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Abstract

Given a Cayley-Hamilton smooth order A in a central simple algebra Σ, we de-
termine the flat locus of the Brauer-Severi fibration of A. Moreover, we give a
classification of all (reduced) central singularities where the flat locus differs from
the Azumaya locus and show that the fibers over the flat, non-Azumaya points near
these central singularities can be described as fibered products of graphs of projec-
tion maps. This generalizes an old result of Artin on the fibers of the Brauer-Severi
fibration of a maximal order over a ramified point. Finally, we show these fibers are
also toric quiver varieties and use this fact to compute their cohomology.

1 Introduction

To a finitely generated algebra A over C (or any other algebraically closed field
of characteristic zero) one can associate the set of all left ideals of codimension
n. This set can be turned into a scheme, called the Brauer-Severi Scheme
BSn(A).

In [13] M. Van den Bergh showed how one can construct BSn(A) using geomet-
ric invariant theory. Consider the variety of couples of a representation and a
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cyclic vector

brauernA := {(ρ, v)|ρ : A → Matn×n(C), ρ(A)v = Cn} ⊂ repnA× Cn.

To every point (ρ, v) in this variety we can associate an ideal of codimension
n, namely the kernel of the map a 7→ ρ(a)v. on the other hand, given an ideal
m we can choose a basis for A/m to obtain a representation and the associated
cyclic vector will be 1 mod m.

All these identifications depend on the choice of a basis, so there is a natural
action of GLn on brauernA given by

g.(ρ, v) := (gρg−1, gv).

The orbits for this action are closed in brauernA but not repnA × Cn (see
[12]) and we can make the geometrical quotient of this action to obtain the
Brauer-Severi variety

BSn(A) := brauernA/GLn.

The GLn-action on repnA on the other hand has only a categorical quotient
as not all orbits are closed. We will denote this quotient by issnA. It is a
well-known fact that it classifies the isomorphism classes of semi simple n-
dimensional representations of A, i.e.

issn(A) := repnA//GLn.

Because of the compatibility of the actions of brauern(A) and repnA, there
is a natural map

π : BSn(A) → issnA.

This fibration carries a lot of information about our original algebra A and
therefore it is an interesting question to ask to what extent we can describe
the geometry of the map and its fibers.

The construction described above can also be transferred to the setting of
orders and more generally Cayley-Hamilton algebras. Recall that a nth Cayley
Hamilton algebra is a finitely generated algebra A equipped with a trace, that
is a Z(A)-linear map tr : A → Z(A), such that for all a, b in A

• tr(ab) = tr(ba),
• tr1 = n,
• χn,a(a) = 0.

Where χn,a(X) is the nth Cayley-Hamilton identity expressed in the traces
of powers of a. The matrix algebra Matn×n(C) with the natural trace is the
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simplest example of such a Cayley-Hamilton algebra. For a Cayley-Hamilton
algebra, we can define the set of trace preserving representations as

trepnA := {ρ ∈ repnA : tr ◦ ρ = ρ ◦ tr}.

which is a closed subset of repnA. The quotient trissnA := trepnA//GLn

can in this case be identified with the spectrum of the center Z(A). Changing
repnA into trepnA in the above definition of the Brauer-Severi variety, we
obtain the trace preserving Brauer Severi variety, which we will again denote
by BSn(A), and the corresponding fibration π : BSnA → trissnA. These
notions were also introduced in [13].

Orders are special cases of Cayley-Hamilton algebras in the following way. Let
R be a commutative Noetherian integrally closed domain with fraction field
F and algebraic closure F̄ . If A is an R-order in the central simple algebra ∆
then we can turn A into a Cayley-Hamilton algebra using the trace function of
the matrix algebra ∆⊗R F̄ . On the other hand if A is Cayley-Hamilton algebra
such that trissnA is an irreducible and normal variety and contains simple
representations, then A is an C[trissnA]-order in ∆ = A⊗C[trissnA]C(azunA),
with

azunA := {ρ ∈ trissnA|ρ is simple}.

Cayley-Hamilton algebras are quite geometrical in nature as they can be re-
constructed from their representation variety as the ring of covariant matrix
valued functions (see [10]):

A ∼= {f : trepnA → Matn×n(C)|f(g · x) = gf(x)g−1}

Because of this geometrical aspect, it is natural to call a Cayley-Hamilton alge-
bra (or order) smooth if trepnA is a smooth variety. However, the smoothness
of trepnA does not imply that the quotient is smooth and singularities that
occur in trissnA will be referred to as central singularities.

