
Chapter 1

A short review of Algebraic
Geometry

1.1 Affine Varieties

In algebraic geometry one studies the connections between algebraic varieties,
which are sets of solutions of polynomial equations, and complex algebras.

An affine variety is a subset X ⊂ Cn that is defined by a finite set of polynomial
equations.

X := {x ∈ Cn|f1(x) = 0, . . . , fk(x) = 0}

A morphism between two varieties X ∈ Cn an Y ∈ Cm is a map φ : X → Y
such that there exist a polynomial map Φ : Cn → Cm such that φ = Φ|X . Such
a morphism is an isomorphism if φ is invertible and φ−1 is also a morphism.

We can consider C as a variety, so it makes sense to look at the morphisms from
a variety X to the variety C, these maps are also called the regular functions on
X. They are closed under pointwise addition and multiplication so they form a
commutative C-algebra: C[X].

C[X] := {φ : X → C|ρ is a morphism of varieties}

This algebra can be described with generators and relations. To every variety
X ∈ Cn the set of polynomial functions that are zero on X form an ideal in
C[x1, · · · , xn]. If we divide out this ideal we get the ring of polynomial functions
on X.

C[X] := C[x1, . . . , xn]/(f |∀x ∈ X : f(x) = 0)

1



CHAPTER 1. A SHORT REVIEW OF ALGEBRAIC GEOMETRY

This algebra is finitely generated by the xi and it also has no nilpotent elements
because f(x)n = 0⇒ f(x) = 0.

A morphism between varieties, φ : X → Y , will also give an algebra morphism
between the corresponding rings but the arrow will go in the opposite direction:

φ∗ : C[Y ]→ C[X] : g 7→ g ◦ φ.

On the other hand if R is a finitely generated commutative C-algebra without
nilpotent elements, by definition we will call this an affine algebra. Every affine
algebra can be written as a quotient of a polynomial ring C[x1, . . . , xn] with an
ideal i. Because polynomial rings are Noetherian, i is finitely generated by f.i.
f1, . . . , fk. Therefore we can associate to R the variety V (R) in Cn defined by
the fi.

Although this variety depends on the choice of generators of R and i, there is
a more intrinsic description of V (R). Indeed the points of V (R) are in one to
one correspondence with the algebra morphisms from R to the algebra C (or
equivalently the maximal ideals of R.)

V (R) := {ρ : R→ C|ρ is an algebra morphism}

A morphism between algebras, φ : R → S, will also give an algebra morphism
between the corresponding rings but the arrow will go in the opposite direction:

φ∗ : V (S)→ V (R) : ρ 7→ ρ ◦ φ.

The main theorem of algebraic geometry now states that the operations V (−)
and C[−] are each other’s inverses:

Theorem 1.1. The category of commutative affine algebras and the category of
affine varieties are anti-equivalent. So working with affine varieties is actually
the same as working with affine algebras but all maps are reversed. The anti-
equivalence is given by the contravariant functors V (−) and C[−], so

C[V (R)] ∼= R and V (C[X]) ∼= X

This theorem enables us to translate every geometrical statement about affine
varieties into an algebraic about affine algebras and vice versa.

Memo 1.2. Affine algebraic geometry is affine commutative algebra with the
arrows reversed.
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1.2 Projective Varieties

Given a set of variables x1, . . . , xn with degree 0, a set of variables y0, . . . , ym of
degree 1, and a set of homogeneous polynomials f1, . . . , fk. We define a subset of
Cn × Pm where Pm is the projective m-space.

V := {((x1, . . . , xn), (y0 : · · · : ym)) |fi = 0}

This is well defined because the polynomials are homogeneous. To this we can
associate the ring

R = C[x1, . . . , xn, y0, . . . , ym]/(f1, . . . , fk).

This ring is graded by giving the xi degree 0 and the yi degree 1.

Y = Proj R := {maximal graded ideals in R that do not contain the ideal (y0, . . . , yn)}

The ring R contains a subring R0 of all degree 0 elements (the ring generated by
the xi) and there is a map from Y to X := V (R0):

π : Y 7→ V (R0) : ((x1, . . . , xn), (y0 : · · · : ym))→ (x1, . . . , xn).

We call Y a variety that is projective over X. If R0
∼= C then V (R0) is a point

and we call Y projective. Such a variety is the union of affine varieties:

Yi := {((x1, . . . , xn), (y0 : · · · : ym)) ∈ Y |xi = 1} = V (R/(yi − 1)).

A morphism between two such varieties Y and Y ′ is a map φ : Y → Y ′ such that
φij : φ−1(Y ′j ) ∩ Yj → Y ′j : x 7→ φ(x) is a morphism between affine varieties for
all i, j. Such a morphism is an isomorphism if φ is invertible and φ−1 is also a
morphism.

An example of an isomorphism of two projective varieties is the following. Let
X = P1 and Y := {(x : y : z)|xy − z2 = 0} and define

φ : X → Y : (x : y) 7→ (x2 : y2 : xy).

However unlike in the affine case there are non-isomorphic rings that give isomor-
phic projective varieties: in the example above Proj C[x, y] = X and Proj C[x, y, z]/(xy−
z2) = Y .

