = XilXkj

These relations prevent issαQ from being an affine space. The only way to turn
issαQ into an affine space is to assure that there is only one such cycle. �

If Mss
α (Q, θ) is a smooth space, it will be definitely smooth in the semisimple points

which have only two factors with multiplicity 1. We will see that this is not the
case for most of the moduli spaces. By the previous lemma we only have to check
that the number of arrows connecting both factors is not greater than 1, i.e.

χQ(α1, α2) ≥ −1.

This fact enables us to deduce the following

Lemma 3.2. Suppose α = (a1, . . . , ap; b1, . . . , bq) is a simple dimension vector,
then the degeneration

(a1, . . . , ai − 1, . . . , ap; b1, . . . , bj − 1, . . . , bq) + εij

is smooth if and only if ai + bj = n. (In this degeneration εij is shorthand for the
dimension vector (δ1i, . . . , δpi; δ1j , . . . , δqj .)

Proof. If we calculate the Euler form

χ(α′, εij) = ai − 1 + bi − 1− (n− 1) = −1 + (ai + bi − n)

equals −1 if and only if ai + bi = n �

In the following we suppose that the dimension vector is ordered i.e.

a1 ≥ · · · ≥ ap, b1 ≥ · · · ≥ bq.

Lemma 3.3. If α is an almost simple dimension vector and a1 = a2 and b1 = b2

and a1 + b1 = n then ai = bi = 0, i > 2.

Proof. We know that
∑

ai = n and
∑

bi = n so
p∑

i=1

ai +
q∑

j=1

bj = a1 + b1 + a2 + b2 +
∑
i>2

ai +
∑
j>2

bj = 2n +
∑
i>2

ai +
∑
j>2

bj .

This implies that the last two terms must be zero and a1 = a2 = b1 = b2 = n
2 . �

Lemma 3.4. Suppose α = (a1, . . . , ap; b1, . . . , bq) is a dimension vector of a θ-stable
for which all the possible degenerations

(a1, . . . , ai − 1, . . . , ap|b1, . . . , bj − 1, . . . , bq) + εij

are smooth, then either

• α = (1; 1), wich is the trivial case;
• b1 = · · · = bq, a1 > a2, and a1 + b1 = n or vice versa changing the a′s in

the b′s.
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Proof. Suppose we are not in the trivial case. If a1 + b1 < n, we can choose εij

randomly and α− εij will be simple, but by the first lemma this degeneration will
not be smooth. So a1 + b1 = n.

If a1 = a2 and b1 = b2, the second lemma learns us that the dimension vector is of
the form (a, a; a, a) and doesn’t correspond to a θ-stable.

So suppose that a1 > a2 then we will prove that all the bj will be equal. Indeed,
if this would not be the case then bi < b1. But in that case we can split off ε1i to
obtain a valid degeneration, but because a1 + bi < a1 + b1 = n this degeneration
will not be smooth. �

Lemma 3.5. Suppose α = (a1, . . . , ap; b1, . . . , bq), p ≤ q is a dimension vector of a
θ-stable for which all the possible degenerations in two different simple components
are smooth, then either

• α = (q − 1, 1|1, . . . , 1);
• α = (b, b|b, b− 1, 1);
• α = (4, 2|2, 2, 2).

Proof. Suppose that a2 = a1 − l, l > 0. By Lemma 3.4 we know that all the bi

must be equal. We now distinguish the following cases

• If l ≤ q − 2 then splitting off ε1j for 1 ≤ j ≤ l yields a term

(a1 − l, a1 − l, . . . , ap; b− 1, . . . , b− 1︸ ︷︷ ︸
l

, b, . . . , b)

which is an almost simple dimension vector which satisfies the conditions
of Lemma 3.3 so a3 = 0 and b = 1. This gives us α = (q − 1, 1; 1, . . . , 1)
(possibility 4).

• If l = q − 1 then b cannot be 1 otherwise

a1 + b = n ⇒ a1 = q − 1 ⇒ a1 − l = q − 1− (q − 1) = 0

which is impossible because θ(α) = 0. If b ≥ 2 and a3 is not zero, then

(a1 − l, a1 − l, a3 − 1, . . . , ap; b− 1, . . . , b− 1)

is an almost simple dimension vector which satisfies the conditions of Lemma
3.3 so q = 2 and we find the solution (b, b − 1, 1; b, b). If a3 = 0 then
2a1 − q + 1 = qb and a1 = (q − 1)b so q = 3, and because

(a1 − 3, a1 − 3; b− 1, b− 1, b− 2)

is an almost simple dimension vector which satisfies the conditions of lemma
3.2, therefore b must be two and we obtain (4, 2; 2, 2, 2).