From now on we will assume that A is a smooth order. This class of alge-
bras has the advantage that the étale locale structure of the natural maps
trepn → trissnA and BSnA → trissnA can be described using (marked)
quiver settings (see [8]). In Section 2 we will recall how this is done and then
use these techniques for a closer study of the Brauer Severi fibration.

In Section 3, we describe the flat locus of a Brauer-Severi scheme associated
to a smooth order, i.e. the points in trissnA for which the fiber has minimal
dimension. In Section 4 we determine all possible central singularities for which
the Azumaya locus does not coincide with the flat locus and in Section 5 we
give a description of the fibers over points in the flat, non-Azumaya locus near
such central singularity. As an application we indicate how this description is
an extension of a result of Artin in the case of maximal orders over a smooth
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curve. Finally, in Section 6, we show how these fibers can be seen as toric
varieties and we use this to compute their cohomology.

2 Preliminaries

We begin by introducing the notions and results we will need throughout the
rest of this paper.

2.1 Definitions and Notations

Definition 1 (Quivers)
• A quiver is a four-tuple Q = (Q0, Q1, h, t) consisting of a set of vertices Q0,

a set of arrows Q1 and two maps t : Q1 → Q0 and h : Q1 → Q0 assigning
to each arrow its tail resp. its head:

�������� ��������aoo

h(a) t(a)

.

• A marked quiver Q• is a quiver together with a subset of the loops (these are
the arrows for which h(a) = t(a)), these loops are called the marked loops
and are labeled with a black dot.

• A dimension vector of a quiver Q is a map α : Q0 → N and a quiver
setting is a couple (Q, α) of a quiver and an associated dimension vector.
The dimension vector which is equal to 1 on all vertices is denoted by 1.

• Fix an ordering of the vertices of Q. The Euler form of a quiver Q is the
bilinear form

χQ : N#Q0 × N#Q0 → Z

defined by the matrix having δij −#{a ∈ Q1 | h(a) = j, t(a) = i} as element
at location (i, j).

• A quiver is called strongly connected if and only if each pair of vertices in
its vertex set belongs to an oriented cycle.

• A path in a quiver setting will be called quasiprimitive if it does not run
n + 1 times through a vertex v with α(v) = n. A quasiprimitive path from
vertex v to vertex w is depicted as v ///o/o/o w .

• A quiver Q is called a connected sum of two subquivers R and S in vertex
v if Q0 = R0 ∪ S0, R0 ∩ S0 = {v}, Q1 = R1 ∪ S1 and R1 ∩ S1 = ∅.

• A quiver setting is called prime if it is not a connected sum of two quiver
settings in a vertex with dimension 1, and the prime components of a quiver
setting are its maximal prime subquiver settings.
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A quiver setting is graphically depicted by drawing the quiver and listing in
each vertex v either the dimension α(v), in which case the vertex is encircled,
or the name of the vertex itself.

Definition 2 (Representations of quivers)
• An α-dimensional representation V of a quiver Q assigns to each vertex

v ∈ Q0 a linear space Cα(v) and to each arrow a ∈ Q1 a matrix V (a) ∈
Mα(h(a))×α(t(a))(C). We denote by rep(Q, α) the space of all α-dimensional
representations of Q. That is,

rep(Q,α) =
⊕

a∈Q1

Mα(h(a))×α(t(a))(C).

In the case of marked quivers we ask that the marked loops are represented
by traceless matrices.

• We have a natural action of the reductive group

GLα :=
∏

v∈Q0

GLα(v)(C)

on a representation V defined by base change in the vector spaces. That is

(gv)v∈Q0 .(V (a))a∈Q1 = (gh(a)V (a)g−1
t(a))a∈Q1 .

• The quotient space with respect to this action classifies all isomorphism
classes of semi simple representations and is denoted by iss(Q,α). The
quotient map with respect to this action will be denoted by

πQ : rep(Q,α) � iss(Q, α).

• The fiber of πQ in πQ(0) is called the nullcone of the quiver setting and is
denoted by Null(Q,α).

2.2 The étale Local Structure of the Brauer-Severi Fibration

In this section we briefly recall how (marked) quivers can be used to describe
the local structure of a smooth order and its Brauer-Severi fibration. The
results stated in this section are taken from [8].

We want to determine the étale locale structure near a point p ∈ trissnA.
The point p corresponds to a semi simple representation with a decomposition
in simple representations

S⊕e1
1 ⊕ · · · ⊕ S⊕ek

k .

From this decomposition we construct the following data.
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• A (marked) quiver Qp with k vertices indexed by the different simple com-
ponent. The number of (marked) arrows from the ith to the jth can be
determined from the normal space TprepnA/TpGLn · p (for a more detailed
construction see [8]).

• A dimension vector αp assigning ei to the ith vertex.
• A dimension vector γp assigning dim Si to the ith vertex.

