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Abstract. In this note we will show how one can describe the representation

varieties of certain Fuchsian groups using the Luna Slice theorem and the
technique of local quivers. We will illustrate with one specific example: the

Fuchsian group Z2 ∗ Z4.

1. Introduction

Fuchsian groups are the crystallographic groups of the hyperbolic plane, i.e. the
discrete subgroups of PSL2(R). The orientation-preserving Fuchsian groups can be
presented in the following form

• generators
hyperbolic: a1, b1, . . . , ag, bg

elliptic: x1, . . . , xe

parabolic: y1, . . . , yp
• relations

xm1
1 = . . . xme

e = 1

x1 · · ·xey1 · · · yp[a1, b1] · · · [ag, bg] = 1

If the group has parabolic generators we can use one to get rid of the last relation,
so that it can also be written as a free product of cyclic groups.

Zm1 ∗ · · · ∗ Zme
∗ Z∗(p+2g−1)

For instance the orientation-preserving symmetry group of the Escher-like picture
below is G = Z2 ∗ Z4.
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2. the representation spaces of G

To G we can assign the variety of n-dimensional representations

rep(G, n) : = {ρ : G → GLn : ρ(gh) = ρ(g)ρ(h)}
∼= {(X,Y ) ∈ GLn ×GLn|X2 = Y 4 = 1}

On this space we have a GLn-action by conjugation: g·(X,Y ) = (gXg−1, gY g−1).
Orbits under this action correspond to isomorphism classes of representations and if
one takes the algebraic quotient of this action one obtains a new variety iss(G, n)
which classifies the semisimple representations of G up to isomorphism (see [9]).
The projection map π : rep(G, n) → iss(G, n) maps every representation to the
isomorphism class of its semisimplification.

The main goal of geometric representation theory is now the study this map and
find the answer to the following questions:

• what is the geometry of rep(G, n), does it contain singularities and if so
what is their nature?

• what is the geometry of iss(G, n), does it contain singularities and if so
what is their nature?

• what do the fibers of π look like?
In this case the first question can be answered quickly using only the theory of

representations of finite groups, because rep(G, n) = rep(Z2, n)× rep(Z4, n). The
two factors contain each a finite number of disjoint conjugation classes of diagonal
matrices with eigenvalues ±1 resp. ±1,±i.

This fact can be used to split rep(G, n) into disjoint components corresponding
to a dimension vector, which is an element in N2+4 consisting of the dimensions of
the eigenspaces of X (with eigenvalues ±1) and Y (with eigenvalues ±1,±i). Each
of these components is smooth because it is the product of 2 conjugation classes
of matrices and we will denote these varieties by rep(G, δ) with δ ∈ N2+4. We can
also split the quotient map π and its target to obtain quotient varieties denoted as
iss(G, δ).

3. The Luna Slice Theorem

The fact that the representation spaces rep(G, δ) are smooth provides us with
a very powerful tool to study both the representation spaces and their quotient
spaces iss(G, δ), the Luna Slice Theorem. This theorem is an algebraic version of
the classical slice theorem in differential geometry, using étale morphisms instead
of diffeomorphisms.

Recall that a morphism ϕ : X → Y between algebraic varieties is called étale
if it is a smooth morphism with finite fibers. If both X and Y are smooth, this is
equivalent to the fact that dxϕ : TxX → Tϕ(x)Y is an isomorphism. The Luna Slice
Theorem now states

Theorem 1 (Luna, [12]). Let x ∈ rep(G, δ) be a semisimple representation and let
H be the stabilizer of x in GLn(C). Let N be the normal space to the small tangent
space TxGLn(C).x in the big tangent space Txrep(G, δ). Then there exists a locally
closed affine subset S ⊂ rep(G, δ), called a slice, such that

(1) x ∈ S;
(2) S is stable under the action of H;
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(3) the action map GLn(C) × S → repαG : (g, s) 7→ g.s induces an étale and
GLn(C)-equivariant morphism

ψ : GLn(C)×H S → rep(G, δ)

for which the induced morphism

ψ//GLn(C) : S//H → iss(G, δ)

is étale;
(4) there exists a H-equivariant map ϕ : S → N = TxS with affine image and

ϕ(x) = 0 such that the induced map

ϕ//H : S//H → N//H

is étale;
(5) we have a commutative diagram

GLn(C)×H S
GLn(C)×Hϕ

sshhhhhhh ψ

**UUUUUUU

//GLn(C)

��

GLn(C)×H N

//GLn(C)

��

rep(G, δ)

//GLn(C)

��

S//H
ϕ//H

sshhhhhhhhhhhhh ψ//GLn(C)

**UUUUUUUUU

N//H iss(G, δ).

