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SMOOTH QUIVER QUOTIENT VARIETIES

RAF BOCKLANDT

Abstract. In this paper we classify all the quivers and corresponding dimen-

sion vectors having a smooth space of semisimple representation classes. The

result is that these quiver settings can be reduced via some specific reduction

steps to 3 simple types.

1. Introduction and motivation

Many problems in representation theory can be reduced to representations of quiv-

ers. Suppose A is a finitely generated algebra and RepnA is the space of n-

dimensional complex representations of A. On this space is an action of GLα and

one can divide out this action by taking the affine quotient to obtain a new space

issnA := RepnA/GLα classifying the equivalence classes of n-dimensional semisimple

representations of A. (see [5])

If W ∈ RepnA is a semisimple representation, one can wonder what the structure

of issnA around the point p corresponding to the equivalence class of W looks

like. If W is a smooth point in RepnA there is a neighborhood of p that is étale

(or analytically) isomorphic to a neighborhood of the zero representation in the

quotient space, issαp
, Qp of a quiver setting (Qp, αp) which is called the local quiver

setting of p. This local quiver setting depends on the structure of W as a direct

sum of simple representations

W := S⊕a1
1 ⊕ · · · ⊕ S⊕ak

k .

(For the exact construction see [6])

So if one for example asks whether issnA is smooth in the point p one can as well

ask whether its local quiver setting has a quotient space that is smooth in zero. As

we will see below this is the same as asking whether this quotient space is an affine
1



2 RAF BOCKLANDT

space or whether the corresponding ring of invariant functions is a polynomial ring.

Such quiver settings will be called coregular.

In this paper we present a method to determine if a random given quiver setting

(Q, α) is indeed coregular. Because the quotient space issαQ can be seen as the

product of the quotient spaces of the strongly connected components of (Q, α) (see

lemma 2.4), we can restrict to strongly connected quiver settings.

The method will consist of a number of allowed reduction steps. Using these steps

one attempts to simplify the quiver setting as much as possible. When this is done

one has to check whether the reduced quiver setting is equal to one of 3 basic quiver

settings that have a smooth quotient space. The main theorem we will prove can

be formulated as:

Theorem 1.1. Let (Q, α) be a genuine strongly connected quiver setting and

(Q′, α′) is the quiver setting obtained after all possible reductions of the form

RI If
∑k

j=1 ij ≤ αv or
∑l

j=1 uj ≤ αv we delete the vertex v.
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RII Remove the loops on a vertex with dimension 1.
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.

RIII Remove the only loop on a vertex with dimension k > 1 which has a neigh-

borhood like in one of the pictures below.
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(Q, α) is coregular if and only if (Q′, α′) is one of the three settings below:

76540123k 76540123k
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2. Quiver representations

In this section we recall some generalities about representations of quivers. A quiver
Q = (V, A, s, t) is a quadruple consisting of a set of vertices V , a set of arrows A
and 2 maps s, t : A → V which assign to each arrow its starting and terminating
vertex. We also denote this as

?>=<89:;t(a) ?>=<89:;s(a)
aoo

.

The Euler form of Q is the bilinear form χQ : Z#V × Z#V → Z defined by the

matrix

mij = δij −#{a|/.-,()*+i 76540123j
aoo },

where δ is the Kronecker delta. It is easy to see that that a quiver is uniquely

defined by its Euler form.

A dimension vector of a quiver is a map α : V → N, the size of a dimension vector is

defined as |α| :=
∑

v∈V αv. A couple (Q, α) consisting of a quiver and a dimension

vector is called a quiver setting and for every vertex v ∈ V , αv is refered to as the

dimension of v. If no vertex has dimension zero the setting is called genuine. If we

draw pictures of quiver settings we will put the dimension of a vertex inside that

vertex.

An α-dimensional complex representation W of Q assigns to each vertex v a linear

space Cαv and to each arrow a a matrix

Wa ∈ Matαt(a)×αs(a)
(C).

The space of all α-dimensional representations is denoted by RepαQ.

RepαQ :=
⊕

a∈A

Matαt(a)×αs(a)
(C).

To the dimension vector α we can also assign a reductive group

GLα :=
⊕

v∈V

GLαv
(C).

This group can be considered as the group of base changes in the vector spaces

associated to the vertices. Therefore every element of this group, g, has a natural

action on RepαQ:

W := (Wa)a∈A, W g := (gt(a)Wag−1
s(a))a∈A



4 RAF BOCKLANDT

Two representations in RepαQ are called equivalent, if they belong to the same orbit

under the action of GLα.