The advantage of using projective varieties is that as topological spaces they are
compact, while the only affine varieties that are compact are points. Using these
varieties makes some geometry usual simpler (affine, there is a differents between
the hyperbola and parabola but there projective versions are isomorphic).

Apart from projective and affine varieties there are lots of other varieties, but the
general definition of a variety is quite complicated, so we will not introduce it.
Intuitively a variety is a topological set which is the union of overlapping affine
varieties.
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1.3 Smoothness

If V ⊂ Cn is an affine variety defined by f1, . . . , fk then we define the tangent
space in p ∈ V as the vector space

TpV := {(y1, . . . , yn)|
(
∂fi
∂xj

)
p

yj = 0}

Again this definition depends on the choice of the f ′s but one can show that a
different choice of generators gives an isomorphic vector space.

The dimension of a variety V is the minimal dimension of all its tangents spaces.

dimV := min
p∈V

dimTpV

A point p is called a smooth point if dimV = dimTpV and otherwise it is called
singular. A vbariety is called smooth if all its points are smooth and singular
otherwise. The subset of all singular points of a variety is called the singular
locus.

Smooth varieties are in many ways the nicest and easiest varieties and singular
varieties are a lot more difficult to study. Therefore one wants to find a method
to turn a singular variety V into a closely related smooth variety Ṽ . This process
is called resolving the singularities. More precisely one wants to construct a
surjective morphism Ṽ → V that is almost everywhere bijective (i.e. on an open
dense part) such that all the fibers are compact and Ṽ is smooth.
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Chapter 2

Resolving singularities

2.1 Resolving singular curves

The first example we do is a singular elliptic curve. LetR be the ring C[X, Y ]/(Y 2−
X3 +X2). This curve has a singular point in (0, 0).

The problem seems that there are two tangent directions in (0, 0), and the curve
intersects itself. To get rid of this singularity one should split to point (0, 0) in
two. This can be done by adding the function Y/X (the slope of the tangent in
0) to the ring

R̃ := C[X, Y,
Y

X
]/(Y 2 −X3 −X2) = C[X, Y, Z]/(Y 2 −X3 +X2, ZX − Y )

What is special about the element Z? it is an element of the quotient field Q(R) :=
{a
b
|a, b ∈ R} and it is integral over R i.e. it satisfies a monic polynomial with

coefficients in R:
Z2 − (X − 1) = 0.

In fact one can check that the ring R̃ is the integral closure of R: it is the subring
of Q(R) consisting of all elements that are integral over R. A ring that equals its
integral closure is called integrally closed or normal.

Theorem 2.1 (normal curves are smooth). If R is a normal ring and V (R) has
dimension 1 then V (R) is smooth.

Proof. See Janos Kollar, Lectures on resolution of singularities. Theorem 1.30

If R is the coordinate ring of a singular curve then we can look at the embedding
of R in its integral closure. The embedding ι : R→ R̃ gives us a map π : V (R̃)→
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V (R). One can prove that this map is surjective and a bijection on the smooth
points of V (R).

Memo 2.2. Resolving a singular curve can be done by going to the integral
closure.

2.2 Resolving surface singularities

In dimension 2 going to the integral closure is not sufficient because there are
singular varieties for which the ring is integrally closed. The standard example
of this is C[x, y, z]/(xy − z2).

If we to generalize the constructions of dimension 1, we would like to add one
point for each tangent line through a singularity. This procedure cannot be done
by affine geometry alone because the space of lines through a point is a projective
variety.

An interesting way of constructing resolutions is by using blow-ups. Suppose V
is an affine variety and n C C[V ] is an ideal corresponding to the closed subset
X. The blow-up of X is then defined as

Ṽ = Proj C[V ]⊕ nt⊕ n
2t2 ⊕ · · · .

The standard projection π : Ṽ → V is at least a partial resolution because if
p ∈ V \X and y0t, . . . ymt are the generators of nt is there must be at least one
yi that is not zero on p, so the preimage of p will only contain the point

(x1(p), . . . , xn(p), y0(p), . . . , ym(p))

We will now do some examples. The ring C[X, Y, Z]/(XY − Z2) has a unique
singularity in the point (0, 0, 0) because

(∂X , ∂Y , ∂Z)r = (Y,X, 2Z) = 0⇔ (X, Y, Z) = (0, 0, 0).

The blow-up is (using the convention x = Xt, y = Y t, z = Zt)

Proj C[X, Y, Z]/(r)⊕ (X, Y, Z)t⊕ (X, Y, Z)2t2 ⊕ · · ·

=
C[X, Y, Z, x, y, z]

(XY − Z2, Xy − xY, xZ −Xz, Y z − yZ,Xy − Zz, xy − z2)

= {(X, Y, Z,X, Y, Z) ∈ C3 \ {0} × P2|XY − Z2} ∪ {(0, 0, 0, x, y, z) ∈ P2|xy − z2 = 0}

where the last bit is the exceptional fiber, it is a conic and hence as a variety it is
isomorphic to P1. We can cover the blow-up variety by two parts corresponding
to
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x 6= 0 we can put x = 1 and then the ring becomes

R/(x−1) =
C[X, Y, Z, y, z]

(XY − Z2, Xy − Y, Z −Xz, Y z − yZ,Xy − Zz, y − z2)
= C[X, z]

which is smooth.

y 6= 0 we can put y = 1 and then the ring C[Y, z].

z 6= 0 is not necessary because it implies that both x, y 6= 0.