4. Local Quivers

To get a combinatorial description of the Luna Slice Theorem we need quivers.
A quiver Q = (V,A, h, t) consists of a set of vertices V , a set of arrows A between

those vertices and maps h, t : A→ V which assign to each arrow its head and tail.
A dimension vector of a quiver is a map α : V → N and a couple (Q,α) consisting

of a quiver and a dimension vector is called a quiver setting and for every vertex
v ∈ V , αv is refered to as the dimension of v. In the examples the dimensions are
written inside the vertices.

An α-dimensional complex representation W of Q assigns to each vertex v a
linear space Cαv and to each arrow a a matrix

Wa ∈ Matαh(a)×αt(a)(C)

The space of all α-dimensional representations is denoted by repαQ.

rep(Q,α) :=
⊕
a∈A

Matαh(a)×αt(a)(C)

To the dimension vector α we can also assign a reductive group

GLα :=
∏
v∈V

GLαv(C).

An element of this group, g, has a natural action on rep(Q,α):

W := (Wa)a∈Q1 , W
g := (gh(a)Wag

−1
t(a))a∈Q1

Using this definitions the normal space N from the previous section can be
described as follows:
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Theorem 2. Let x be a semisimple representation in rep(G, n) with decomposition
in simples

x = s⊕e11 ⊕ · · · ⊕ sek

k ,

and let Qx be the quiver with

• vertex set {1, . . . , k};
• the number of arrows between vertex i and vertex j given by dim Ext1A(si, sj).

Let αx = (e1, . . . , ek), then

N ∼= rep(Qx, αx) and H ∼= GLαx
(C),

so

N//H ∼= iss(Qx, αx).

Combining this description with the Luna Slice Theorem, we are able to study
étale invariant properties such as the existence of simple representations and smooth-
ness by passing from the representation spaces of G to the representation space of
a quiver, where the latter has as a great advantage that a lot of properties can be
computed combinatorally.

5. Applications

5.1. Which rep(G, δ) contain simple representations? To solve this problem
we start with the set of 8 one-dimensional simples. These elementary simples Sξη
let X and Y act as scalars ξ, η with ξ2 = η4 = 1 and have dimension vectors
(1, 0|1, 0, 0, 0), . . . , (0, 1|0, 0, 0, 1).

As every dimension vector can be seen as a sum of these basic dimension vectors,
we can find in every iss(G, δ) a semisimple representation whose factors are these
one-dimensional simples. If we fix such a representation R, we can look at its
local quiver setting (QR, αR). The fact that simplicity is a Zariski-open condition
and rep(G, δ) is irreducible implies that either every (étale) neighborhood of R
will contain simples or rep(G, δ) does not contain simples. Therefore rep(G, δ) will
contain simple representations if and only if rep(QR, αR) does.

For instance, the representation space with dimensionvector α = (2, 1|1, 1, 1, 0)
contains the representation S11 ⊕ S1−1 ⊕ S−1i. The local quiver looks like

��������1
&& ��������1

&&
ff ��������1ff

because one can easily check that the space of extensions between two elementary
simples is zero if they have an eigenvalue in common and one-dimensional otherwise.

The local quiver setting has a simple representation that assigns to all arrows a
nonzero scalar, hence rep(G, δ) contains simple representations.

Using the classification of quiver settings with simple representations by Le
Bruyn and Procesi in [7], one can obtain a criterium that determines whether
repαG contains simples

Theorem 3. [2] Let δ = (a1, a2, b1, b2, b3, b4) with a1 + a2 = b1 + · · ·+ b4 = n, then
rep(G, δ) contains simples if and only if ∀i, j : ai + bj ≤ n.
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5.2. Which points in iss(G, δ) are smooth? To check whether a given point is
smooth, one only has to check whether the corresponding local quiver setting has a
smooth quotient space. This can be done using the technique of reduction moves.