For every vertex we also define a special dimension vector

ǫv : V → N : w 7→ δvw,

and an ǫv-dimensional representation Sv assigning to every arrow the zero matrix.

A representation W is called simple if the only collections of subspaces (Vv)v∈V , Vv ⊆

Cαv having the property

∀a ∈ A : WaVs(a) ⊂ Vt(a)

are the trivial ones (i.e. the collection of zero-dimensional subspaces and (Cαv )v∈V ).

The direct sum W ⊕W ′ of two representations W, W ′ has as dimension vector the

sum of the two dimension vectors and as matrices (W ⊕W ′)a := Wa⊕W ′
a. A repre-

sentation equivalent to a direct sum of simple representations is called semisimple.

From the algebraic point of view one can look at the ring of polynomial functions

over RepαQ which is a polynomial ring denoted by C[RepαQ]. On this ring there

is a corresponding action of GLα and one can look at the corresponding subring of

functions that are invariant under this action:

C[RepαQ]GLα := {f ∈ C[RepαQ]|fg = f}.

The variety corresponding to this subring is denoted by issαQ and by [1] and [5] this

space classifies the equivalence classes semisimple α-dimensional representations of

Q which are in fact the closed GLα-orbits in RepαQ. The ring of invariants will also

be denoted by C[issαQ].

If issαQ is a smooth variety then it is an affine space, this follows immediately from

([5] 4.3B lemma 1 p.139).

Theorem 2.1. Suppose V is a complex vector space with a linear action of a

reductive group G. If the affine quotient V/G is smooth in the point corresponding

to 0 then V/G = C
t for a t ∈ N. The corresponding ring of invariants C[V ]G is then

a polynomial ring.
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If we want to study the ring of invariants it is important to know by what functions

it is generated. The solution to this problem is given in the article by Le Bruyn

and Procesi about semisimple quiver representations [6].

A sequence of arrows a1 . . . ap in a quiver Q is called a path of length p if s(ai) =

t(ai+1), this path is called a cycle if s(ap) = t(a1).

To a cycle we can associate a polynomial function

fc : RepαQ→ C : W 7→ Tr(Wa1 · · ·Wap
)

which is definitely GLα-invariant. Two cycles that are a cyclic permutation of each

other give the same polynomial invariant, because of the basic properties of the

trace map. Two such cycles are called equivalent.

A cycle a1 . . . ap is called primitive if every arrow has a different starting vertex.

This means that the cycle runs through each vertex at most 1 time. It is easy to see

that every cycle has a decomposition in primitive cycles. It is however not true that

the corresponding polynomial invariant decomposes to a product of the polynomial

functions of the primitive cycles.

We will call a cycle quasi-primitive for a dimension vector α if the vertices that are

ran through more than once, have dimension bigger than 1. By cyclicly permuting

a cycle and splitting the trace of a product of two 1× 1 matrices into a product of

traces, we can always decompose an fc into a product of traces of quasi-primitive

cycles. We now have the following result

Theorem 2.2 (Le Bruyn-Procesi). C[issαQ] is generated by all fc where c is a

quasi-primitive cycle with length smaller than |α|2 + 1. We can turn C[issαQ] into

a graded ring by giving fc the length of its cycle as degree.

This result can be used to prove and interesting lemma about the coregularity of

subquivers.

Definition 2.1. Define a partial ordering on the set of quivers in the following way.

A quiver Q′ = (V ′, A′, s′, t′) is smaller than Q = (V, A, s, t) if (up to isomorphism)

V ′ ⊆ V, A′ ⊆ A, s′ = s|A′ and t′ = t|A′ ,

Q′ is called a subquiver of Q.
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Lemma 2.3. If issαQ is smooth and Q′ ≤ Q then issα′Q′ is also smooth, where

α′ := α|V ′

Proof. We have an embedding

Repα′Q′ � � // RepαQ

by assigning to the additional arrows in Q zero matrices. So

C[RepαQ] // // C[Repα′Q′] ⇒ C[RepαQ]GLα // // C[Repα′Q′]GLα .

