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ABSTRACT. Dimer models have been used in string theory to construct path algebras with
relations that are 3-dimensional Calabi-Yau Algebras. These constructions result in al-
gebras that share some specific properties: they are finitely generated modules over their
centers and their representation spaces are toric varieties. In order to describe these al-
gebras we introduce the notion of a toric order and show that all toric orders which are
3-dimensional Calabi-Yau algebras can be constructed from dimer models on a torus.

Toric orders are examples of a much broader class of algebras: positively graded cancel-
lation algebras. For these algebras the CY-3 condition implies the existence of a weighted
quiver polyhedron, which is an extension of dimer models obtained by replacing the torus
with any two-dimensional compact orientable orbifold.

1. INTRODUCTION

Calabi-Yau algebras play an important role in theoretical physics because their derived
categories can be used to describe brane configurations in theB-model of topological string
theory. There are several ways to construct examples of this kind of algebras such as
McKay correspondence [15, 9] or exceptional sequences [2]. Another important construc-
tion method are dimer models [17, 13, 16]. A dimer model D consists of a bipartite graph
(with black and white vertices) that is embedded in a compact surface. The corresponding
algebra AD is the path algebra with relations of the dual graph oriented such that a cycle
around a black (white) vertex has a (anti-)clockwise orientation. The relations come from
the partial derivatives of a superpotential which is the sum of all clockwise cycles minus
the sum of all anti-clockwise cycles.

It was shown by Nathan Broomhead in [6], by Sergey Mozgovoy and Markus Reineke
in [26] and by Ben Davison in [11] that if the dimer model satisfies certain consistency
conditions, the algebra AD is a 3-dimensional Calabi-Yau Algebra.

In this paper we will show why dimer models appear in this setting and to which extent
they arise from the Calabi-Yau property.

The Calabi-Yau algebras that one obtains from dimer models on a torus share quite
specific properties. They are meant to be noncommutative toric resolutions of a toric variety
and therefore these algebras are prime and finitely generated modules over their centers,
which are the coordinate rings of the affine toric varieties one wishes to resolve. The fact
that the resolution is supposed to be toric implies that the algebra is a positively graded
subalgebra of Matn(T ) where T = C[Zk] is the coordinate ring of the torus inside the
toric variety. We will call any such algebra a toric order and discuss how they fit in the
notion of a noncommutative crepant resolution as introduced by Van den Bergh.

In this paper we will prove that if a positively graded toric order is CY-3 then it comes
from a dimer model on a torus. The way we prove this result is by generalizing both sides
and proving a similar theorem in this generalized context. On the one hand, we relax the
definition of a toric order to cancellation algebras (Definition 8) and on the other hand
we introduce the notion of a weighted quiver polyhedron which corresponds roughly to a
dimer model two-dimensional orientable orbifold (Examples can be found in section 9).
Our main theorem then states

Theorem 1.1 (=Theorem 7.1). Every positively graded cancellation algebra that is CY-3
comes from a weighted quiver polyhedron.
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In the specific situation of toric orders, theorem 8.7 then shows that this quiver polyhe-
dron must in fact come from a dimer model.

The paper is structured as follows. After the preliminary sections on path algebras,
Calabi-Yau algebras and noncommutative resolutions, we introduce toric orders in section
4 and discuss how they fit in the theory of noncommutative resolutions. In section 5 we
generalize toric orders to cancellation algebras and discuss bimodule resolutions in this
setup. In section 6 we define the combinatorial notion of a quiver polyhedron, relate it to
dimer models and work out a theory of Galois covers for them. In section 7 we prove the
main theorem. Section 8 contains a short discussion on the cancellation property for quiver
polyhedra and uses this to prove that toric CY-3 orders come from dimer models. We end
with some examples of quiver polyhedra and their corresponding Jacobi Algebras.
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3. PRELIMINARIES

3.1. Path algebras with relations. As usual a quiver Q is an oriented graph. We denote
the set of vertices by Q0, the set of arrows by Q1 and the maps h, t assign to each arrow
its head and tail. A nontrivial path p is a sequence of arrows a1 · · · ak such that t(ai) =
h(ai+1), whereas a trivial path is just a vertex. We will denote the length of a path by
|p| := k and the head and tail by h(p) = h(a1), t(p) = t(ak). A path is called cyclic if
h(p) = t(p). Later on we will denote by p[i] the n − ith arrow of p and by p[i . . . j] the
subpath p[i] . . . p[j].

�������� ��������p[n−1]oo ��������p[n−2]oo ��������p[1]oo ��������p[0]oo and p = p[n− 1]p[n− 2] . . . p[1]p[0].

A quiver is called connected if it is not the disjoint union of two subquivers and it is strongly
connected if there is a cyclic path through each pair of vertices.

The path algebra CQ is the complex vector space with as basis the paths in Q and the
multiplication of two paths p, q is their concatenation pq if t(p) = h(q) or else 0. The span
of all paths of nonzero length form an ideal which we denote by J . A path algebra with
relations A = CQ/I is the quotient of a path algebra by a finitely generated ideal I ⊂ J 2.
A path algebra is connected or strongly connected if and only if its underlying quiver is.

We will call a path algebra with relations CQ/I positively graded if there exists a grad-
ing R : Q1 → R>0 such that I is generated by homogeneous relations. Borrowing termi-
nology from physics, we will sometimes call this map the R-charge.

A special type of path algebras with relations are Jacobi algebras. To define these we
need to introduce some notation. The vector space CQ/[CQ,CQ] has as basis the set of
cyclic paths up to cyclic permutation of the arrows. We can embed this space into CQ by
mapping a cyclic path onto the sum of all its possible cyclic permutations:

�: CQ/[CQ,CQ]→ CQ : a1 · · · an 7→
∑
i

ai · · · ana1 · · · ai−1.

An element of the form p + [CQ,CQ] where p is a cyclic path will be called a cycle.
Usually we will drop the +[CQ,CQ] from the notation and represent the cycle by one of
its cyclic paths.