• If q ≤ l then we can split α in the following way:

α =(a1 − q + 1, a1 − l − 1, a3, . . . , ap; b1 − 1, . . . , bq − 1)

+ (q − 1, 1; b− 1, . . . , b− 1).
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The Euler product for this degeneration is:

χ = (a1 − q + 1)(q − 1) + (a1 − l − 1) + q(b− 1)− q2(b− 1)

= (q − 1)2(b− 1) + ((q − 1)b− l − 1) + q(b− 1)− q2(b− 1)

= (q − 1)2(b− 1) + (2q − 1)(b− 1) + q − 1− l − 1− q2(b− 1)
= q − 1− l − 1 < −1

which implies that it is not smooth.

�

4. Determining the structure of the moduli spaces

In this section we will work out the structure of the moduli spaces associated to
the quivers with dimension vectors as appearing in Lemma 3.5.

First we will consider the quiver

Qm := '&%$ !"#m //

  @
@@

@@
@@

@

��0
00

00
00

00
00

00
0 ��������1

��������1

>>~~~~~~~~ //

  @
@@

@@
@@

@

��������1

We will denote by ki (resp. ci) the arrow running from the first (resp. second)
vertex in the left part of the bipartite quiver to the ith arrow in the right part of
the quiver.

Theorem 4.1. issα(Qm) is the projective space in m dimensions.

Proof. To prove the above statement it is sufficient to show that the ring of semi-
invariants is the polynomial ring in m + 1 variables. We first prove that this ring
is generated by m + 1 semi-invariants.

All the semi-invariants are generated by the matrix-semi-invariants. Suppose that
we have a representation where the arrows ki are represented by row vectors Ki

and the arrows ci by constants Ci. A general matrix-semi-invariant of the order l
is of the form∣∣∣∣∣∣∣∣∣∣∣∣

s11K1 s12C1 . . . s1,2l−1K1 s1,2lC1

...
...

. . .
...

...
sm+1,1Km+1 sm+1,2Cm+1 . . . sm+1,2l−1Km+1 sm+1,2lCm+1

...
...

. . .
...

...
slm+l,1Km+1 slm+l,2Cm+1 . . . slm+l,2l−1Klm+l slm+l,2lCm+1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the sij represent complex numbers. Using the multilinearity in the rows, one
can rewrite the big determinant as a linear combination of determinants with on
each row exactly one sij equal to 1 and all the others zero.
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Switching rows enables us to put them where one of the two first s’s are non-zero
above (mind to switch only rows modulo m + 1). The number of such rows has to
be equal to m + 1 otherwise the determinant will be zero.

k ×m + 1 0 · · · 0

0
...
0

∗ · · · ∗
...

...
∗ · · · ∗




Consequently, in the above matrix the upper left corner is a square m + 1×m + 1
dimensional matrix. The big deternimant now decomposes in a product of a semi-
invariant of degree 1 and one of degree l − 1. By induction all the semi-invariants
are generated by the ones of degree 1. When we take a look at those we can see
that by the multilineary of the determinant every such semi-invariant is a linear
combination of the following one’s

Ti :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K1 0
...

...
Ki−1 0

0 Ci

Ki+1 0
...

...
Km+1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 1 . . .m + 1

Between those m + 1 semi-invariants are no relations because if we consider an
m + 1-tuple different from zero, say (x1, . . . , xm+1), the representation

Ki :=
(
δ1i · · · δmi

)
, 1 ≤ i ≤ m

Km+1 :=
(
1 · · · 1

)
Ci := xi

has as invariant Ti = xi. So we have a set of m + 1 independent generators which
make the ring of semi-invariants C[T1t, . . . , Tm+1t]. �

Secondly, let us look at the quiver

Q(b) := ��������b //

!!B
BB

BB
BB

B

��1
11

11
11

11
11

11
1 ��������b

��������b

==||||||||| //

!!B
BB

BB
BB

BB
76540123b−1

��������1

.