Because the action of GLα on Repα′Q′ reduces to that of GLα′ , C[issα′Q′] is a quotient

ring of C[issαQ] = C[X1, . . . , Xn]. The only relations that we have to divide out are

the Xi that correspond to a cycle containing one of the additional arrows we put

zero, so C[issα′Q′] is just a polynomial ring with fewer variables. �

Two vertices v and w are said to be strongly connected if there is a path from v to

w and vice versa. It is easy to check that this relation is an equivalence so we can

divide the set of vertices into equivalence classes Vi. The subquiver Qi having Vi as

set of vertices, and as arrows all arrows between vertices of Vi is called a strongly

connected component of Q.

Lemma 2.4.

1. If (Q, α) is a quiver setting then

C[issαQ] :=
⊗

i

C[issαi
Qi]

where Qi = (Vi, Ai, si, ti) are the strongly connected components of Q and

αi := α|Vi
.

2. issαQ is smooth if and only if the issαQi of all its strongly connected compo-

nents are smooth.

Proof.

1. By theorem 2.2 C[issαQ] is generated by the traces of cycles. Every cycle

belongs to a certain connected component of Q. Between fc’s coming from

cycles of different components there cannot be any relations, so we can con-

sider the ring of invariants as a tensor-products of the rings of invariants

different strongly connected components.
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2. If all the strongly connected components are coregular the ring of invariants

of the total quiver setting will be the tensor product of polynomial rings and

hence a polynomial ring. The inverse implication follows directly from lemma

2.3.

�

3. Reduction Steps

As we stated in the introduction we want to apply some kind of reduction on quivers.

By this we mean that if we start from a general quiver setting (Q, α), we want to

construct a new quiver setting with fewer vertices or arrows but with the same or

a closely related ring of invariants. In this section we will consider 3 different types

of reductions.

First we have to recall a result from [5]

Theorem 3.1. Consider the vector space Matk×l(C) ⊕ Matl×m(C) together with

an action of GLl(C):

(M1, M2)
g := (M1g, g−1M2).

The quotient space Matk×l(C) ⊕Matl×m(C)/GLl(C) is isomorphic to the space of

all k×m-matrices of rank smaller then l (so if l ≥ k or l ≥ m there is no restriction

on the matrices and the quotient space is Matk×m(C)). Identification happens via

the GLl(C)-invariant map

π : (M1, M2) 7→M1M2.

This lemma can now be applied to quiver settings:

Lemma 3.2 (Reduction RI : Removing Vertices). Suppose (Q, α) is a quiver set-

ting and v is a vertex without loops such that

χQ(α, ǫv) ≥ 0 or χQ(ǫv, α) ≥ 0.
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Construct a new quiver setting (Q′, α′) by changing Q:
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(some of the top and bottom vertices in the picture may be the same). These two

quiver settings now have isomorphic rings of invariants.

Proof. We can split up the representation space into the following direct sum

RepαQ =
⊕

a, s(a)=v

Matαt(a)×αs(a)
(C)

︸ ︷︷ ︸

arrows starting in v

⊕
⊕

a, t(a)=v

Matαt(a)×αs(a)
(C)

︸ ︷︷ ︸

arrows terminating in v

⊕ Rest

= Mat∑
s(a)=v

αt(a)×αv
(C)⊕Matαv×

∑

t(a)=v
αs(a)

(C)⊕ Rest

= Matαv−χ(α,ǫv)×αv
(C)⊕Matαv×αv−χ(ǫv,α)(C)⊕ Rest

The GLαv
(C)-part only acts on the first two terms and not on the rest term. So if

we take the quotient corresponding to GLαv
(C) we only have to consider the first

two terms.

By the previous lemma and keeping in mind that either χQ(α, ǫv) ≥ 0 or χQ(ǫv, α) ≥

0 the quotient space is equal to

Matαv−χ(α,ǫv)×αv−χ(ǫv,α)(C)⊕ Rest

This space can be decomposed in the following way:

⊕

a, t(a) = v

b, s(b) = v

Matαt(b)×αs(a)
(C)⊕ Rest

This direct sum is the same as the representation space of the new quiver setting

(Q′, α′). �

Lemma 3.3 (Reduction RII : Removing loops of dimension 1). Suppose that (Q, α)

is a quiver setting and v a vertex with k loops and αv = 1. Take Q′ the correspond-

ing quiver without loops, then the following identity hold

C[issαQ] ∼= C[issαQ′]⊗ C[X1, · · · , Xk]
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Proof. This follows easily from 2.2 and the fact a cycle containing such a loop can

never be quasi-primitive unless it is the loop itself. �

Lemma 3.4 (Reduction RIII : Removing a loop of higher dimension). Suppose (Q, α)

is a quiver setting and v is a vertex of dimension k ≥ 2 with one loop such that

χQ(α, ǫv) = −1 or χQ(ǫv, α) = −1.