Another convention we will use is the deletion of arrows: if p := a1 · · · an is a path and
b an arrow, then p�b = a1 · · · an−1 if b = an and zero otherwise. Similarly one can define
�bp. These new defined maps can be combined to obtain a ’derivation’

∂a : CQ/[CQ,CQ]→ CQ : p 7→� (p)�a = �a � (p).
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An element W ∈ J 3/[CQ,CQ] ⊂ CQ/[CQ,CQ] is called a superpotential. This el-
ement does not need to be homogeneous. If we quotient out the partial derivatives of a
superpotential we get an algebra which is called the Jacobi algebra:

AW := CQ/〈∂aW : a ∈ Q1〉.
Note that if W is homogeneous for some R-charge R, then the corresponding Jacobi Alge-
bra is a positively graded algebra. The converse does not need to be true.

3.2. Calabi-Yau Algebras.

Definition 3.1. A path algebra with relations A is n-dimensional Calabi-Yau (CY−n) if A
has a projective bimodule resolution P• that is dual to its nth shift

HomA−A(P•, A⊗A)[n] ∼= P•

For further details about this property we refer to [3] and [15]. In this paper we will only
need the following results:

Property 3.2. If A is CY-n then
C1 The global dimension of A is n
C2 If X,Y ∈ ModA then

ExtkA(X,Y ) ∼= Extn−kA (Y,X)∗.

C3 The identifications above give us a pairings 〈, 〉kXY : ExtkA(X,Y )×Extn−kA (Y,X)→
C which satisfy

〈f, g〉kXY = 〈1X , g ∗ f〉0XX = (−1)k(n−k)〈1Y , f ∗ g〉0Y Y ,
where ∗ denotes the standard composition of extensions.

Proofs can be found in [3].

3.3. Noncommutative resolutions and orders. Suppose V is a normal variety with co-
ordinate ring R and function field K. A resolution of V is a proper birational surjective
map π : Ṽ → V such that Ṽ is smooth. The birationality of π implies that it gives an
isomorphism on the level of the function fields: K(Ṽ) = K.

A nice method to try to construct a resolution is by using orders. An R-order in
Matn(K) is an R-algebra A ⊂ Matn(K) that is a finitely generated R-module and

A ·K = A⊗R K = Matn(K).

The embedding R ⊂ A can be seen as a noncommutative generalization of the resolution
because birationally (i.e. tensoring with K) it gives a Morita equivalence instead of an
isomorphism.

Given an order A, we have a notion of a trace Tr : A → R, which is the restriction
of the standard trace function in Matn(K). Traces of elements in A sit in R because R
is a normal domain. This trace allows us to consider the n-dimensional trace preserving
representations of A:

trepA := {ρ : A→ Matn(C)|Trρ(a) = ρ(Tra)}
This object can be given the structure of an affine scheme (take care, it can consist of
several components). It has an action of GLn(C) by conjugation and using this action we
can reconstruct A as the ring of equivariant maps and R as the ring of invariant maps (see
[28]):
A = EqvGLn(trepA,Matn(C)) := {f : trepA→ Matn(C)|∀g ∈ GLn : f(ρg) = f(ρ)g},
R = InvGLn(trepA,C) := {f : trepA→ C|∀g ∈ GLn : f(ρg) = f(ρ)}.

Geometrically this means thatR is the coordinate ring of the categorical quotient trepA//GLn
and this quotient parameterizes the isomorphism classes of semisimple trace preserving
representations of A. In general the space trepA consists of more than one component but
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there is only one component that maps surjectively onto the quotient. This is the component
that contains the generic simples and we denote it by srepA.

To construct a resolution of V = srepA//GLn, we can try to take a Mumford quotient
instead of the categorical quotient. To do this, one must specify a stability condition, which
in the case of path algebras with relations mounts to choosing a θ ∈ ZQ0 (see [23]). The
new quotient Vθ = srepA//θGLn parameterizes the isomorphism classes of (direct sums of)
θ-stable trace preserving representations of A. If one is lucky the new quotient is smooth
and then it provides a resolution of V.

The idea of using orders for the construction of resolutions motivates the notion of a
noncommutative resolution. There are many possible definitions but they all share the
following properties:

• A is an R-order in Matn(K)
• A has some smoothness property: finite homological dimension/homologically

homogeneous/Calabi-Yau.
In this paper the focus is on the Calabi-Yau property, so for us noncommutative resolutions
are Calabi-Yau orders. Although at first sight this seems to be slightly different from the
notion of the noncommutative crepant resolutions introduced by Van den Bergh in [33], in
the 3-dimensional toric setting these notions will coincide (see [4]).

4. TORIC ORDERS

If V is a toric variety, then it has a faithful action of a torus Tk = C∗k with a dense open
orbit. Ring-theoretically this means that R is Zk-graded and we can embed it as a graded
subring of T := C[Tk] = C[X1, X

−1
1 , . . . , Xk, X

−1
k ].

To resolve the singularities of V, we want to keep the toric structure of V so we need to
construct a toric resolution. By this we mean that the map π : Ṽ→ V is a C∗k-equivariant
map that is one to one on the torus Tk. From the point of view of rings, the coordinate ring
of the torus now substitutes for the function field K and everything gets Zk-graded.

This enables us to define toric orders.

Definition 4.1. Let R ⊂ T = C[X1, X
−1
1 , . . . , Xk, X

−1
k ] be the coordinate ring of a toric

variety. A toric R-order A is a positively Zk-graded R-subalgebra of Matn(T ) that is a
finitely generated R-module and

TO1 A · T = Matn(T )
TO2 R⊕n ⊂ A

Remark 4.2. By positively Zk-graded, we mean there is a vector u ∈ Zk such that if there
are nonzero homogeneous elements with degree v ∈ Zk \ {0}, then u · v > 0.

Toric orders are special orders, so we can also reconstruct R and A from the invariant
and equivariant maps on trepA. If we do this we leave the toric context because GLn is not
toric. However, with a slight modification we can make everything we said in the previous
section work in the toric context.