From this data we obtain an tale local description of trissnA.

Theorem 1 There is an étale neighborhood of p ∈ trissnA that is isomor-
phic to an étale neighborhood of the zero in issαQ.

We will call (Qp, αp) the local quiver setting of p and (Qp, αp, γp) the local
quiver data of p.

To describe the Brauer Severi fibration we modify Qp, αp and γp in the follow-
ing way:

• To Qp we add a new vertex v0 and γp(v) arrows from v0 to v for each
v ∈ (Qp)0. The new quiver is denoted by Q̃p.

• We extend αp to α̃p by giving v0 dimension one.
• We extend γp to a character θp of GLα̃p by putting θp(v0) = −n and θp|Q0 =

γp.

The character can now be used to define θp-semistable representations:

Definition 3 An αS-dimensional representation S of Q̃p is called θp-semistable
if and only if αS · θp = 0 and for all subrepresentations T ⊂ S we have that
αT · θp ≤ 0.

The open subvariety of θp-semistable representations of dimension α̃p will be
denoted by ressθp(Qp, α̃p).

Theorem 2 Given a Brauer-Severi scheme BS(A) and a point p ∈ trissnA,
we have

π−1(p) = (Null(Q̃p, α̃p) ∩ ressθp(Q̃p, α̃p))/GLα̃p

Moreover, the dimension vector αp is such that there exist simple representa-
tions in rep(Qp, αp).

Remark. As we are only considering representations in the nullcone (all traces
are zero), the distinction between marked and unmarked loops is superfluous
and will be omitted.

This theorem reduces the study of the fibers of the Brauer-Severi fibration to
the study of moduli spaces of nullcones of quiver settings that have simple
representations. In [7], a criterion for the existence of simple representations
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of dimension vector α was given.

Theorem 3 Let (Q, α) be a quiver setting such that for all vertices v we have
that α(v) ≥ 1. There exist simple representations of dimension vector α if and
only if

• Q has exactly one vertex, at most one loop and α = 1;
• Q is of the extended Dynkin form Ãn

�������� // ��������
##GG

GG�������� ;;wwww ��������
{{www

w��������ccGGGG ��������
with α = 1;

• none of the above, but Q is strongly connected and

∀v ∈ Q0 : χQ(α, εv) ≤ 0 and χQ(εv, α) ≤ 0.

Here εv(w) := δvw for all w ∈ Q0.

If α(v) = 0 for some vertices v, (Q,α) has simple representations if (Q′, α′)
has simple representations, where (Q′, α′) is the quiver obtained by removing
all vertices v with α(v) = 0.

3 The Flat Locus of the Brauer-Severi Fibration

In this section, we will determine the flat locus of the Brauer-Severi fibration

BS(A) � X,

using the quiver description recalled in Section 2. We have

Theorem 4 Let (Q,α, γ) be the local quiver data of a point ξ ∈ X, then

dim π−1(ξ) = dim Null(Q, α) + n− dimGL(α).

Proof. Let γ = (d1, . . . , dk) and let θ be the corresponding character for Q̃,
then by Theorem 2 we know that

π−1(ξ) = (Null(Q̃, α̃) ∩ repθ(Q̃, α̃))/GL(α̃).

Also
Null(Q̃, α̃) = Null(Q, α)× An

because any choice of a representation for an arrow with tail v0 belongs to the
nullcone by a straightforward application of Hilbert’s criterion. Now for any
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irreducible component C of Null(Q,α) we have that repθ(Q̃, α̃)∩(C×An) 6= ∅
only contains θ-stable representations which have stabilizer C∗ so when C is
an irreducible component of maximal dimension we obtain

dim(Null(Q̃, α̃) ∩ repθ(Q̃, α̃))/GL(α̃) = dim C + n

−(dim GL(α̃)− 1)

= dim Null(Q,α) + n− dim GL(α).

�
Let us recall the definition of a cofree quiver setting from [3].

Definition 4 A quiver setting (Q, α) is called cofree if its quotient space
iss(Q, α) is smooth and its nullcone Null(Q,α) has minimal dimension i.e.

dim Null(Q, α) = dim rep(Q,α)− dim iss(Q, α).

We have

Corollary 5 A point ξ ∈ X belongs to the flat locus of the Brauer-Severi
fibration of X if and only if its corresponding local quiver setting is cofree.

Proof. The fibers of the Brauer-Severi fibration over an Azumaya point are
isomorphic to Pn−1 so have dimension n−1. This means that in order to have
minimal dimension we must have dim π−1(ξ) = n− 1. This is exactly the case
when

dim Null(Q, α) = dim GL(α)− 1 = dim rep(Q,α)− dim iss(Q, α).