The ring An = C[X, Y, Z]/(XY −Zn), n ≥ 3 has a unique singularity in the point
(0, 0, 0) because

(∂X , ∂Y , ∂Z)r = (Y,X, 3Z2) = 0⇔ (X, Y, Z) = (0, 0, 0).

The blow-up is

C[X, Y, Z, x, y, z]

(XY − Zn, Xy − xY, . . . , Xy − Zn−1z, xy − Zn−2z2)

= {(X, Y, Z,X, Y, Z) ∈ C3 \ {0} × P2|XY − Z2} ∪ {(0, 0, 0, x, y, z) ∈ P2|xy = 0}

where the last bit is the exceptional fiber, it is a union of 2 projective lines that
intersect in the point (0, 0, 0, 0, 0, 1).

We can cover the blow-up variety by three parts corresponding to

x 6= 0 gives C[X, z] which is smooth.

y 6= 0 gives C[Y, z] which is smooth.

z 6= 0 gives C[Z,x,y]
(xy−Zn−2)

which has a singularity if n > 3, but this singularity is
’smaller’ so we can blow it up again.

Diagramatically we get the following

�

An

PWQVRUSTPWQVRUST�

An−2

PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST• •�

An−4

PWQVRUSTPWQV RUSTPWQVRUST• •· · ·

n− 1× P1

Memo 2.3. The singularities C[X, Y, Z]/(XY −Zn) can be resolved by blowing
up several times.
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Now have a look at Dn := C[X, Y, Z]/(Xn+1 +XY 2 + Z2)

If n = 2 The first blow-up has exceptional fiber z = 0 because the relation
becomes Xx2 + Xy2 + z2 = 0. If we look at the chart for y 6= 0 we get the
relation

x3Y + xY + z2

which has three singularities, for x = 0,±i if we blow these 3 up, we get 3
exceptional fibers of the form ξ̄y+ ζ̄2 with ζ̄ = zt, ξ̄ = t(x+ 0,±i) (depending on
the point blown up). One can check easily that there are no further singularities.

If n > 2 then the exceptional fiber is z = 0. There are two singularities in the
blow-up, the one corresponding to (1, 0, 0) which is of the type Dn−2 and the one
in (0, 1, 0) which has local equation xn+1Y n−1 +xY +z2. The blow-up of this last
singularity has as exceptional fiber a conic (look at the degree 2-part) and there
are no further singularities.

The diagram looks as

N

Dn

PWQVRUSTN �

Dn−2

PWQVRUSTPWQVRUSTPWQVRUST• N �

Dn−4

PWQVRUSTPWQV RUSTPWQVRUST• •· · · N

D3

PWQVRUSTPWQV RUSTPWQVRUSTPWQVRUST• •· · · N
N

N
C

PWQVRUSTPWQV RUSTPWQVRUSTPWQVRUSTPWQVRUST
PWQVRUST

PWQVRUST
• •· · · • •

•

•

PWQVRUSTPWQV RUSTPWQVRUST• •· · · N

D2

PWQVRUSTPWQV RUSTPWQVRUSTPWQVRUST• •· · · •
N

N
C

These two examples indicate that in dimension 2 the way to resolve singularities,
is by blowing up singular points. This is indeed the case in general:

Memo 2.4. Resolving a singular surface can be done by consecutively going to
the intgral closure and blowing up singular points.

In general this process can be quite cumbersome and tedious, so we want to
search for a new way of constructing the resolution. To do this we need to have
a look at group actions.
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Chapter 3

Group actions and the affine
quotient

3.1 Quotients and rings of invariants

Suppose we have a finite group G and let V be a finite dimensional complex vector
space with a linear G-action (i.e. for every g ∈ G the map v 7→ g · v is linear.

V can also be considered as the variety Cn. For every point v ∈ V we can define
the orbit G · v := {g · v|g ∈ G}. Orbits never intersect so we can partition V into
its orbits. We will denote the set of all orbits by V/G.

A natural question one can ask if whether this set can also be given the structure
of an affine variety. In the case of finite groups it will be possible, but for general
groups there will be extra complications.

We can take a closer look at the problem by looking at the algebraic side of the
story. The ring of polynomial functions over V is R = C[V ] ∼= C[X1, . . . , Xk] is a
graded polynomial ring if we give the Xi degree 1.

On R we have an action of G:

G× C[V ]→ C[V ] : (g, f) 7→ g · f := f ◦ ρV (g−1).

This action is linear and compatible with the algebra structure: g · f1f2 = (g ·
f1)(g · f2).

The set of elements of R that are invariant under the group form a sub ring of
R, which we call the ring of invariants and we denote it by

RG := {f |g · f = f}
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The G-action maps homogeneous elements of to homogeneous elements with the
same degree and therefore the ring of invariants is alsoo a graded ring.