We can get rid of GLn by looking at α-dimensional representations with α = (1, . . . , 1).
Because of condition TO2, the standard idempotents ei ⊂ Matn(C) ⊂ Matn(T ) must sit
in A. We now define

trepαA := {ρ ∈ trepA|ρ(ei) = ei}
This is a closed subscheme of trepA that meets every orbit. The action of GLn on trepA
restricts to an action of GLα = C∗n ⊂ GLn on trepαA and

trepA = trepαA×GLα GLn.

Furthermore we have again that

A = EqvGLα(trepαA,Matn(C)) and R = InvGLα(trepαA,C).

Just as in before we single out one component srepαA = srepA∩ trepαA. This compo-
nent contains a n−1+k-dimensional torus coming from the pullback of the representations
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of Matn(T ) and there is a combined action of C∗n−1 from GLα/C∗ and C∗k by scaling
of the variables. Therefore srepαA can be seen as a toric variety but it is not necessarily
normal.

Unlike in the general case of orders, toric orders have the advantage that one only needs
srepαA to reconstruct the order and not the whole space trepαA.

Theorem 4.3. If A is a toric R-order in Matn(K) then

A = EqvGLα(srepαA,Matn(C)) and R = InvGLα(srepαA,C).

Proof. We have a map EqvGLα(trepα,Matn(C)) → EqvGLα(srepαA,Matn(C)) by re-
striction. This map decomposes as a direct sum of maps according to the matrix entries

EqvGLα(trepα,Matn(C))ij → EqvGLα(srepα,Matn(C))ij

But EqvGLα(trepαA,Matn(C))ij is the subspace C[trepαA]ij ⊂ C[trepαA] of weight i−j
for the GLα-action. The same holds for EqvGLα(srepA,Matn(C))ij .

The map C[trepαA]→ C[srepαA] is a surjection that is compatible with the C∗n-action.
This means that C[trepαA]ij → C[srepαA]ij is surjective. C[trepαA]→ C[srepαA] is not
an injection but it becomes an injection if we tensor it over R with the torus ring T (note
thatR sits both in C[trepαA] and C[srepαA] as a subring because srepαA is the component
that maps surjectively to V). Therefore if a ∈ C[trepαA]ij sits in the kernel then we can lift
a to an element in A such that a⊗R 1T = 0 but this is impossible because A ⊂ Matn(T ).

The second statement follows directly from the first. �

Remark 4.4. This property corresponds to the notion of algebraic consistency, introduced
by Broomhead. More specific EqvGLα(srepαA can be identified with the algebra B in [6].

5. CATEGORY ALGEBRAS AND CANCELLATION ALGEBRAS

In this section we will extend the notion of toric orders to a non-Noetherian setting. This
generalization gives rise to the notion of a cancellation algebra.

5.1. Motivation and definition. From any toric algebra A ⊂ Matn(T ) we can construct
a category CA. The objects of this category are the elementary idempotents ei ⊂ A and the
morphisms between ei and ej are the monomials of T which occur on the i, jth entries of
elements in A. In other words:

HomCA(i, j) = {monomials in iAj}.
We can reconstruct A as the category algebra of CA. This algebra is the vector space with
as basis the set of all morphisms of CA and as multiplication the composition of morphisms
if possible and zero otherwise.

The category CA has a special property: it is a cancellation category.

Definition 5.1. A category C is called a cancellation category if every morphism is epic
and monic:

∀a, b, c : ab = ac =⇒ b = c and ac = bc =⇒ a = b (when defined).

The category algebra of a cancellation category is called a cancellation algebra.

Remark 5.2. We will assume implicitly that a cancellation category only has a finite number
of objects, and can be generated by a finite number of arrows. This is to make sure that
the cancellation algebras we will consider are finitely generated as algebras. Later we will
also investigate cancellation categories with a countable number of objects. In this case the
category algebra will not be unital.

Remark 5.3. A category algebra can equivalently be defined as a path algebra of a quiver
with relations CQ/I where I is generated by elements of the form p − q with p, q paths.
Therefore it makes sense to use the notation h(p) and t(p) for morphisms in the category.
In general it is not easy to check from a set of relations of the required form whether the
corresponding category algebra is a cancellation algebra or not.
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Just as for quivers we can speak of positively graded categories, category algebras and
in specific positively graded toric orders. In this last case all monomials in a toric order are
homogeneous for the grading R.

The simplest examples of cancellation categories are groupoids. In these categories the
cancellation law holds trivially because every morphism is invertible. Subcategories of
groupoids are also cancellation categories, however unlike in the case of abelian groups
and semigroups it is not true that every cancellation category embeds in a groupoid.

If we return to the section of toric orders, it is easy to check that Matn(T ) is the category
algebra of the groupoid with n objects, that is equivalent to the group Zk. By consequence,
if A is a toric order, then CA is a cancellation category because it is a subcategory of that
groupoid.

Observation 5.4. Every toric order is a cancellation algebra.

5.2. Bimodule resolutions. LetA be a category algebra with corresponding category C. A
(bi)-module M of A is called C-graded if M =

⊕
p∈MorCMp such that Mp ⊂ h(p)Mt(p)

and ∀q : qMp ⊂ Mqp and Mpq ⊂ Mpq , where we used the convention that M? = 0 to
cover the case where pq or qp is not defined. A homogeneous map is a morphism φ : M →
N such that φMp ⊂ Np and the kernel and image of a homogeneous map are clearly C-
graded. For every p in C we define the projective bimodule Fp = Ah(p)⊗ p⊗ t(p)A with
the obvious grading q1 ⊗ p ⊗ q2 ∈ (Fp)q1pq2 and analogously the projective left module
Pp = Ah(p) with grading q ∈ (Pp)qp.