Construct a new quiver setting (Q′, α′) by changing (Q, α):
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We have the following identity:

C[issαQ] ∼= C[issα′Q′]⊗ C[X1, . . . , Xk]

Proof. We only prove this for the first case. Call the loop in the first quiver ℓ and the

incoming arrow a. Call the incoming arrows in the second quiver ci, i = 0, . . . , k−1.

There is a map

π : RepαQ→ Repα′Q′ × C
k : V 7→ (V ′, TrVℓ, . . . , TrV k

ℓ ) with V ′
ci

:= V i
ℓ Va.

Suppose (V ′, x1, . . . , xk) ∈ Repα′Q′ × Ck ∈ such that (x1, . . . , xk) corresponds to

the traces of powers of an invertible diagonal matrix D with k different eigenvalues

(λi, i = 1, . . . , k) and the matrix A made of the columns (Vci
, i = 0, . . . , k − 1) is

invertible. The image of representation

V ∈ RepαQ : Va = V ′
c0

, Vℓ = A





λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k





−1

D





λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k



A−1
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under π is (V ′, x1, . . . , xk) because

V i
ℓ Va = A





λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k





−1

Di





λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k



A−1V ′
c0

= A





λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k





−1



λi
1

...
λi

k





= Vci

and the traces of Vℓ are the same as the ones of D. The conditions we imposed on

(V ′, x1, . . . , xk), imply that the image of π, U , is dense, and hence π is a dominant

map.

We have a bijection between the generators of C[issαQ] and C[issα′Q′]⊗C[X1, . . . , Xk]

by identifying

fℓi 7→ Xi, i = 1, . . . , k , f···aℓi··· 7→ f···ci···, i = 0, . . . , k − 1

Notice that higher orders of ℓ don’t occur because of the Caley Hamilton identity

on Vℓ. So if n is the number of generators of C[issαQ], we have two maps

φ : C[Y1, · · ·Yn]→ C[issαQ] ⊂ C[RepαQ],

φ′ : C[Y1, · · ·Yn]→ C[issα′Q′]⊗ C[X1, . . . , Xk] ⊂ C[Repα′Q′ × C
k].

Notice that we have that φ′(f)◦π ≡ φ(f) and φ(f)◦π−1|U ≡ φ′(f)|U . So if φ(f) = 0

then also φ′(f)|U = 0. Because U is zariski-open and dense in Repα′Q′ × C2,

φ′(f) ≡ 0. A similar argument holds for the inverse implication so Kerφ = Kerφ′.

�

We have seen three possible reductions of a quiver setting which keep the ring of

invariants intact or split of a tensor product with a polynomial ring. We can also

apply the inverse steps of the reduction to add new vertices or loop while keeping

the ring of invariants the same or tensoring it up with a polynomial ring. These

inverse steps will be denoted as R−1
... .

The previous three lemma’s can now be summarized as

Theorem 3.5. Suppose that (Q, α) and (Q′, α′) are two quiver settings that can

be transformed into eachother using consecutive steps of the form RI , R
−1
I , RII ,

R−1
II , RIII or R−1

III . Then (Q, α) is coregular if and only if (Q′, α′) is coregular.
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Definition 3.1. A quiver setting (Q, α) such that there cannot be applied any

reduction steps RI , RII or RIII will be called reduced.

It remains now to search for the reduced coregular quiver settings. As we will see

there are only a very limited number of them. But before we do that we must

introduce some techniques that allow us to rule out non coregular quiver settings.

4. Local Quiver settings

The technique of local quiver settings is very useful to rule out quiver settings that

are not coregular. If we want to prove that a certain (Q, α) is coregular, we have

to check that issαQ is smooth in every point. Take a point p ∈ issαQ, this point

will correspond to the isomorphism class of a semisimple representation V ∈ RepαQ

which can be decomposed as a direct sum of simple representations.

V = S⊕a1
1 ⊕ · · · ⊕ S⊕ak

k ,

A theorem by Le Bruyn and Procesi [6, Theorem 5] states that we can build a new

quiver setting with a similar quotient space, but having a simpler structure.

Theorem 4.1 (Le Bruyn-Procesi). For a point p ∈ issαQ corresponding to a semisim-

ple representation V = S⊕a1
1 ⊕ · · · ⊕ S⊕ak

k , there is a quiver setting (Qp, αp) called

the local quiver setting such that we have an étale isomophism between an open

neighborhood of the zero representation in issαp
Qp and an open neighborhood of p.