We are now ready to state the main theorem:

Theorem 3.1. If G is a finite group with a linear group action V then the ring
of invariants S = C[V ]G is finitely generated.

Proof. To prove that RG is finitely generated we first prove that this ring is
noetherian. Suppose that

a1 ⊂ a2 ⊂ a3 ⊂ · · ·
is an ascending chain of ideals in RG. Multiplying with R we obtain a chain of
ideals in R:

a1R ⊂ a2R ⊂ a3R ⊂ · · · .
This chain is stationary because R is a polynomial ring and hence noetherian.

Now construct the map

% : R 7→ RG : f 7→ 1

|G|
∑
g∈G

g · f.

This map is called the reynolds operator and has the property that π(f) = f if
and only if f ∈ RG and π(f1f2) = f1π(f2) if f1 ∈ RG. Therefore π(aiR) = ai and
hence the chain a1 ⊂ a2 ⊂ a3 ⊂ · · · is also stationary.

Now let S+ = denote the ideal of RG generated by all homogeneous elements of
nonzero degree. Because RG is Noetherian, S+ is generated by a finite number
of homogeneous elements: S+ = f1R

G +. . . +frR
G.Wewillshowthatthesefi also

generate S as a ring.

Now RG = C + S+ so S+ = Cf1 + · · ·+ Cfr + S2
+, S2

+ =
∑

i,j Cfifj + S3
+ and by

induction
St+ =

∑
i1...it

Cfi1 · · · fit + St+1
+ .

So C[f1, . . . , fr] is a graded subalgebra of RG and RG = C+S+ = C[f1, . . . , fr]+S
t
+

for every t. If we look at the degree d-part of this equation we see that

RG
d = C[f1, . . . , fr]d + (St+)d.

Because St+ only contains elements of degree at least t, (St+)d = 0 if t > d. As
the equation holds for every t we can conclude that

RG
d = C[f1, . . . , fr]d and thus RG = C[f1, . . . , fr]
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Now because RG is finitely generated and does not have nilpotent elements, it
corresponds to a variety V (RG) and the embedding RG ⊂ R gives a

V (R)→ V (RG) : m 7→ m ∩RG

This map is a surjection because if s is a maximal ideal in RG then sR is not equal
to R because then π(sR) = sπ(R) = s 6= RG. Therefore sR will be contained in
a maximal ideal mCR (there may be more) so π(m) = s.

Furthermore points of V (R) in the same orbit are mapped to the same point in
V (RG) because f(g · p) = (g · f)(p) = f(p) if f ∈ RG. The reverse implication
is also true. Remember that for a finite number of points p1, . . . , pk and a set of
complex numbers a1, . . . ak we can always find a polynomial function f ∈ R such
that f(pi) = ai. So if p and q have disjoint orbits we can chose the values such
that ∑

g∈G

f(gp) 6=
∑
g∈G

f(gq).

therefore the function %(f) ∈ RG will be different on the orbits of p and q.

Memo 3.2. We can construct a quotient of a finite group by taking the variety
corresponding to the ring of invariants.

3.2 Infinite groups

For infinite groups the situation is a bit more complicated. In full generality the
ring of invariants is not finitely generated, but for a large class of groups it still is.
Such groups are call reductive groups. Examples of infinite reductive groups ar
compact groups, general linear groups, orthogonal groups and symplective groups
and finite cartesian products of them. There are however nonreductive groups of
which C,+ is the most important.

For reductive groups we still get a surjection from V (R) to V (RG) but more
than one orbit can be mapped to the same point. Because the surjection is a
continuous map π−1(x) must be a closed subset, so if there exists an orbit O that
is not closed and w = π(O) we know that π−1(w) must contain points outside
O (Note that if G is finite then this problem does not occur because all orbits
contain only a finite number of points and are hence closed). However it is still
true that different closed orbits are mapped to different points.

We can summarize all this in a theorem

Theorem 3.3. If V is a finite dimensional representation of a reductive group,
then there exists a unique variety V//G = V (C[V ]G) such that
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1. The points are in one-to-one correspondence with the closed orbits in V .

2. The projection V → V//G is a categorical quotient.

3. If G is finite then as a set V//G = V/G.

3.3 Examples

In this section we will determine generators and relations for the rings of invari-
ants of some group actions. We will do two examples consisting where the group
is a group of 2× 2-matrices which act on V = C2.

I is generated by g =

(
e

2πi
n 0

0 e−
2πi
n

)

II is generated by g =

(
e
πi
n 0

0 e−
πi
n

)
and s =

(
0 i
i 0

)

In order to find the generator and relations of the rings of invariants, we will use
the Reynolds operator

%(f) =
1

|G|
∑
g∈G

g · f.

This map is a projection %2 = % and it is the identity operation on C[V ]G. So to
get a basis for the ring of invariants we can look at the set of images of all the
monomials in C[V ].

%X iY j.