If A is positively graded then the category of C-graded bimodules with bihomogeneous
morphisms is a perfect category in the sense of Eilenberg [12] and hence we can construct
a minimal projective bimodule resolution of A as a bimodule over itself with the obvious
grading. The first terms of this map are⊕

s∈S
Fs δ3 //

⊕
r∈R

Fr δ2 //
⊕
b∈Q1

Fb δ1 //
⊕
i∈Q0

Fi m // A

where
m(q1 ⊗ i⊗ q2) = q1q2

δ1(q1 ⊗ b⊗ q2) = q1b⊗ t(b)⊗ q2 − q1 ⊗ h(b)⊗ bq2

δ2(q1 ⊗ r ⊗ q2) =
∑
k

q1a1 · · · ⊗ ak ⊗ . . . anq2 −
∑
k

q1b1 · · · ⊗ bk ⊗ . . . bmq2

δ3(q1 ⊗ s⊗ q2) = q1sq2.

and r = a1 . . . an − b1 . . . bm, Fr := Fa1...an = Fb1...bm and S is a minimal set of
homogeneous generators of Kerδ2. This set might be infinite.

For every vertex i ∈ Q0 we can tensor this resolution over A on the right with the
one-dimensional left module Si = Ai/J i concentrated in C-degree i. This gives us the
minimal graded left module resolution of Si.

6. QUIVER POLYHEDRA

6.1. Definition. The last ingredient we need is quiver polyhedra.

Definition 6.1. A quiver polyhedron Q is a strongly connected quiver Q enriched with 2
disjoint sets of cycles Q+

2 and Q−2 such that
PO Orientability condition. Every arrow is contained exactly once in one cycle in

Q+
2 and once in one in Q−2 .

PM Manifold condition. The incidence graph of the cycles and arrows meeting a
given vertex is connected.

A quiver polyhedron is called weighted if there is a map E : Q2 = Q+
2 ∪ Q

−
2 → N>0

such that ∀c ∈ Q2 : Ec|c| > 2. We will use the symbol Q to denote a weighted quiver
polyhedron. If E is the constant map to 1 we say Q is an unweighted quiver polyhedron.
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A weighted quiver polyhedron is positively graded if there is an R-charge R : Q1 → R>0

such that the expression EcRc is the same for all cycles in Q2.

Remark 6.2. For a number of examples of quiver polyhedra we refer to section 9. There
we also discuss the connection with dimer models.

Remark 6.3. Not every weighted quiver polyhedron can be given a grading. In [6][Remark
2.3.5] a combinatorial condition is given for this to be true in the case of trivially weighted
quiver polyhedra. At the end of this section we will state this condition for weighted quiver
polyhedra.

The grading that one can assign to a weighted quiver polyhedron is also far from unique,
however the algebraic properties that we will discuss further on do not depend on it. They
depend merely on the existence of a grading.

From a quiver polyhedron we can build a topological space X by associating to every
cycle of length k a k-gon. We label the edges of this k-gon cyclicly by the arrows of the
quiver and identify edges of different polygon labeled with the same arrow.

Lemma 6.4. If Q is a quiver polyhedron then X is a compact orientable surface.

Proof. We need to show that every point in X has a neighborhood that is homeomorphic
to an open disk. For the internal points of the polygons this is trivially true. If p lies on
an edge of a polygon but not on a corner then this is true because by condition PO a small
enough neighborhood of p will consist of two half disks glued together. If p is a corner of
a polygon, a neighborhood of p consists of triangles glued together over common edges.
The result in general will be a set of disks glued together at p and there is just one disk if
and only if PM holds.

Using the condition PO, this surface can be oriented by assigning an anticlockwise di-
rection to the cycles in Q+

2 and a clockwise direction for those in Q−2 . �

Conversely, if Q is a strongly connected quiver drawn on an orientable surface such that
the complement of the quiver consists of simply connected pieces bounded by cycles, then
we can give Q the structure of a quiver polyhedron by taking as Q+

2 the cycles that bound
pieces anticlockwise and as Q−2 the cycles that bound pieces clockwise. It can easily be
checked that PO and PM hold.

If Q is a weighted quiver polyhedron, it is interesting to give the topological space X
the structure of an orbifold. We can do this by substituting the k-gon corresponding to a
cycle c with the orbifold obtained by quotienting an kr-gon by the rotation group of order
r = Ec. If we do this for all cycles we get an orbifold that contains an orbifold singularity
of order Ec for every cycle c. We will denote this orbifold by |Q|. It is clear from this
construction that the orbifold |Q| of a trivially weighted quiver is just the compact surface
X .

For any weighted quiver polyhedron it makes sense to define its Euler characteristic as
the Euler characteristictic of its orbifold |Q|.

χQ := #Q0 −#Q1 +
∑
c∈Q2

1

Ec
.

For a weighted quiver polyhedron Q, we can define a superpotential

W = W+ −W− :=
∑
c∈Q+

2

cEc

Ec
−

∑
c∈Q−2

cEc

Ec
+ [CQ,CQ].

Here cEc stands for a cycle obtained by running through c Ec times. This superpotential
gives rise to a Jacobi algebra AQ := AW . Note that W ∈ J 3 because for every cycle
Ec|c| > 2.

Lemma 6.5. For any (positively graded) weighted quiver polyhedronQ the Jacobi algebra
AQ is a (positively graded) category algebra.
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Proof. For any arrow a the partial derivative ∂aW is Ec times the sum of two paths with
opposite signs and therefore every relation is of the form p− q.

If Q is positively graded then the superpotential is homogeneous so the Jacobi algebra
is positively graded. �

Remark 6.6. It is important to note that AQ is a category algebra but not always a cancel-
lation algebra. We will come back to this issue in section 8.

6.2. Galois covers. A morphism between weighted quiver polyhedraQA andQB is a pair
of maps φ : QA0 → QB0 and φ : QA1 → QB1 respecting head and tails (φ(h(a)) = h(φ(a))

and φ(t(a)) = t(φ(a))) such that if c ∈ QA+
2 (QA−2 ) we can find a d ∈ QB+

2 (QB−2 )
such that φ(cEc) = dEd . One can check easily from the definition that a morphism between
quiver polyhedra gives corresponding morphisms between their orbifolds and their path
algebras.