We denote the arrows between the vertices with dimension b as a and b, and the
arrows from the first (resp. second) vertex of the left part of the quiver to the
vertices with dimension 1 in the right part with c1 and c2 (resp. d1 and d2).
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For b = 2 determining the moduli space is rather straightforward

Theorem 4.2. issα(Q(2)) is the projective space in 3 dimensions.

Proof. Suppose that we have a representation where the arrows a and b are repre-
sented by 2×2-matrices A,B and the arrows ci, di by row-vectors Ci, Di. A general
matrix-semi-invariant of the order l is of the form∣∣∣∣∣∣∣∣∣∣∣

s11A s12B . . . s1,2l−1A s1,2lB
s21C1 s12D1 . . . s2,2l−1C1 s2,2lD1

s31C2 s12D2 . . . s3,2l−1C2 s3,2lD2

...
...

. . .
...

...
s3l,1C2 s12D2 . . . s2,2l−1C2 s2,2lD2

∣∣∣∣∣∣∣∣∣∣∣
,

where the sij represent complex numbers. Using the multilinearity in the rows, one
can rewrite the big determinant as a linear combination of determinants where on
each row of the C,D-part there’s exactly one sij that equals 1 and all the others
are zero. For the A,B-part this is not possible because they consist of two rows.
But by subtracting and switching columns we can obtain a couple of rows of the
form (

s1A s2B 0 . . . 0
)
.

Switching rows enables us to put all the rows where one of the two first s’s are
non-zero above (take care to switch only rows modulo 4). The number of such rows
must be equal to 4, otherwise the determinant will be zero. As in the previous
theorem the big determinant now decomposes in a product of a semi-invariant of
degree 1 and one of degree l−1. By induction all the semi-invariants are generated
by the ones of degree 1. When we take a look at these we can see that by the
multilineary of the determinant every such semi-invariant is a linear combination
of the following ones

T1 :=

∣∣∣∣∣∣
A 0
0 D1

0 D2

∣∣∣∣∣∣ , T2 :=

∣∣∣∣∣∣
0 B
C1 0
C2 0

∣∣∣∣∣∣ , T3 :=

∣∣∣∣∣∣
A B
C1 0
0 D2

∣∣∣∣∣∣ , T4 :=

∣∣∣∣∣∣
A B
0 D1

C2 0

∣∣∣∣∣∣ .
Between those 4 semi-invariants are no relations because if we consider an 4-tuple
different from zero say (x1, . . . , x4), the representation

A =
(

1 0
0 x1

)
B =

(
x2 0
0 1

)
C1 =

(
0 1

)
C2 =

(
0 x3

)
D1 =

(
1 0

)
D2 =

(
−x4 0

)
has as invariant Ti = xi. So we have a set of m + 1 independent generators and
hence the ring of semi-invariants is C[T1t, . . . , T4t]. �

For b > 2 determining the moduli space becomes more involved, but a determination
of all possible degenerations shows that this moduli space is indeed smooth.

We now have one more situation to look at.
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Theorem 4.3. The quiver
��������4 //
��?

??

��/
//

//
��������2

��������2

??��� //
��?

??
��������2

��������2

with dimension vector (4, 2; 2, 2, 2) has P5 as its moduli space.

Proof. Using the fact that the map Vξ1 → Wη1 ⊕ Wη2 ⊕ Wη3 must be injective,
we can apply reflection functors to identify the moduli space of the original quiver
with the moduli space of the reflected quiver

��������2 // ��������2

��������2

??��� //
��?

??
��������2

??���

��������2

GG�����

Which on its turn, and using facts from invariant theory, may be identified with
the moduli space of the quiver

��������2 // && 88 ��������2

for θ = (−1, 1). By results of Barth [8] and Hulek [9], this moduli space indeed is
a P5. �

Summarizing all the results obtained in this paper we conclude with the following
theorem.

Theorem 4.4. For the quiver Q the only dimension vectors for which Mss
α (Q, θ)

is smooth are in fact

• α := (m, 1; 1, . . . , 1) for which Mss
α (Q, θ) = Pm.

• α := (b, b; b, b− 1, 1) for which Mss
α (Q, θ) = P3 if b = 2.

• α := (4, 2; 2, 2, 2) for which Mss
α (Q, θ) = P5.
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