We will now consider the different types

I If g is the generator of the cyclic group then g ·X = ζX, g · Y = ζ−1Y with
ζ = e2π/n. Therefore

%X iY j =
n∑
k=1

gk ·X iY j

=
n∑
k=1

ζk(i−j)X iY j

=

{
0 i 6= j mod n

nX iY j i = j mod n
.
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From this one can deduce that all invariants are generated by ξ = Xn, η =
Y n and ζ = XY . One can easily see that there is a relation between the
three invariants ξη − ζn.

II Because s2 = gn = −1 and gs = −sg, the elements of this group can be
written as sigj with i = 0, 1 and j = 1, . . . , 2n.

Therefore

%X iY j =
2∑

k=1

ngk ·X iY j + sgk ·X iY j

=
n∑
k=1

ζk(i−j)(X iY j + ii+jXjY i)

=


0 i 6= j mod 2n or

X iY j − Y jX i i = j mod 2n and i is odd

X iY j + Y jX i i = j mod 2n and i is even

.

From this one can deduce that all invariants are generated by ξ = X2Y 2, η =
XY (X2n − Y 2n) and ζ = X2n + Y 2n. One can easily see that there is a relation
between the three invariants ξn+1 − ξη2 + ζ2.

In both cases, the dimension of the quotient space must be two because the map
C2 → V/G has finite fibers. If the ideal would be generated by more than one
generator C[ξ, η, ζ]/p, its corresponding variety would not be two-dimensional.

As we notice here, these singularities are precisely the ones we tried to blow up
in the previous chapter. In the following chapters we will use this viewpoint for
a new way to construct resolutions for the singularity.
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Chapter 4

Smash Products and Quivers

4.1 Smash Products

As we know from the previous chapter, the action of G on V gives rise to an action
on the polynomial ring C[V ] ∼= C[X, Y ]. Construct the vector space C[V ]|G|. We
can identify the standard basis elements with the elements in the group, such that
every element of this space can be written uniquely as a sum of f(X, Y )g where
f(X, Y ) is a polynomial function and g is an element of G. We can now define a
product on this vector space

fi(X, Y )gi × fj(X, Y )gj = (figi · fj)gigj,

in this expression the · denotes the action of G on C[V ]. One can easily check that
this product is associative and by linearly extending it to the whole vector space
one obtains an algebra: the smash product of C[V ] and G. In symbols we write
C[V ]#G. The center of this algebra can be easily determined: if z =

∑
g fgg ∈ Z

then

∀f ∈ C[V ] : [z, f ] = fg(f − g · f)g = 0 and ∀h ∈ g : [z, h] = (h · fg − fg)gh

The first equation implies that fg = 0 if g 6= 1 and the second implies that f1

must be a G-invariant function so we can conclude that

Z(C[V ]#G) ∼= C[V ]G.

This algebra has a nice description using quivers.
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4.2 Quivers

A quiver Q = (Q0, Q1, h, t) consists of a set of vertices Q0, a set of arrows Q1

between those vertices and maps h, t : A → V which assign to each arrow its
head and tail vertex. We also denote this as

76540123h(a) 76540123t(a)
aoo .

A sequence of arrows a1 . . . ap in a quiver Q is called a path of length p if t(ai) =
h(ai+1), this path is called a cycle if t(ap) = h(a1). A path of length zero will be
defined as a vertex. A quiver is strongly connected if for every couple of vertices
(v1, v2) there exists a path p such that s(p) = v1 and t(p) = v2.

If we take all the paths, including the one with zero length, as a basis we can
form a complex vector space CQ. On this space we can put a noncommutative
product, by concatenating paths. By the concatenation of two paths a1 . . . ap and
b1 . . . bq we mean

a1 . . . ap · b1 . . . bq :=

{
a1 . . . apb1 . . . bq s(ap) = t(b1)

0 t(ap) 6= h(b1)

For a vertex v and a path p we define vp as p if p ends in v and zero else. On the
other hand pv is p if this path starts in v and zero else.

The vector space CQ equipped with this product is called the path algebra. The
set of vertices Q0 = {v1, . . . , vk} forms a set of mutually orthogonal idempotents
for this algebra. The subalgebra generated by these vertices is isomorphic to
CQ0 = C⊕k and this is also the degree zero part if we give CQ a gradation using
the length of the paths.

An algebra A is called a path algebra with relations A is isomorphic to the
quotient of a path algebra by an ideal sitting inside CQ≥2, which is the space
spanned by all paths of length at least 2.

Theorem 4.1. If G is a finite abelian group with a linear action on V , then the
smash product is a path algebra of a quiver with relations.

Proof. Sketch. Let Ĝ be the set of group morphisms from G to C∗. for each
element φ ∈ Ĝ we define

eφ :=
1

G

∑
g∈G

φ(g)g

One can prove that eφeψ = 0 if φ 6= ψ and e2φ = eφ. Moreover
∑

φ∈Ĝ eφ = 1.
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This means that the eφ play the role of the vertices.

Because G is abelian we can find a basis X1, . . . , Xk for V such that the Xi are
eigenvectors for all of the g ∈ G. This means that every Xi there is a φi ∈ Ĝ such
that g ·Xi = φi(g)Xi.

One can check that eφXi = Xieφiφ = eφXieφiφ and therefore eφXi can be seen as
an arrow with head eφ and tail eφiφ.