Let G be a group of automorphisms of a weighted quiver polyhedron Q such that no
nontrivial element g ∈ G fixes a vertex of Q. The quotient quiver Q/G is defined as the
quiver with as vertices and arrows the orbit classes of vertices and arrows in Q. There is
a projection map π : Q → Q/G that maps each vertex and arrow to its orbit. Under π
every cycle c ∈ Q2 is mapped to a cycle in Q/G. This cycle can sometimes be the power
of a smaller primitive cycle: π(c) = dk for some k. The unique way to equip Q/G with a
polyhedral structure is

(Q/G)±2 := {d|∃c ∈ Q±2 : dk = π(c) and d is primitive},

The weighting has the following form

Ed := kEc.

The following theorem is straightforward:

Theorem 6.7.
• If G is a group of automorphisms of a weighted quiver polyhedron Q such that no

nontrivial element g ∈ G fixes a vertex of Q then the quotient morphism π : Q →
Q/G induces a cover morphism between the two orbifolds π̃ : |Q| → |Q/G| and
the group of cover automorphisms of π̃ is G.

• On the level of path algebras we have a surjective map π : CQ → CQ/G such
that if q is a path in Q/G then for every vertex v ∈ π−1(h(q)) there is a unique
lifted path liftvq ∈ π−1(q) such that h(liftvq) = v.

• Two paths in q1, q2 ∈ CQ/G are equivalent in AQ/G if and only if there is a
v ∈ π−1h(q1) such that liftvq1 is equivalent with liftvq2 in AQ.

Proof. The first statement follows because by construction |Q/G| is the same orbifold as
the quotient orbifold |Q|/G.

Suppose q is a path in Q/G and choose any lift p ∈ π−1(q). There is a unique g ∈ G
that maps h(p) to v ∈ π−1(h(q)) and therefore the lift of q starting in v is g · p.

The last statement follows from the easy to check facts that π(∂aWQ) = ∂πaWQ/G and
π−1∂bWQ/G = {∂aWQ|π(a) = b}. �

This theorem states in fact that AQ is a Galois cover of AQ/G in the sense of [29]. It
implies a close relationship between the two Jacobi algebras and many nice properties will
either hold in both or in none. An interesting example of such a property is the cancellation
property.

Theorem 6.8. The Jacobi algebra AQ is a cancellation algebra if and only if AQ/G is a
cancellation algebra.

Proof. Let p and q be paths and a an arrow in Q such that pa = qa. In the quotient we
have that π(p)π(a) = π(q)π(a) and π(p) 6= π(q) because these paths cannot be in the
same orbit as they start in the same vertices and G acts freely on the vertices.
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Suppose on the other hand that r, s are paths and b is an arrow in Q/G with rb = sb.
Fix a vertex v ∈ π−1(h(r)). By the lifting property liftv(rb) = liftv(sb) and both must end
in the same arrow a ∈ π−1(b), so liftv(r)a = liftv(s)a but liftv(r) 6= liftv(s) because their
projections to AQ/G are different. �

The existence of a grading is compatible with the notion of Galois covers.

Lemma 6.9. Q admits a grading if and only if Q/G does.

Proof. If Q is positively graded, we can also give the new polyhedron a grading:

Rπ(a) :=
1

|G|
∑
b∈Ga

Rb.

If Q/G is graded we transfer the grading as follows:

Ra := Rπ(a).

�

The technique of Galois covers can be used to simplify the structure of the polyhedron,
without changing the important properties of the cancellation algebra.

Theorem 6.10. A weighted quiver polyhedron can be covered by a quiver polyhedron with
trivial weighting if and only if it is not of the following forms:

• It has the topology of a sphere and 1 face with non-trivial weight.
• It has the topology of a sphere and 2 faces with different non-trivial weights.

Proof. Given an orbifold X with a weighted quiver polyhedron Q on it, we can use every
orbifold cover X̃ → X to obtain a Galois cover Q̃ → Q. If X̃ is a manifold then Q̃ is
unweighted. From theorem 13.3.6 in [32] we know that in dimension 2 the only orientable
orbifolds that cannot be covered by a manifold are the sphere with 1 or 2 different orbifold
points. These correspond to the quiver polyhedra described above. �

In accordance with the theory of orbifolds we callQ developable if it has an unweighted
galois cover. We will denote the unweighted cover of a weighted quiver polyhedron Q by
Qu.

This cover can be used to check whether Q admits a grading.

Lemma 6.11. A weighted quiver polyhedron Q admits a grading if and only if it is devel-
opable and its unweighted cover admits a grading.

Proof. Suppose Q is not developable. Then it has the topology of a sphere and has 2
cycles u1, u2 such that all other cycles are unweighted. For any grading compatible with
the Jacobi relations we have

Ru1 = Ru2 mod Ru

with u an unweighted cycle. Indeed the cycles u1, u2 have the same homology class in
the union of all unweighted faces. Because all these faces have the same degree Ru, the
difference in degree between u1 and u2 must be a multiple of Ru. But Rui = Ru

Eui
so the

weights of u1 and u2 must be the same and hence a positive grading is impossible.
A developable quiver polyhedron admits a positive grading if and only if its unweighted

cover admits a positive grading by lemma 6.9. �

For unweighted quiver polyhedra we can use Hall’s theorem (see [6][Remark 2.5.5]) to
check whether a grading exists.

Theorem 6.12 (Hall). An unweighted quiver polyhedronQ admits a grading if and only if
for any subset S+ ⊂ (Qu)+2 we have that if S− ⊂ (Qu)−2 is the set of cycles connected to
cycles of S+ then

|S+| ≥ |S−|
with equality only happening if S+ is not a proper subset.
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If a weighted quiver polyhedron Q̃ is developable, then the pullback of Q̃ under the
universal cover map is called the universal cover of Q̃. This quiver is infinite if the Euler
characteristic of |Q| is zero or negative. It still makes sense to define the corresponding
category and category algebra, however one must take care that the latter is not a unital
algebra any more. We will denote the universal cover of Q by Q̃.

7. THE CY-3 PROPERTY AND QUIVER POLYHEDRA

Jacobi algebras coming from quiver polyhedra appear naturally in the context of CY-3
algebras.

Theorem 7.1. If a positively graded cancellation algebra A is CY-3 then it comes from a
graded weighted quiver polyhedron.