To a local quiver one can apply the following reduction moves which keep the
quotient space intact up to a product with an affine space.

RI If
∑k
j=1 ij ≤ αv or

∑l
j=1 uj ≤ αv we delete the vertex v and connect all

the arrows. 
'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv
b1

ccGGGG
bk

;;wwww

'&%$ !"#i1

a1 ;;wwww · · · '&%$ !"#il

al
ccGGGG

 −→


'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

::uuuuuuuuuu · · · '&%$ !"#il

clk

OO

cl1

ddIIIIIIIIII

 .
RII Remove the loops on a vertex with dimension 1.

��������1

k

��

 −→ [ ��������1 ] .

RIII Remove the only loop on a vertex with dimension k > 1 which has a
neighborhood like the picture below or its dual with the arrows reversed.

 ��������k

�� ))SSSSSSSSS
��

��������1

>>|||| '&%$ !"#u1 · · · /.-,()*+um

 −→

[ ��������k

�� ))SSSSSSSSS

��������1

k :B||||
|||| '&%$ !"#u1 · · · /.-,()*+um

]
,

After applying all possible reduction step one obtains a reduced local quiver. To
check whether its quotient space is smooth one can use the following theorem

Theorem 4. [3] rep(Q,α) is smooth if and only if the strongly connected compo-
nents of the corresponding reduced setting are listed below:

��������k ��������k
$$ ��������2 cc;; .

As an example let us again take the representation R = S11 ⊕ S1−1 ⊕ S−1i. The
local quiver can be reduced as follows:

��������1
&& ��������1

&&
ff ��������1ff → ��������1

&&
;; ��������1ff → ��������1 cc;; → ��������1 ,

so the image of R in rep(G, δ) is a smooth point.
In general there are only a finite number of local quiver settings that can occur

in rep(G, δ). By studying all of these one can also obtain a list of dimension vectors
whose quotient spaces are smooth.

Theorem 5. [1] Let δ = (a1, a2, b1, b2, b3, b4) with a1 + a2 = b1 + · · · + b4 = n,
then iss(G, δ) is a smooth space, if up to permutation of the a’s and the b’s, the
dimension vector is one of the following forms

(1, 0|1, 0, 0, 0) (1, 1|1, 1, 0, 0) (2, 1|1, 1, 1, 0)

(3, 1|1, 1, 1, 1) (2, 2|2, 1, 1, 0) (4, 2|2, 2, 2, 0).
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5.3. Which singularities can occur? The notion of reduced quiver settings can
also be used in principle to give a list of all possible singularities that can occur
in a given dimension. This follows from the fact the for a fixed n there are only a
finite number of reduced quivers whose iss(Q,α) has dimension n. A classification
up to dimension 6 has been given in [4].

5.4. What fibers can occur? Using the Luna Slice Theorem the question of the
fibers can agian be tracked back to calculating the nullcone of the local quiver
Null(Q,α) = {W ∈ rep(Q,α)|0 ∈ ¯GLn ·W}. In [6], the authors obtained a list
of the local quivers whose nullcone has minimal dimension, which allows one to
calculate the fibers with generic dimension.

6. The Future

The methods explained above work not only for the specific group we chose
as example but more in general for formally smooth algebras (see [11]). Other
examples of these algebras include group algebras of trees of groups, universal
localizations of path algebra and free products of coordinate rings of curves.

The framework however breaks down if the representation space is not smooth.
To conclude this note, we propose two possible pathways to extend the results to
these algebras.

• The first path is to use the Luna Slice theorem for singular points to extend
the local description to a broader class of algebras. A first step in this ap-
proach was made by W. Crawley-Boevey in [8] in which he obtained a local
description of representation spaces of deformed preprojective algebras.

• A second approach is to first blow up the singularities in the representation
space and then to take the quotient. The formalism of quivers then extends
to quivers with an automorphism action on it. First steps in this direction
have been explored by L. Le Bruyn, S. Symens and the first author in [5]
and [10].
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