In combination with the fact that the flat locus of the Brauer-Severi fibra-
tion is contained within the smooth locus of the Brauer-Severi fibration by an
application of the Popov conjecture for quiver representations (see [14]) we
obtain the claim. �

In combination with Theorem 2, this means that in order to find the flat
locus of the Brauer-Severi fibration of X, we have to classify all cofree quiver
representations that have simple representations.

A characterization of cofree representations was given in [3]. By reduction step
Rc

I we mean the construction of a new quiver from a given quiver by removing
a vertex (and connecting all arrows) in the situation illustrated below, where
k is not smaller than the number of quasiprimitive cycles through ��������k .

'&%$ !"#i1

##FF
FFF
. . .
��

��������il

||yyy
yy��������k

a����������1

Rc
I→

'&%$ !"#i1

b1 ��7
77

77
7 . . .

��

��������il

bl����
��

��

��������1
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We now have

Theorem 5 A quiver setting (Q, α) is cofree if and only if it can be reduced
using Rc

I to a setting whose prime components are in the list below.

(i) strongly connected quiver settings (P, ρ) for which
(1) There is a vertex v ∈ P0 such that ρ(v) = 1 and through which all cycles

run,
(2) ∀w 6= v ∈ P0 : ρ(w) ≥ #{ v ///o/o w }+ #{ v woo o/ o/ } − 1,

(ii) quiver settings (P, ρ) of the form

��������1

uullllllll

'&%$ !"#u1 // . . . // '&%$ !"#up

}}||
||

iiRRRRRRRR

'&%$ !"#lq

aaBBBB
· · ·oo '&%$ !"#l1oo

with p ≥ 1, q ≥ 0, such that there is at most one vertex x in the path'&%$ !"#u1 ///o/o/o '&%$ !"#up which attains the minimal dimension min{u1, . . . , up, l1, . . . , lq}.
(iii) quiver settings of extended Dynkin type Ãn with cyclic orientation
(iv) quiver settings (P, ρ) of the form

'&%$ !"#u1 // '&%$ !"#u2 // . . . // '&%$ !"#up

""D
DD

D

��������cs

;;wwww

##FF
FFF
. . .oo ��������2oo . . .oo ��������c2oo ��������c1oo

'&%$ !"#l1 //'&%$ !"#l2 // . . . //'&%$ !"#lq

=={{{{

with p, q ≥ 0 and ui, lj ≥ 2 for all 1 ≤ i ≤ p, 1 ≤ j ≤ q and all ck ≥ 4
except for a unique vertex with dimension 2.

Theorem 6 A point ξ ∈ X belongs to the flat locus of the Brauer-Severi
fibration of X if and only if the prime components of its local quiver are of the
form

��������1

uukkkkkkkkk

��������d // . . . //��������d

}}{{
{{

iiSSSSSSSSS

'&%$ !"#d−1

aaCCCC
· · ·oo '&%$ !"#d−1oo

��������d

����������1
""��������dbb

CC����� ...
����������d

[[77777

'&%$ !"#d−1

����������1
""��������dbb

AA����� ...
��'&%$ !"#d−1

]];;;;;
(1)

��������2

��
��������2

��
...
��

��������2

[[77777
CC����� ...
����������2

CC����� ��������2

[[77777

��������1 // ��������1

��?
??

?

��������1

??���� ��������1

�����
���������1

__???? ��������1

(2)

Proof. As ξ belongs to the flat locus of the Brauer-Severi fibration, we know
its local quiver setting must have simple representations. Now note that for a
dimension vector to have simple representations, the vertex ��������k in reduction step
Rc

I must have dimension k = 1. This means there runs only one quasiprimitive
path through this vertex, which is only the case if the quiver setting to which
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the vertex belongs to, is a connected sum of cyclic quivers with dimension
vector 1. All other cofree quiver settings with simple representations cannot
be reduced by reduction step Rc

I and hence must have prime components as
described in Theorem 5.

The condition χQ(α, εv) ≤ 0 and χQ(εv, α) ≤ 0 means that for any given
vertex v,

∑
a∈Q1,h(a)=v

α(t(a)) ≤ α(v) ≥
∑

a∈Q1,t(a)=v

α(h(a)). (∗)

Consider the prime components of Theorem 5 described in (iv). Only a unique��������ci can have dimension 2, so s = 1 by condition (∗) and by the same condition
ui = 2 and lj = 2 for all i, j. This yields a connected sum of cyclic quivers with
dimension vector 2.1. The component described in (iii) (the cyclic quiver Ã)
must obviously have dimension vector 1 by Theorem 3. The same argument
used for the components listed in (iv) applies to the components described in
(ii), which means they only have simple representations when they are of the
forms in (1).