To prove this theorem we need a lemma which is an adaptation of a theorem from [3].

Lemma 7.2. If a positively graded cancellation algebra A = CQ/I is CY-3 then it is a
Jacobi algebra of some superpotential W and there exist a coefficients λa ∈ C depending
on a ∈ Q1 such that ∂aW = λa(p− q) for some p− q ∈ R.

Proof. We adapt the proof in [3][Theorem 3.1] which worked for an N-graded algebra
generated in degree 1, to this setting (where arrows can have different R-degree).

As the global dimension of A must be 3, we know from section 5.2 the minimal projec-
tive C-graded resolution of the trivial module Si = Ai/J with C-degree i looks like

Pω
� � (fr)//

⊕
t(r)=i Pr

(r�b) //
⊕

t(b)=i Pb
(·b) // Pi // // Si.

In the diagram above the r′s are elements of the minimal set of relations R and the b′s
are arrows. Note that the last term in the resolution Pω must be isomorphic to Pi because
dimExt3(Si, Sj)

CY
= dim Hom(Sj , Si) = δij . This Pi is shifted in C-degree, and we let ω

be the path that corresponds to i ∈ Pω .
Consider the finite dimensional quotient algebra

M = A/(fr : r ∈ R, An : n ≥ N) where ∀r : N > Rfr .

The Calabi-Yau property allows us to calculate the dimension of iMj:

Dim iMj = DimHom(Pi,Mj) = DimExt3(Si,Mj)
CY
= DimHom(Mj, Si) = δij ,

and conclude that M must be isomorphic to the degree zero part of A. There are only
as many fr as there are arrows (dimExt2(Si, Sj)

CY
= dimExt1(Sj , Si)). An fr (with

r = p − q) cannot be a linear combination of different arrows a and b because this would
imply that ω, ap and bp have the same C-degree which contradicts the cancellation property.
Hence, we can conclude that the fr must all be scalar multiples of arrows.

By rescaling our original relations, we can assume that the fr can be identified with the
arrows. Let ra be the (nonzero) relation for which fra = a.

Because the resolution of Si is a complex we have that
∑
a ara�b ∈ I so we can write it

as ∑
h(a)=i

ara�b =
∑

gbcrc + rest with rest ∈ J I + IJ .

If we apply property C3 we can conclude that gbc 6= 0 ⇐⇒ b = c. The terms ara�b
all have the same C-degree which is equal to the degree of rb. As rb is a minimal relation,
there are no C-homogeneous elements in J I+IJ with the same C-degree as rb and hence
rest = 0.

By introducing an appropriate rescaling of the relations we can assume that gbb = 1 and∑
h(a)=i

ara =
∑
t(b)=i

rbb.



CALABI-YAU ALGEBRAS AND WEIGHTED QUIVER POLYHEDRA 11

If we sum these equations we get a superpotential W :=
∑
a ara =

∑
b rbb and it is

clear that iW is C-homogeneous. Note that ara and raa have the same R-degree but sit in
different parts of W (h(a)W and Wt(a)). We can use this together with the fact that Q is
strongly connected to show that W is R-homogeneous.

Finally, because of the rescalings ra = λa(p − q) for some λa ∈ C and some p − q ∈
R. �

Proof of theorem 7.1. Because A is positively graded and CY-3 we know from lemma 7.2
that A = AW for some superpotential W and ∂aW = λa(pa − qa) for some scalar λa and
some relation pa − qa ∈ R.

Every arrow occurs exactly in two cycles in W (apa and aqa). If an arrow a occurs in a
cycle c it can occur only once in this cycle or c is a power of a smaller cyclic path containing
just one a. If this were not the case, the partial derivative to a of this cycle would contain
more than one term with the same sign which is impossible.

Let Q2 be the set of all cycles c such that a power ck occurs in W and which are not
powers of smaller cycles. The grading R on A gives a grading R on the arrows and we
define Ec = k if and only if ck sits in W .

This data turns Q into a weighted quiver polyhedron:
PM Fix a single vertex i and consider the following graph Gi: its nodes correspond to

the arrows which have a head or a tail equal to i. There is an edge between two
arrows a, b with t(a) = h(b) = i if ab is contained in a cycle of W .

For every connected component C ⊂ Gi we can construct a syzygy:

zC =
∑

a∈C,h(a)=i

a⊗ ∂aW ⊗ 1−
∑

a∈C,t(a)=i

1⊗ ∂aW ⊗ a.

Indeed for every vertex i the expression σi :=
∑
h(a)=i a⊗∂aW⊗1−

∑
t(a)=i 1⊗

∂aW ⊗ a is a syzygy. We can split this syzygy in parts because the sets of arrows
occurring in zC1

and zC2
for two different components C1 and C2 are disjoint. By

the CY-3 property C2 we know that the third syzygies are in one to one correspon-
dence with the vertices. We can conclude that Gv consist of one component.

PO Define the map cf : Q2 → C such that W =
∑
c∈Q2

cf(c)
Ec
cEc . We will show that

the image of this map is {λ,−λ} for some λ ∈ C. We take Q±2 the preimage
of ±λ. Clearly if two cycles share an arrow a then cf(c1) = −cf(c2) = λa. So
Im cf = {λ,−λ} if we can go from one cycle to every other cycle by hopping
over joint arrows. This follows from condition PM and the fact that Q is strongly
connected.

The fact that Q is strongly connected also implies that the cEc have the same R-degree and
because W ⊂ J 3 we must also have that Ec|c| > 2. This implies that E is a weighting for
the quiver polyhedron and R is a compatible grading. �

8. TORIC ORDERS AND DIMER MODELS

In the previous section we proved that the CY-3 property for positively graded cancel-
lation algebras implies the existence of a weighted quiver polyhedron. Now we will prove
that if we restrict to cancellation algebras that are toric orders, we obtain that the quiver
polyhedron must be unweighted and its underlying manifold |Q| must be a torus.

In order to prove this result we must first have a look at the cancellation property for
quiver polyhedra.

8.1. Cancellation for quiver polyhedra. As we noted in section 6 not all graded weighted
quiver polyhedra give cancellation algebras.