Qp has k vertices corresponding to the set {Si} of simple factors of V and between

Si and Sj the number of arrows equals

δij − χQ(αi, αj)

where αi is the dimension vector of the simple component Si and χQ is the Euler

form of the quiver Q. The dimension vector αp is defined to be (a1, . . . , ak), where

the ai are the multiplicities of the simple components in V .

Suppose now that we want to find out whether a certain space issαQ is smooth. If

this were the case we can choose a certain point p and look at it locally. Because

of the étale isomorphism, the corresponding local quiver Qp must have a quotient

space issαp
Qp that is smooth in the zero representation. Therefore by 2.1, C[issαp

Qp]
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must be a polynomial ring and hence (Qp, αp) is coregular. This must hold for every

point so we have to check all possible points p.

Theorem 4.2. (Q, α) is coregular if and only if for every possible semisimple α-

dimensional representation V , the corresponding local quiver setting is coregular.

One of the local quivers is equal to the original quiver, namely the one corresponding

to the α-dimensional zero-representation

⊕

v∈V

S⊕αv

v ,

This implies that we can only use this result to rule out quiver settings that are not

coregular.

The structure of the local quiver setting only depends on the dimension vectors of

the simple components. Therefore one can restrict to looking at decompositions of

α into dimension vectors βi f.i.

α = a1β1 + · · ·+ akβk (the βi need not to be different).

One can now ask whether there is a semisimple representation corresponding to

such a decomposition. The answer to this question will be positive whenever for

all the βi there exist simple representations of that dimension vector and if there

are two or more βi equal, there are at least as many different simple representation

classes with dimension vector βi (otherwise you cannot make a direct sum with

different simple representations having the same dimension vector).

To check the above conditions we must also have a characterization of the dimension

vectors for which a quiver has simple representations. We recall a result from Le

Bruyn and Procesi [6, Theorem 4].

Theorem 4.3. Let (Q, α) be a genuine quiver setting. There exist simple repre-

sentations of dimension vector α if and only if

• If Q is of the form

'&%$ !"# , '&%$ !"#
��

or

'&%$ !"# // '&%$ !"#

��=
==

==

'&%$ !"#

@@�����
#V ≥ 2 '&%$ !"#

����
��

�

'&%$ !"#

^^=====
'&%$ !"#

and α = 11 (this is the constant map from the vertices to 1).
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• Q is not of the form above, but strongly connected and

∀v ∈ V : χQ(α, ǫv) ≤ 0 and χQ(ǫv, α) ≤ 0

(we recall that a quiver is straongly connected if and only if between every

two vertices there are paths connection them in both directions).

In both cases the dimension of issαQ is given by 1 − χQ(α, α). In all cases except

for the one vertex without loops this dimension is bigger then 0, so then there are

infinite classes of simples with that dimension vector. In the case of the one vertex

v without loops, there is one unique simple representation Sv.

If (Q, α) is not genuine, the simple representations classes are in bijective correspon-

dence to the simple representations classes of the genuine quiver setting obtained

by deleting all vertices with dimension zero.

To rule out quiver settings that are not coregular we must find a local quiver setting

that is not coregular or contains a non-coregular subquiver setting by lemma 2.3.

For symmetric quiver settings, these are quiver settings with a symmetric Euler

form, [3] gives us a complete classification of all possible quiver settings that are

coregular.

Definition 4.1. A quiver Q = (V, A, s, t) is said to be the connected sum of 2

subquivers Q1 = (V1, A1, s1, t1) and Q1 = (V2, A2, s2, t2) at the vertex v, if the

two subquivers make up the whole quiver and only intersect in the vertex v. So in

symbols V = V1 ∪ V2, A = A1 ∪A2, V1 ∩ V2 = {v} and A1 ∩A2 = ∅.

Q1
#
v Q2 :=

. . .

  B
BB

BB
BB

BB
. . .

~~||
||

||
||

|

Q1
/.-,()*+v

  B
BB

BB
BB

BB

~~||
||

||
||

|
Q2

. . . . . .