Finally, consider the components described in (i). Let v be a vertex with
α(v) = 1 through which all cycles run. Because of this condition, there is a
vertex w0 that has only incoming arrows from v. Should α(w0) > 1, the ex-
istence of simple representations implies there are α(w0) arrows from v to w.
The second condition on w then implies there is only one arrow leaving, and
this to a vertex w1 with dimension α(w1) = α(w). As all cycles run through
v, this vertex also has only one arrow leaving to a vertex w2 with dimension
α(w2) = α(w). This argument can be repeated until we find a vertex wk that
is connected to v with exactly one arrow, so all vertices wi for 0 ≤ i ≤ k must
have α(wi) = 1. This means the quiver setting has a prime component that is a
cyclic quiver setting with dimension vector 1. Removing this prime component
then yields by induction on the number of vertices that the quiver setting we
started with was a connected sum of cyclic quivers with dimension vector 1. �

4 Central Singularities and the Flat Locus

In this section, we give a classification of all reduced (in the sense of [2])
central singularities where the flat locus of the Brauer-Severi fibration does
not coincide with the Azumaya locus. This translates into finding all reduced
non cofree quiver settings (Q, α), which have a local quiver setting that is
cofree. Recall from [7] the construction of a local quiver setting (Qp, αp) from
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a quiver (Q, α): for a given semi simple representation

S⊕a1
1 ⊕ . . .⊕ S⊕ak

k

of the quiver (Q,α), where Si has dimension vector ai (and a combinatorial
property of simplicity described in Theorem 3), we construct the local quiver
(Qp, αp) by the following data:

• (Qp)0 consist of k vertices.
• The number of arrows between vertices u and v is given by δuv−χQ(αu, αv).
• αp := (a1, . . . , ak).

We will use this combinatorial description to obtain the desired classification.
From now on, we will call a quiver setting simple if it has simple representa-
tions.

The following is a characterization of reduced quiver settings (with at least 2
vertices):

Definition 6 A strongly connected quiver setting (Q,α) with at least 2 ver-
tices is called reduced if and only if

• every vertex t with no loop has χQ(α, εt) ≤ −1 and χQ(εt, α) ≤ −1.
• every vertex t with one loop has χQ(α, εt) ≤ −2 and χQ(εt, α) ≤ −2.
• all vertices with dimension 1 do not have loops.

Lemma 1 A non cofree quiver setting with a cofree local quiver has at least
2 vertices.

Proof. From [3] we easily deduce that a non cofree quiver setting with one
vertex has at least 2 loops and dimension at least 3 or at least 3 loops and
dimension at least 2. In both cases one easily verifies that too many arrows
appear in the local quivers. �
From now on we assume (Q, α) is a reduced quiver setting with at least 2
vertices (this implies that (Q,α) is not cofree). We first determine the possible
local quiver settings.

Lemma 2 A cofree local quiver setting of (Q,α) can never have 2 or more
loops at a vertex v with dimension α(v) = k ≥ 2.

Proof. The only situation of Theorem 6 where two loops occur is

��������2
"" ||

(3)

Suppose one can find a reduced quiver setting (Q,α) with n vertices such that
it has (3) as a local quiver. Then we know that 2 divides αi for all i. Since
(Q, α) is reduced, −χ(α, εi) ≥ 1 and −χ(α/2, εi) ≥ 1. But then the number
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of loops of the local quiver is

1− χQ(
α

2
,
α

2
) = 1−

n∑
i=1

α

2
χQ(

α

2
, εi) ≥ 3.

�

Lemma 3 (Q,α) is simple and χQ(α, α) = 0 if and only if Q = Ãn and
α = (1, . . . , 1).

Proof. By linearity of χQ, it is clear that χQ(α, α) = 0 is equivalent to
χQ(α, εt) = 0 for all t. Looking at the vertex with minimal dimension, one
easily deduces that all dimensions must be the same. The only strongly con-
nected quiver allowing this is an Ãn. The simplicity condition gives us dimen-
sion vector (1, . . . , 1). �

Theorem 7 Suppose (Q,α) has a cofree local quiver setting (Qp, αp), then
(Qp, αp) is always a connected sum of Ãi, where every vertex has dimension 1
(and a number of loops).