The relations in the Jacobi algebra AQ imply that all cycles in Q2 are equivalent:
c1

Ec1p = pc2
Ec2 for every p with h(p) = t(c1) and t(p) = h(c2). This implies that

the algebra A has a central element:
∑
cEc where we sum over a subset representatives of

Q2 that contains just one cyclic path c with h(c) = i for every i ∈ Q0. We will denote
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this central element by `. For every arrow a we can find a path p such that ap = h(a)` and
pa = t(a)`: just take p = ∂ac

Ec where c is a cycle in Q2 containing a.
The cancellation property states that the map

AQ → AQ ⊗C[`] C[`, `−1]

is an embedding. This tensor product is the algebra obtained by making every arrow in-
vertible (i.e. for every a we have an a−1 such that aa−1 = h(a) and a−1a = t(a)). This
algebra is the localization of AQ by the Ore set {`k|k ∈ N} and we denote it by ÂQ.
This definition makes also sense if AQ does not satisfy the cancellation property, the map
AQ → ÂQ is no more injective but ÂQ is still a flat AQ-module.

Lemma 8.1. If AQ is CY-3 then ÂQ is also CY-3.

Proof. Let P • be the bimodule resolution of AQ as a module over itself. The complex
ÂQ⊗AQ P •⊗AQ ÂQ is still exact because ÂQ is a flat AQ-module. This implies that ÂQ
has a selfdual resolution and is hence CY-3. �

It is important to note that ÂQ always is a cancellation algebra even when AQ is not. It
is not always a CY-3 algebra, but in the case that Q is graded and χQ ≤ 0 it will be even
CY-3 if AQ is not. To prove this statement we first need to recall a well known lemma.

Lemma 8.2. Let Q be a weighted quiver polyhedron and R : Q1 → R be any (not neces-
sarily positive) grading such that R` 6= 0. Two paths in ÂQ are equivalent if and only if
they are homotopic and have the same R-degree.

Proof. It is clear that the relations ∂aW imply that equivalent paths are homotopic and
must have the same R-charge. Because homotopies in the quiver polyhedron are generated
by substituting paths p → q such that pq−1 = `, homotopic paths can only differ by a
factor `k. The degree of ` is not zero, so if homotopic paths have the same degree they
must be equal in ÂQ. �

Remark 8.3. By homotopic we mean homotopic as paths in |Q| considered as an orbifold,
not merely as a topological space.

Theorem 8.4. For any positively graded weighted quiver polyhedron Q,

ÂQ ∼= Matn(C[Π])

where n is the number of vertices and C[Π] is the group algebra of the fundamental group
of some compact three-dimensional manifold.

Proof. Note that because of the gradedness Q is developable. Let |Q̃| → |Q| be the uni-
versal cover of the orbifold |Q| and fix a vertex i ∈ Q0. To every path in p ∈ iÂQ̃i cor-
responds an element in the fundamental group of |Q|, which gives a cover automorphism
φp : |Q̃| → |Q|. Conversely, every element in the fundamental group can be represented
by a path in Q.

Now consider the simply connected space |Q̃|×R and consider the group of diffeomor-
phisms

Π = {ψp : |Q̃| × R→ |Q̃| × R : (x, a) 7→ (φp(x), a+ Rp)|p ∈ HomCÂQ (i, i)}

By lemma 8.2, every element in HomCÂQ (i, i) gives a different diffeomorphism and none

of these diffeomorphisms has fixpoints. The quotient of |Q̃| × R/Π is thus a manifold and
iÂQi ∼= C[Π] = C[π1(|Q̃| × R/Π)].

For every vertex j, fix a path pj : i← j. Construct the following morphism

Matn(iÂQi)→ ÂQ : qEuv 7→ p−1u qpv

where Euv is the matrix with one on the entry (u, v) and zero everywhere else. This
morphism has an inverse

ÂQ → Matn(iÂQi) : q 7→ ph(q)qp
−1
t(q)Eh(q)t(q).



CALABI-YAU ALGEBRAS AND WEIGHTED QUIVER POLYHEDRA 13

In general the fundamental group algebra of a compact manifold is CY-n if it is ori-
entable and its universal cover is contractible (see [15] Corollary 6.1.4). �

We recall a theorem by Kontsevitch.

Theorem 8.5 (Kontsevich, see [15] Corollary 6.1.4). The fundamental group algebra of a
compact manifold is CY-n if it is orientable and its universal cover is contractible.

This theorem can be used to relate the Euler characteristic of the dimer model with the
CY-3 property.

Corollary 8.6. Let Q be any positively graded weighted quiver polyhedron.

• ÂQ is CY-3 if and only if χ(Q) ≤ 0.
• if AQ is CY-3 then χ(Q) ≤ 0.

Proof. We know that ÂQ is Morita equivalent to the fundamental group algebra of some
3-manifold. This manifold has as universal cover |Q̃| × R. This is contractable when
χQ ≤ 0. So by Kontsevich theorem ÂQ is CY-3. If the quiver polyhedron Q has positive
Euler characteristic, then its universal cover Q̃ has the topology of a sphere and the quotient
manifold of the cover is S2 × S1. The fundamental group is Z so ÂQ̃ is Morita equivalent
to C[`, `−1]. This last algebra is not CY-3.

If AQ is CY-3 then ÂQ is also CY-3 so by the previous paragraph χ(Q) ≤ 0. �

Theorem 8.7. If a toric orderA is CY-3 then it comes from a positively graded unweighted
quiver polyhedron on a torus (in other words a dimer model on a torus)

Proof. Because a toric order is cancellation we already know it comes from a weighted
quiver polyhedron, so we only need to show that the weights are trivial and χQ = 0.

If AQ is a toric order then AQ ⊂ ÂQ ⊂ Matn(C[Z3]) because ` is invertible in
Matn(C[Z3]). Hence, for every vertex v, the algebra vÂQv is commutative. This means
that the fundamental group of the 3-manifold is commutative and by construction the orb-
ifold fundamental group of the 2-orbifold must also be commutative.