This means that Xi =
∑

φ eφXi splits as the sum of |̂G| arrows one for each eφ.

In a similar way we can split the relations XiXj − XjXi as a sum of paths of
length two in these arrows.

remark 4.2. If G is not abelian this is not true anymore. But something very
similar is going on. The statement now becomes that the smash product A =
C[V ]#G contains an idempotent e such that eAe is a path algebra with relations
and A = AeA (which implies that the idempotent does not map anything essential
to zero).

4.3 representations of quivers

A dimension vector of a quiver is a map α : Q0 → N, the size of a dimension
vector is defined as |α| :=

∑
v∈Q0

αv. A couple (Q,α) consisting of a quiver and
a dimension vector is called a quiver setting and for every vertex v ∈ Q0, αv is
referred to as the dimension of v. A setting is called sincere if none of the vertices
has dimension 0. For every vertex v ∈ Q0 we also define the dimension vector

εv : V → N : w 7→

{
0 v 6= w,

1 v = w.

An α-dimensional complex representation W of Q assigns to each vertex v a linear
space Cαv and to each arrow a a matrix

Wa ∈ Matαh(a)×αt(a)(C)

The space of all α-dimensional representations is denoted by Rep(Q,α).

Rep(Q,α) :=
⊕
a∈A

Matαh(a)×αt(a)(C)

To the dimension vector α we can also assign a reductive group

GLα :=
⊕
v∈V

GLαv(C).

17
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An element of this group, g, has a natural action on Rep(Q,α):

W := (Wa)a∈A, W
g := (gt(a)Wag

−1
s(a))a∈A

The quotient of this action will be denoted as

iss(Q,α) := Rep(Q,α)//GLα.

A representationW is called simple if the only collections of subspaces (Vv)v∈V , Vv ⊆
Cαv having the property

∀a ∈ A : WaVs(a) ⊂ Vt(a)

are the trivial ones (i.e. the collection of zero-dimensional subspaces and (Cαv)v∈V ).

The direct sum W ⊕W ′ of two representations W,W ′ has as dimension vector
the sum of the two dimension vectors and as matrices (W ⊕W ′)a := Wa ⊕W ′

a.
A representation equivalent to a direct sum of simple representations is called
semisimple.

A very important theorem is:

Theorem 4.3. A representation of a quiver is semisimple if and only if its orbit
is closed in Rep(Q,α).

Proof. omitted

If we have a path algebra with relations A we define Rep(A,α) as the subset of
Rep(Q,α) which respect the relations. We will denote this variety as Rep(A,α).
Because this is a closed subset of Rep(Q,α), the quotient Rep(A,α)//GLα can be
seen as the image of Rep(A,α) under the quotient map Rep(Q,α) → iss(Q,α).
Again it classifies the semisimple α-dimensional representations up to isomor-
phism and hence we denote it by iss(A,α).

4.4 The representation space of an abelian smash

product

In this section we do some examples in the case of abelian smash products

• Let G be Z2 which acts on C2 by gX = −X and gY = −Y . The quiver
looks like

�������� x1,x2

%-��������
y1,y2

em
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with relations x1y2 − x2y1 and x1y2 − x2y1.

The representation space with dimension vector (1, 1) is

{(a1, a2, b1, b2) ∈ C4|a1b2 − a2b1}.

This space is threedimensional.

The invariant functions on Rep(A,α) are generated by X = a1b1, Y = a2b2
and Z = a1b2 which is the same as a2b1. The relation between these
invariants is XY − Z2 so the ring of invariants is indeed C[iss(A, )] =
C[X, Y, Z]/(XY − Z2).

For each point (x, y, z) 6= (0, 0, 0) we can construct a simple representation

– if z 6= 0 then we take (1, y/z, x, z).

– for (x, y, z) = (1, 0, 0) we take (1, 0, 1, 0).

– for (x, y, z) = (0, 1, 0) we take (0, 1, 0, 1).

For the point (x, y, z) = (0, 0, 0) there are several orbits:

– {(0, 0, 0, 0)} which is a point

– For each (x : y) ∈ P1 we have an orbit {(ax, ay, 0, 0)|a ∈ C∗}.
– For each (x : y) ∈ P1 we have an orbit {(0, 0, ax, ay)|a ∈ C∗}.
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Chapter 5

Semi-invariants and Moduli
spaces

5.1 Semi-invariants

As we have seen in the previous chapter it is possible to get a resolution of an
affine variety by constructing the Proj of a graded ring of which the degree zero
part is the ring of regular functions of the original variety. The method we used
for this was blow-ups. In invariant theory it is also possible to do a different
construction using semi-invariants.

If G is a reductive group then a multiplicative character of G is a group morphism
θ : G→ C∗ : g 7→ gθ. We will write the action of θ exponentially because it will
be very handy later on. The characters of G form an additive group if we define
gθ1+θ2 := gθ1gθ2 , we will also use the shorthand nθ = θ + · · ·+ θ.

If G acts on a variety V then a function f ∈ C[V ] is called a θ-semi-invariant if

∀g ∈ G : g · f = gθf.

The subspace of θ-semi-invariants will be denoted by C[V ]θ. This space does not
form a ring, it is only a module over the ring of invariants C[V ]G.