Proof. Suppose we have a cofree local quiver with a vertex of dimension
k ≥ 2. This vertex v corresponds to a simple quiver setting (Qv, αv), with Qv

a subquiver of Q and αv a sub-dimension vector of α, nonzero on Qv and zero
elsewhere. From Lemma 2 and the fact that the number of loops in vertex v
is given by

1− χQ(αu, αu)

(and therefore is at least 1), we know that vertex v has exactly one loop. This
also implies by Lemma 3 that (Qu, αu) = (Ãn,1). The number of non-loop
arrows arriving in vertex v is given by∑

w 6=v

−χQ(αw, αv)

= −χQ(α− kαv, αv)

= −χQ(α, αv) + k χQ(αv, αv)︸ ︷︷ ︸
=0

= −
∑

t∈(Qv)0

χQ(α, εt)αv(t) ≥ 2

where the last inequality holds because (Q,α) is reduced. A situation with
one loop and 2 more incoming arrows in a vertex with dimension greater than
k can never be cofree by Theorem 6.

We find that all vertices of the local quiver setting must have dimension 1.
The only possibilities left are, according to Theorem 6, connected sums of Ãi
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having dimension 1 on each vertex. �

Now that we have found all possible local quiver settings, let us look at all pos-
sible reduced quiver settings that have a connected sum of Ãi, with dimension
vector 1 as local quiver.

Theorem 8 Let (Q,α) be a reduced quiver setting with a local quiver (Qp, αp)
given by a connected sum of Ãi with dimension vector 1 and nv loops on each
vertex v.

Then (Q, α) is of the following shape: take (Qp, αp) and replace every vertex v
and its loops by a simple quiver setting (Qv, αv) with 1− χQv(αv, αv) = nv, in
such a way that the Ãi-arrows only start and end in a vertex with dimension
1.

We illustrate this theorem with an example:

��������1
&& ��������2
�� &&ff ��������1ff && ��������1

��

&& ��������1

�
��������1
&&

��

��������1

FF

��

ff ��������1

FF

uu

��������1

FF

ff

��������1

FF

&& ��������1

FF

ff ��������1

��

jj

��������2

FF

W_

local−→
quiver

��������1

��

7

��

��������15
�&

55

��������1
"" &&

uu

��������1ff 2^f

��������1

UU

8

W_

Proof. We first show that the quivers described in the theorem have a local
quiver that is a connected sum of Ãi with dimension 1 on every vertex.

Assume (Q, α) of the form

��������1 oo
simple// ��������1

)) ��������1 oo
simple// ��������1

����������1

FF

oosimple// ��������1 ��������1

···
ii oosimple// ��������1

with α = (α1, α2, . . . , αn) where αj is the dimension vector of the simple
subquiver placed at vertex j of Ãn.
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The Euler form of this quiver setting is given by the block matrix

A1 ε21 0 0 · · · 0

0 A2 ε32 0 · · · 0

0 0 A3 ε43 · · · 0

0 0 0 A4
. . . 0

...
...

...
. . . εn,n−1

ε1n 0 0 0 0 An


where Aj consists of the Euler matrix of the simple quiver at vertex j of Ãn

and εij is the matrix with -1 as entry (i, j) and zeroes elsewhere.

If we construct the local quiver by splitting the dimension vector α in n com-
ponents

(α1, 0, . . . , 0)⊕ (0, α2, 0, . . . , 0)⊕ . . .⊕ (0, . . . , 0, αn).

we get a local quiver that has n vertices and, with exception of loops, the only
arrows occurring are exactly the same as in the Ãn. This results in

��������1
&&

ln

�� ��������1

��

l1

lt

��������1

FF

ln−1

,4 ��������1ff

l2

LT

which is the first case of the cofree simple quivers of Theorem 6.

More generally, we start with a connected sum of Ãi, where every vertex is
replaced by a simple subquiver and Ãi-arrows always start and end in a vertex
with dimension 1. We construct a local quiver in the same way as above. The
simple subquivers will be packed in 1 vertex and for the same reason as above,
we get a local quiver that looks exactly the same as the original, replacing the
simple subquivers by vertices with dimension 1, with a number of loops. We
find a connected sum of cyclic quivers.

Remains to show that these quiver settings are the only possible reduced
quiver settings that have a cofree local quiver. This result is an immediate
consequence of the fact that it is impossible for 2 simple components of the
local quiver to have a common vertex with nonzero dimension.

To see that it is impossible to have a common vertex, we use, as before, only
reduced quiver settings (Q,α) with at least 2 vertices. Suppose (Q,α) has a
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local quiver with at least 2 components that overlap in a vertex t ∈ Q0 (there
exist components u and v with αu(t), αv(t) ≥ 1). We will show that the local
quiver (Qp, αp) always has a subquiver of the form

(i) ��������1 +3 ��������1 (ii)

��������1

��
��������1

55llllll
))RRRRRR ��������1

(iii)
��������1 //

&&MMMMMM ��������1

��������1 //

88qqqqqq ��������1

(where in (iii) the two left vertices may coincide) and therefore the local quiver
cannot be a connected sum of Ãi’s.