If we connect three or more components we write Q1
#
v Q2

#
wQ3 instead of (Q1

#
v Q2)#wQ3

for sake of simplicity.
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Theorem 4.4. Let (Q, α) be a symmetric strongly connected quiver setting with-

out. Then (Q, α) is coregular if and only if Q is a connected sum

Q := Q1
#
v1

Q2
#
v2
· · · #

vl−1
Ql,

where the (Qi, αi) are of the form

I /.-,()*+n
**
76540123mhh

II /.-,()*+1

k
$,
/.-,()*+n

k

dl , k ≤ n

III /.-,()*+1
((
/.-,()*+nhh

**
76540123mhh

IV /.-,()*+n
((
/.-,()*+2hh

))
76540123mhh ,

and αvj
= 1, j = 1, . . . , l − 1

5. Reduced coregular quiver settings

First we look a the case of loops

Lemma 5.1. Suppose (Q, α) is a coregular strongly connected quiver setting such

that

∀w ∈ V : χQ(α, ǫw) < 0 and χQ(ǫw, α) < 0.

If v is a vertex with loops then αv = 1 or the neighborhood of v has the following

form

C1 : /.-,()*+2

��

XX C2 :

76540123k

�� ))RRRRRRRRRR
��

/.-,()*+1

>>}}}}
76540123u1 · · · ?>=<89:;uk

C3 :

76540123k

~~}}
}}

��

/.-,()*+1 76540123u1

OO

· · · ?>=<89:;uk

iiRRRRRRRRRR

Proof. 1. if αv ≥ 3 there is only one loop in v

Suppose that αv ≥ 3 there are at least two loops in v. In this case we have a

subquiver as shown below. This subquiver can be transformed into a symmetric
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quiver without loops using lemma 3.2 (in both ways). By 4.4 this symmetric setting

is not coregular, if αv > 2.

?>=<89:;αv

��

XX
R

−1
I−→

?>=<89:;αv

��
?>=<89:;αv

II

��
?>=<89:;αv

II

︸︷︷︸

not coregular

2. If αv = 2 we are in C1 or there is only 1 loop in v

If αv = 2 and we or not in C1, C2 or C3, Q has either at least 3 loops or either

two loops and a cyclic path through v (this cyclic path can be constructed because

Q is strongly connected and contains at least 2 vertices, otherwise (Q, α) = C1).

In both cases we can take again the corresponding subquivers and change them to

a symmetric quiver without loops which is not coregular according to 4.4.

/.-,()*+2 rr,,
XX

R
−1
I−→

/.-,()*+2

��

/.-,()*+2

uu/.-,()*+2

55
UU

		
76540123k

II

︸ ︷︷ ︸

not coregular

RI ,R
−1
I←−

/.-,()*+2

  A
AA

A
rr,,

76540123i1

??����
76540123u1oo o/ o/ o/ o/

So the only possibility with more than one loop is C1.

3. If αv ≥ 2 and there is only 1 loop in v then we are in C2 or C3

Suppose that the dimension in v is bigger than 1 and that there is only 1 loop.

Consider the representation

W ⊕ L⊕

(
⊕

w∈V

S⊕αw−1−δvw

w

)

where W is a simple representation with dimension vector 11 which is the constant

map assigning 1 to every vertex. Such a representation exists by 4.3 because Q

is strongly connected and χQ(1, ǫw) ≤ 0. Sw is the representation with dimension

vector ǫw which assigns to every arrow a zero matrix, while L is a representation

with dimension vector ǫv which assigns to the loop in v a non-zero matrix.
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For every vertex w 6= v with dimension bigger than 1 the local quiver contains

exactly one vertex corresponding to the simple representation Sw. For v there is

at least one vertex in the local quiver coming from L, which has dimension 1. If

αv > 2 there is an extra vertex from the Sv but we won’t consider it because it

doesn’t change the proof.

The subquiver containing the vertices from L en Sw, w 6= v is the same as in the

original quiver because

χQ(ǫu, ǫw) = δuw −#{a| /.-,()*+u 76540123w
aoo }

In the local quiver we will draw the additional vertex coming from W as a square.

The number of arrows from another vertex coming from Sw to the vertex coming

from W is equal to −χQ(11, ǫw) and hence one less than the number of arrows leaving

w in the original quiver. The same holds for the number of arrows in the opposite

direction and for the arrows between L and W .

We will now look closely at the neighborhood of v.

• χQ(ǫv, 11) ≤ −2 and χQ(11, ǫv) ≤ −2 is impossible

The local quiver has a subquiver containing /.-,()*+1
$,
1dl , and (Q, α) is not

coregular. For (Q, α) to be a coregular quiver setting, one can suppose that

either χQ(ǫv, 11) = −1 or χQ(11, ǫv) = −1.