We can construct an N-graded ring by taking the direct sum of all nθ-semi-
invariants with n ∈ N:

SIθ[V ] =
⊕
n∈N

C[V ]nθ.

It is easy to extend the proof of theorem to show that SIθ[V ] is also finitely
generated as an algebra over SIθ[V ]0 = C[V ]G.
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A point p ∈ V is called θ-semi-stable if there is an f ∈ C[V ]nθ such that f(p) 6= 0.
The set of θ-semi-stable points will be denoted by V ss

θ . Note that V ss
θ itself is

not necessarily an affine variety but if f1, · · · , fk forms a set of homogeneous
generators of SIθ[V ] over C[V ]G then V ss

θ can be covered with affine varieties
corresponding to the rings

Ri = C[V ][f−1
i ] V (Ri) = {p ∈ V |fi(p) 6= 0}

These varieties and rings have G-actions on them coming from the G-action on
V and one can take the categorical quotient of these varieties. Their ring are of
the form

SIθ[V ][f−1
i ]0

and hence one can cover Proj SIθ[V ] with these quotients varieties. Out of this
one can conclude

Theorem 5.1. The variety Proj SIθ[V ] classifies the closed orbits in V ss
θ . If there

exists a θ-semi-invariant that is non-zero in a point of V then V ss
θ is open and

dense in V and the image of the map V ss
θ //G→ V//G is dense.

5.2 semi-stable representations of quivers

If Q is a quiver and α a dimension vector then we can look at the θ-semi-invariants
of the GLα-action on Rep(Q,α). We will denote this set by Repssθ (Q,α), the
quotient of this set by the GLα-action we be denoted by Mss

θ (Q,α) and is called
the moduli space of θ-semistable representations.

First of all we have to look at the multiplicative characters of GLα. For the general
linear group GLn the characters are given by powers of the determinant, so the
group of characters is isomorphic to Z. As GLα consists of k = #Q0 components
each one isomorphic to a general linear group, the group of characters will be
isomorphic to Zk:

θ = (θ1, . . . , θk) : GLα → C∗ : (M1, . . . ,Mk) 7→ detM θ1
1 · · · detM θk

k .

In the case of invariants we had a nice description using traces of cycles, for semi-
invariants we can do a similar thing. A way to construct a θ-semi invariant is the
following: let i1, . . . , is be the vertices for which θi` is positive, while j1, . . . , jt be
the ones with a negative θj` . Now chose for each i and j |θiθj| elements in jCQi
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and put all these in a
∑

j θj ×
∑

i θi-matrix D over CQ.

D :=



j1←i1 ... j1←i1 j1←is ... j1←is
... |θj1θi1 |×

... ···
... |θj1θis |×

...
j1←i1 ... j1←i1 j1←is ... j1←is

...
...

...
jt←i1 ... jt←i1 jt←is ... jt←is

... |θjtθi1 |×
... ···

... |θjtθis |×
...

jt←i1 ... jt←i1 jt←is ... jt←is


Now if W ∈ Rep(Q,α) then we can substitute each entry in D to its corresponding
matrix-value in W . In this way we obtain a block matrix DW with dimensions∑

i αi|θi| ×
∑

j αj|θj|. One can easily check that

Dg·W =



gj1
...

gj1
...

gjt
...

gjt

DW



g−1
i1

...
g−1
i1

...
g−1
is

...
g−1
is


So if DW is a square matrix the determinant of DW is a θ-semi-invariant:

detDg·W = det g
θj1
j1
· det g

θjt
jt

detDW det g
−|θi1 |
i1

· det g
−|θis |
is

= gθ detDW .

We will call these semi-invariants determinantal semi-invariants

Theorem 5.2. As a C[RepαQ]GLα-module C[RepαQ]θ is generated by determinan-
tal semi-invariants. As a ring SIθ[RepαQ] is generated by invariants (i.e. traces
of cycles) and determinantal nθ-semi-invariants with n ∈ N.

Note that this implies that there are only θ-semi-invariants if DW is a square
matrix so

∑
i αi|θi| =

∑
j αj|θj| or equivalently θ · α = 0.

Now we can use this special form for the semi-invariants to get a nice interpreta-
tion for the covering of Rep(Q,α)ssθ//GLα.

As we have seen Rep(Q,α) describes the α-dimensional representations of the
pathalgebra CQ. Now if W ∈ Rep(Q,α) is θ-semistable then there exists a∑

j |θj| ×
∑

i |θi|-matrix D with entries in CQ such that detDW 6= 0, so DW is
an invertible matrix:

∃EW : DWEW = 1∑ |θj |αj and DWEW = 1∑ |θi|αi
23
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So W is also a representation of a new algebra for which D is is indeed an
invertible matrix. To be more precise we need a good interpretation a the identity
matrices that appeared in the equations above. Recall that for an α-dimensional
representation W the vertex i can considered as an idempotent in CQ and iW will
correspond to the identity matrix on the αi-dimensional space iW . The identity
matrix 1∑ |θj |αj can hence be considered as the evaluation in W of the matrix

1j =


j1

...
j1

...
jt

...
jt

 =

[
h(D11)

...
h(Dpp)

]

Now we define E = Eµν to be the matrix such that DE = 1j and ED = 1i so∑
κ

DµκEκν = δµνh(Dµµ) and
∑
κ

EµκDκν = δµνt(Dµµ).