For a set of vertices of the local quiver, say Ω, we define the function

κt(Ω) :=
∑
u∈Ω

−χQ(αu, εt).

If we take Ω = (Qp)0, by Definition 6, κt(Ω) ≥ 1 and κt(Ω) ≥ 2 if there is at
least 1 loop in t. If we remove vertices u from Ω with −χQ(αu, εt) ≤ 0, κt(Ω)
still has the same lower bound.

Our next objective is to remove vertices from Ω in such a way that Ω has
exactly 2 vertices ui with αui

(t) > 0.

We start with Ω = (Qp)0 and remove vertices u with −χQ(αu, εt) ≤ 0 and
αu(t) > 0 from Ω. We stop removing vertices if there are only 2 components
ui with αui

(t) > 0 left in Ω. If it is not possible to reach an Ω with 2 components
ui with αui

(t) > 0 by this procedure, we just remove vertices until no vertex
w with χQ(αw, εt) ≤ 0 and αw(t) > 0 exists in Ω. We call the resulting set Ωt.

If Ωt has at least 3 components ui with αui
(t) > 0, each of these ui has

−χQ(αui
, εt) ≥ 1, and the number of arrows between ui and uj is given by

−χQ(αui
, αuj

) =
∑

s∈Q0

−χQ(αui
, εs)αuj

(s) ≥ −χQ(αui
, εt)αuj

(t) ≥ 1

where the first inequality is obtained by simplicity of the components of the
local quiver. This result in a subquiver of Qp looking like (ii).

If Ωt has 2 such components u and v, three situations may occur, but they all
will lead to a situation (i), (ii) or (iii):

A. (Qu)0 6⊂ (Qv)0 and (Qv)0 6⊂ (Qu)0. The number of arrows from u to v is
given by

−
∑

s∈(Qu)0∩(Qv)0

χQ(αu, εs)αv(s)−
∑

s∈(Qv)0\(Qu)0

χQ(αu, εs)αv(s) (4)

By simplicity of (Qu, αu), the first sum is always ≥ 0, and because there exist
vertices in (Qv)0\(Qu)0, the second sum is always at least 1. So we have at
least 1 arrow from u to v and, by the same argument, we have an arrow in
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the other direction. Since κt(Ωt) ≥ 1, we have

−χQ(αu, εt)− χQ(αv, εt) +
∑

w∈Ωt\{u,v}
χQ(αw, εt) ≥ 1 (5)

If the first term of (5) is at least one we get an extra arrow from u to v due
to the first sum of (4), so we are left with u +3 v in our local quiver. If the
second term is at least one we get v +3u in our local quiver. If the third term
is at least one, we get the situation (ii).

B. (Qu)0 ( (Qv)0. If Qu has exactly one vertex, the number of vertices between
v and u is given by −χQ(αv, εt)αu(t) and the condition on κ(Ωt) translates to

−χQ(αv, εt) +
∑

w∈Ωt\{u,v}
χQ(αw, εt) ≥ 2

(this is independent of the number of loops in t) and we see that all possible
situations lead to a subquiver of (Qp) of the form (i), (ii) or (iii).

If Qu has at least 2 vertices, we can look at equation (4) from situation A, for
arrows from u to v. We also use (5), to see we get another arrow from u tot
v or vice versa, or an arrow to u and v from another vertex w. Let us now
look at another vertex t1 of (Qu)0∩ (Qv)0. If here too we have κt1(Ωt) ≥ 1 this
leads to another arrow from v to u. If κt1(Ωt) = 0, there exists one vertex w′

of the local quiver which we have removed while constructing Ωt. This vertex
has −χQ(αw′ , εt1) and this leads to an arrow from w′ to both u and v. Again
we have a subquiver of (Qp) of the form (i), (ii) or (iii).

C. (Qu)0 = (Qv)0. If (Qu)0 has 1 vertex, the same argument as in B holds.
Suppose (Qu)0 has at least 2 vertices. Again, relation (5) gives us another ar-
row from u tot v or the other way round, or an arrow to u and v from another
vertex w. Using the same strategy as in B, we get, for another vertex t1 in the
intersection, another arrow. If the intersection consist of 3 or more vertices,
we get situation (i) - (iii). The last possibility to consider is the case where we
have 2 vertices t, t1 in the intersection. By the same arguments as before t and
t1 each give one arrow u to v or a reverse arrow, or an arrow from w to u and v.
All cases gives (i) to (iii), except when we have exactly one arrow from u to v
and vice versa. However, this is impossible because it yields −χQ(αu, εt) ≥ 1,
−χQ(αv, εt) = 0, −χQ(αv, εt1) ≥ 1 and −χQ(αv, εt1) = 0, and the only way to
obtain this is that (Qu, αu) or (Qv, αv) are not simple quiver settings. �
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5 The Brauer-Severi Fibration over the Flat Locus

From the previous section, we know the only flat, non-Azumaya settings that
can occur near a central singularity are cyclic quiver settings with dimension
vector 1. In this section, we give a description of the fibers of the Brauer-Severi
fibration over these points in the flat locus.