• χQ(ǫv, 11) = −1 and χQ(11, ǫv) ≤ −2 implies C2.

We claim that if w1 is the unique vertex in Q such that χQ(ǫv, ǫw1) = −1

then αw1 = 1.

If this was not the case there is a vertex correponding to Sw1 in the local

quiver. If χQ(11, ǫw1) = 0 then the dimension of the unique vertex w2 with an

arrow to w1 has strictly bigger dimension than w1, otherwise χQ(α, ǫw1) ≥ 0.

The vertex w2 corresponds again to a vertex in the local quiver. If χQ(11, ǫw2) =

0, the unique vertex w3 with an arrow to w2 has strictly bigger dimension than

w2. Proceeding this way one can find a sequence of vertices with increasing

dimension, which attains a maximum in vertex wk. Therefore χQ(11, ǫwk
) ≤
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−1. This last vertex is in the local quiver connected with W , so one has a

path from 11 to ǫv.

/.-,()*+2

��

�&
FF

FF
FF

FF
FF

FF

?>=<89:;w1

<<yyyyyy
. . .

?>=<89:;wk

OO
O�
O�

. . .

;;wwwwww
. . .

ccGGGGGG

local
−→

/.-,()*+1

��

��

?>=<89:;w1

>>||||||

?>=<89:;wk

OO
O�
O�

11

``BBBBB

KK

The local subquiver consisting of the vertices corresponding to W , Sv and the

Swi
is reducible via RI to /.-,()*+1

$,
1dl . So if αw1 > 1, (Q, α) is not coregular.

• χQ(ǫv, 11) ≤ −2 and χQ(11, ǫv) = −1 implies C3.

This follows by symmetry.

• χQ(ǫv, 11) = −1 and χQ(ǫv, 11) = −1 implies C2 or C3.

Suppose w1 is the unique vertex in Q such that χQ(ǫv, ǫw1) = −1 and wk is

the unique vertex in Q such that χQ(ǫwk
, ǫv) = −1, then either αw1 = 1 or

αwk
= 1.

If this was not the case, consider the path connecting wk and w1 and

call the intermediate vertices wi, 1 < i < k. Starting from w1 we go back

along the path until αwi
reaches a maximum. At that point we know that

χQ(11, ǫwk
) ≤ −1, otherwise χQ(α, ǫwk

) ≥ 0. In the local quiver there is a path

from the vertex corresponding to W over the ones from Swi
to Sv. Doing the

same thing starting from wk we also have a path from the vertex from Sv over

the ones of Swj
to W .

/.-,()*+2

��

  B
BB

BB
B

?>=<89:;w1

>>||||||
?>=<89:;wk

���O
�O

?>=<89:;wi

OO
O�
O�

?>=<89:;wj

##F
FF

FF
Fkk

##F
FF

FF
F

. . .

;;xxxxxx
. . .

local
−→

/.-,()*+1

��

��

  B
BB

BB
B

?>=<89:;w1

>>||||||
?>=<89:;wk

���O
�O

?>=<89:;wi

OO
O�
O�

?>=<89:;wj

~~}}
}}

}}

11

``AAAAAA

KK
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The subquiver consisting of 11, ǫv and the two paths through the ǫwi
is reducible

to /.-,()*+1
$,
1dl . So if both αw1 > 1 and αwk

> 1, (Q, α) is not coregular.

�

We will now look at the reduced quiver settings without loops.

Lemma 5.2. A quiver setting with dimension vector 11 is coregular if and only if

the number of primitive cycles equals the dimension of C[iss11Q].

Proof. The condition is obviously sufficient. It is also necessary because if the

number of cycles is bigger than the dimension then there will be a relation between

the cycles. If C[iss11Q] is a polynomial ring, these relations must be of the form

Y = X1 . . . Xk but this is impossible because Y is a primitive cycle. �

Lemma 5.3. A strongly connected reduced quiver setting without loops is never

coregular.

Proof. If α 6= 11, consider the vertex v with the highest dimension. Then there exists

indeed simple representations with dimension vector α−ǫv because a reduced setting

is never of the form

'&%$ !"# , '&%$ !"#
��

or

'&%$ !"# // '&%$ !"#

��=
==

==

'&%$ !"#

@@�����
#V ≥ 2 '&%$ !"#

����
��

�

'&%$ !"#

^^=====
'&%$ !"#

and α− ǫv satisfies the second condition of theorem 4.3:

• If there is no arrow from w to v, χQ(α− ǫv, ǫw) = χQ(α, ǫw) ≤ −1.