Now we define the universal localization of CQ at D to be the algebra

CQ[D−1] = CQE/(
∑
κ

DµκEκν − δµνh(Dµµ),
∑
κ

EµκDκν = δµνt(Dµµ))

Here QE is a new quiver consisting of Q together with extra arrows Eµν such that
h(Eµν) = t(Dµν) and t(Eµν) = h(Dµν).

There is a natural map CQ→ CQ[D−1] so we also have a map

Rep(CQ[D−1], α)→ Rep(Q,α)

This map is an (open) embedding because (D−1)W is uniquely defined by DW ,
its image consist precisely of these representations of CQ for which detDW 6= 0.

Theorem 5.3. Repssθ (Q,α) can be covered by representation spaces of universal
localizations of CQ. This covering is compatible with the GLα-action, so Mss

θ (Q,α)
can be covered by quotient spaces of universal localizations of CQ.

This theorem also holds for quotients of path algebras. We will work this out in
the next section for the preprojective algebras.

5.3 Moduli space for the smash product

So lets now take a closer look at the case of the singularity C[X, Y, Z]/(XY −Zn).
As we already know we can consider the singularity as the quotient space of the
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preprojective algebra over the McKay quiver with the standard dimension vector.

V//G = iss(ΠG, αG.

In order to construct a nice desingularization of this space we have to find a good
character. Let e1, . . . , en be the vertices of the quiver and let e1 correspond to the
trivial representation. For every vertex ei 6= e1 there exists a character θi mapping
e1 to −αGi = − dimSi, ei to 1 and all the other vertices to zero. We denote the
sum of all these θi as θ and this will be the character under consideration:

θ(e1) = −|αG|+ 1 and θi = 1 if i 6= 0.

Theorem 5.4. If V//G is a kleinian singularity and Ṽ //G→ V//G is its minimal
resolution, then Ṽ //G = Mss

θ (ΠG, α).

The proof of this theorem can be found in [?]. We will just show how one can
see the equivalence in the A case.

The semi-invariants are constructed using matrices D of which the entries are all
paths starting from e1. If we construct DW , then every column of DW corresponds
to a column of D because the dimension of e1 is 1. The determinant is linear
in the columns so we can chose D up to linear combinations of the columns. In
this way we can turn D into a form such that DW is block diagonal with the
dimension of every block corresponding to the dimension of a vertex. This means
that the θ-semi-invariants are generated by products of the θi-semi-invariants.
Therefore we can conclude that a representation is θ-semistable if and only if it
is θi-semistable for every i.

The θi-semi-invariants are generated over C[iss(Π, α)] by D’s that are 1×dimSi-
matrices whose entries are paths from e1 to ei. Using the preprojective relation
and the relations from matrix identities one can find a finite number of gener-
ating paths. For instance, these paths cannot run twice through a vertex with
dimension 1 otherwise we could split of a trace of a cycle (and this is contained
in C[iss(Π, α)]). If there are ki such paths there are Cki

αi
generators for the semi-

invariants.

This means that we can embed M ss
θ (Π, α) in

C3 × PC
k2
α2 × · · · × PC

kn
αn .

The first factor is for the 3 invariants, the others for the θi-semi-invariants for
every i > 1.

In the A-case, up to multiplication with invariants there are for every ei exactly
two paths from e1: a clockwise pi and a counterclockwise qi. Each of these paths
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gives a θi-semi-invariant. The projection map Repssθ (Π, α)→M ss
θ (Π, α) can now

be seen as
W 7→ [(XW , YW , ZW ), (p2, q2)W , . . . , (pn, qn)W ].

To calculate the exceptional fiber we must look at the semistable representation
that have zero invariants (X, Y, Z). Because X is zero there must be an i such
that piW 6= 0 but pi+1W = 0. Semistability then implies that qi+1W 6= 0. Also
qi−1W must be zero otherwise Z = pi/pi−1qi−1/qi would not be zero. This means
that a point P comes from a point in the exceptional fiber if it is of the form

[(0, 0, 0), (1, 0), · · · , (1, 0), (pi, qi)W , (0, 1), · · · , (0, 1)].

From this we can conclude that the exceptional fiber is indeed the union of n− 1
P1 intersection each other consecutively.
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Task

• Choose your favorite finite abelian group of at least 3 elements.

• Construct a linear action of this group on either C2 of C3 that is faithfull
(i.e. no element of the group acts trivially).

• Calculate the generators and relations of the ring of invariants RG for this
action.

• Find a presentation of the smash product as a path algebra of a quiver with
relations.

• Describe the representation space for dimension vector (1, . . . , 1) and check
that its quotient corresponds indeed the ring of invariants. Describe the
orbits of this space.

• Describe the moduli space for dimension vector (1, . . . , 1) and character
(−n+ 1, 1, . . . , 1)

• Describe the exceptional fiber over the zero. itemize
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