As χQ ≤ 0, this is only the case if |Q| is a torus. Indeed, if the fundamental group of
|Q| is abelian then the deck transformations of |Q̃| → |Q| cannot have fixpoints (as such
transformations do not commute with the fixpointless ones) this means |Q| is a manifold
(not an orbifold) and Q is unweighted. The only compact surface with nonpositive Euler
characteristic and abelian fundamental group is the torus. �

8.2. Cancellation and Calabi-Yau. The cancellation property and the Calabi-Yau prop-
erty are very closely related. For quiver polyhedra with χQ ≤ 0, Ben Davison in [11]
proved that cancellation implies CY-3.

Theorem 8.8 (Davison). The Jacobi algebra of a graded weighted quiver polyhedron with
nonpositive Euler characteristic is CY-3 if it is a cancellation algebra.

Although Davison proved this only in the case of dimer models (which are in our ter-
minology the trivially weighted quiver polyhedra) his proof generalizes to the weighted
case because we can cover any graded weighted quiver polyhedron by a graded unweighted
quiver polyhedron. Davison’s work was a generalization of work by Mozgovoy and Reineke
[26] which used an extra consistency condition. This extra condition turned out to be a con-
sequence of the cancellation property.

It is not clear whether for quiver polyhedra with χQ ≤ 0 the cancellation property is
really equivalent to the CY-3 property. There are no known examples of noncancellation
CY-3 quiver polyhedra for which Q is finite. There are however examples where Q is
infinite. We refer to the follow-up paper [4] which discusses the different notions of con-
sistency for quiver polyhedra.
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9. EXAMPLES

The most studied examples of quiver polyhedra come from dimer models. Dimer models
are dual to unweighted quiver polyhedra. a dimer model consists of a bipartite graph on
a Rieman surface. The bipartiteness implies that vertices are coloured black and white in
such a way that no vertices of the same colour share an edge. Given a unweighted quiver
polyhedron we construct the dimer model by using the centers of the cycles in Q+

2 as black
vertices and the centers of the cycles in Q−2 as white vertices, two vertices are connected if
their cycles share a face.

Example 9.1. The suspended pinchpoint [13][section 4.1] is an example of a CY-3 algebra
given by the following dimer model and quiver:

•
1111 ◦��������3 //

tt
��������2
��

��������1
%%

◦ •



1111 ��������3
tt•

1111

 ��������1

OO

tt
%%

◦��������2
��

OO

◦ •



1111
��������1

tt

OO

��������3 // ��������2

OO

•


◦

��������1 ��

��vv��������2

66

** ��������3

VV

jj

On the left we drew the tiling of the torus as a periodic tiling of the plane. The quiver
is represented twice, once periodically on the left(the dotted lines) and once on the right.
There are three vertices in the quiver corresponding to the three tiles on the torus (one
hexagon and two trapezia). The sets of cycles are Q+

2 = {a31a13a11, a21a12a23a32} and
Q−2 = {a21a12a11, a13a31a32a23} and the superpotential for this example is

W = a31a13a11 + a21a12a23a32 − a21a12a11 − a13a31a32a23 + [CQ,CQ]

The arrows are indexed according to their head and tail: h(aij) = i and t(aij) = j.

Example 9.2. An example of a quiver polyhedron that does not give a cancellation algebra
is

��������1 x //

b1

��///////// ��������1
c1

�������

��������2a1

ggOOOOOOOOO

a2

��/////////

��������3 d

??�����
c2

�������

��������1
x

//

y

OO

��������1
b2

ggOOOOOOOOO

y

OO

We identify all vertices labeled ��������1 to obtain an unweighted quiver polyhedron on a torus.
The grading is done by giving all arrows degree 1. This is not a cancellation algebra because
one can check that

xy 6= yx but xy` = xa1db1y = ya2db2x = yx`.

Example 9.3. The same quiver polyhedron can be weighted differently to obtain different
Jacobi algebras.

��������1

��

// ��������2
yytttttttttt

����������5
[[888888

%%JJJJJJJJJJ ��������6
ee

����������4
CC������

99

��������3

OO

oo
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Use the same indexing convention as in the first example and set

Q+
2 = {a15a52a21, a43a35a54, a41a16a64, a23a36a62}

Q−2 = {a16a62a21, a43a36a64, a41a15a54, a23a35a52}.
This polyhedron is an octahedron and has the topology of a sphere.

• It can be given a trivial weighting if we give the arrows degree 1. In this case you
get a cancellation algebra (there is at most one path between every pair of vertices
of a given degree) but it is not CY-3 because χQ is 2.
• It can be equipped with a nontrivial weighting by giving cycles containing a41 or
a23 weight 2 and the rest weight 1. The grading gives a21 or a43 degree 4 and the
rest degree 1. This weighting gives rise to an orbifold with Euler characteristic 0.
One can check using results from [4] (i.e. intersecting zigzag paths) that this does
not give you a cancellation algebra.
• We can equip this with a nontrivial weighting by giving all cycles weight 2 and all

arrows degree 1. This weighting gives rise to an orbifold with Euler characteristic
−2. The nonintersection of zigzag paths tells us that this is a cancellation algebra
and a CY-3 algebra.

Example 9.4. Weighted quiver polyhedra can also be used to describe certain Artin-Schelter
regular algebras. Take the following quiver polyhedron on the sphere

��������
x

3
��

y

3
NN

z

3

nn

where the backside is a triangle bounded by x, y and z. Then AQ = C〈x, y, z〉/〈x2 −
yz, y2− zx, z2−xy〉 which is a well-known three-dimensional Artin Schelter regular ring
[1]. The center of this ring is isomorphic to C[u3, v3, w3, uvw], which is the quotient
singularity of the G = Z3 × Z3-action (i, j) · u = ηiu, gv = ηi+jv, gw = ηi+2jw
with η the third root of unity. It is a cancellation algebra and CY-3, but take care, this
algebra AQ cannot be seen as a noncommutative crepant resolution over its center because
a commutative crepant resolution has a rank 9 K-group, while the K-group of AQ is only
rank 1.
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