• If there are k arrows from w to v then χQ(α, ǫw) ≤ αw − kαv ≤ (1 − k)αv so

χQ(α− ǫv, ǫw) ≤ (1− k)αv + χQ(ǫv, ǫw) = (1− k)αv − k ≤ −1.

• Finally for v = w

χQ(α− ǫv, ǫv) = χ(α, ǫv)− 1 < −1 and χQ(ǫv, α− ǫv) ≤ −1.

For reasons of symmetry χQ(ǫ, α− ǫv) will also be smaller than 0 for every w ∈ V .
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Due to the inequality χQ(ǫv, α − ǫv) ≤ −1, the local quiver of a decomposition of

the form

(Q, α− ǫv)⊕ (Q, ǫv)

will not be coregular.

Suppose thus α = 11. Because (Q, α) is reduced, there are at least 2 arrows arriving

and leaving every vertex. For a connected quiver without loops DimC[iss11Q] =

#A − #V + 1 so we have to prove that for such quivers the number of primitive

cycles is bigger than #A − #V + 1 or that Q constains a subquiver that is not

coregular. We will do this by induction on the vertices.

• For #V = 2 the statement is true because

Q := /.-,()*+1

k
$, /.-,()*+1

l

dl , k, l ≥ 2 ⇒ kl > k + l − 1.

• Suppose #V > 2 and that we have a subquiver of the form

/.-,()*+1

k
$, /.-,()*+1

l

dl (∗)

If k, l > 1 we know that this subquiver is not coregular and hence neither is

Q.

If both k and l are 1 then replace this subquiver by 1 vertex.









...
/.-,()*+1

((

\\:::::
/.-,()*+1hh

BB����� ...BB�����

\\:::::









−→









...
/.-,()*+1

\\:::::
BB����� ...BB�����

\\:::::









The new quiver Q′ is again reduced without loops because there are at least

4 arrows arriving in one of the vertices of the subquiver and we only deleted

2, the same holds for the arrows leaving the subquiver. Q′ has one primitive

cycle less than the original. By induction we have that

DimC[iss11Q] = DimC[iss11Q
′] + 1

> (#A′ −#V ′ + 1) + 1

= #A−#V + 1.
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If for instance k > 1 then one can look at the subquiver of Q obtained by

deleting the k − 1 edges, if this quiver is reduced then we are in the previous

situation. If this is not the case Q contains a subquiver of the form

/.-,()*+1

k
$, /.-,()*+1hh

��?
??

??
??

??

/.-,()*+1

??���������
/.-,()*+1oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

,

which is not coregular because it is reducible to (∗).

• If #V > 2 and there are no subquivers of the form (∗), we can consider an

arbitrary vertex v. Construct a new quiver Q′ by performing the following

substitution for v














l arrows
︷ ︸︸ ︷

/.-,()*+1 · · · /.-,()*+1

/.-,()*+1

aaCCCCC
=={{{{{

/.-,()*+1

=={{{{{
· · · /.-,()*+1

aaCCCCC

︸ ︷︷ ︸

k arrows














−→













/.-,()*+1 · · · /.-,()*+1

/.-,()*+1

OO <<xxxxxxxxxxx
· · · /.-,()*+1

OObbFFFFFFFFFFF

︸ ︷︷ ︸

kl arrows













.

Q′ is again reduced without loops and has the same number of primitive cycles,

so by induction

DimC[iss11Q] = DimC[iss11Q
′]

> #A′ −#V ′ + 1

= #A + (kl − k − l)−#V + 1 + 1

> #A−#V + 1.

�

All this leads to the proof of our main theorem.

Proof. Statement 1.1 follows immediately from lemmas 5.1 and 5.3 and the fact

that as proven in [8] the quiver settings that are listed in the theorem are coregular

�
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[10] F. Van Oystaeyen and C. Nastasescu. Graded and Filtered Rings and Modules. Springer-

Verlag, Berlin Heidelberg New York, 1979.

Universiteit Antwerpen (UIA), B-2610 Antwerp (Belgium)

E-mail address: rbockl@uia.ac.be

http://suriya.library.cornell.edu/abs/math/0010251

	Introduction and motivation
	Quiver representations
	Reduction Steps
	Local Quiver settings
	Reduced coregular quiver settings