Lemma 4 Let (Q,α) be a quiver setting that is a connected sum of k cyclic
quivers Ãni

, 1 ≤ i ≤ k with dimension vector α = 1,

Q = Ãn1#v1 . . . #vk−1
Ãnk

then Null(Q, α) has (n1 + 1). . . . .(nk + 1) irreducible components Ti, each of
which is a tree that is a connected sum of k quivers of type Ani+1.

Proof. We know that a representation V lies in the nullcone if and only if
all traces along oriented cycles in Q become zero. This condition is equivalent
to choosing at least one arrow in each component that gets assigned to 0 by
V . But then choosing one arrow in each component gives a closed irreducible
subset of the nullcone, and permuting the arrow chosen to be zero yields a
covering of the nullcone by irreducible subsets, none of which lies in the union
of the others. �
Now let ξ ∈ flat(Q, α) with a local quiver setting (Qξ,1) that is a connected
sum of cyclic quivers and with γξ = (d1, . . . , dX). By Theorem 2 we know
that each irreducible component C of π−1(ξ) is described by the moduli space
mossθ(T̃ ,1) where T is an irreducible component of Null(Qξ,1) and hence by
the previous lemma a tree. In the remainder of this section we will describe
these components. In order to do so, we need some additional definitions.

Definition 7 Let (T,1) be a quiver setting of which the underlying quiver is
a tree.

(1) A vertex v ∈ T0 is called a root vertex if it is a sink, that is, there are no
arrows a ∈ T1 such that t(a) = v.

(2) A rooted tree is a quiver T that is a tree and for which there exists a
unique root vertex.

(3) For a root vertex v, we denote by T (v) the maximal rooted subtree of T
with root vertex v.

(4) For a vertex w in T (v), we let the root distance to v be the length of the
path connecting w to v, and denote this by Dv(w).

(5) For a rooted subtree T (v) we let hv := max{Dv(w) | w ∈ T (v)0} and call
this the height of the subtree T (v).

Now let v be a root vertex in the irreducible component T of Null(Qξ,1), then
we will assign a graph to T (v) as follows. Assign to each vertex w ∈ T (v)0 the
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projective space PNw with

Nw =
∑

��������w ��������uoo o/ o/ o/

du − 1.

For each vertex w in T (v) fix an ordering on the arrows entering w, denoting
them aw

1 , . . . aw
rw

. Denote the vertices at root distance s by ws
i with i numbering

the vertices at the fixed root distance s, grouping tails of arrows with the same
head together. We now construct a series of projection maps

PNv

π1

���
�
�
�

PNv

(v)
ϕv

1

~~~
~

~
~

~

. . . ϕv
rv

  A
A

A
A

A

∏
w∈Qp(v)0,Dv(w)=1

PNw

π2

���
�
�
�

P
N

w1
1

(w1
1)

×

. . .ϕ
w1

1
1

���
�

�
� ϕ

w1
1

r
w1

1

��;
;

;
;

. . . × P
N

w1
rv

(w1
rv

)

���
�
�
�
�

��;
;

;
;

;
;

. . .

∏
w∈Qp(v)0,Dv(w)=2

PNw

π3

���
�
�
�

P
N

w2
1

(w2
1)

× . . . × P

N
w2

r
w1

1

(w2
r
w1

1

)

!!D
D

D
D

D
. . .

}}{
{

{
{

{

. . . . . .

. . .

πhv
���
�
� . . . . . . . . . . . .

""F
F

F
F

F

. . .
{{x

x
x

x
x . . .

∏
w∈Qp(v)0,Dv(w)=hv

PNw P
N

w
hv
i

(whv
i )

× . . . × P
N

w
hv
M

(whv
M )

where

πi =
∏

w∈Qp(v)0,Dv(w)=i−1

πw
i

with

πw
i =

rw∏
j=1

ϕw
j

where ϕw
j is the projection on the projective coordinates numbered from 1 +∑j−1

k=1(Naw
k

+ 1) to
∑j

k=1(Naw
k

+ 1). We will denote the graph of this collection
of rational maps by Γ(v).

Let v and w be two root vertices, then their rooted subtrees must have a
common subquiver, denoted by T (v) ∩ T (w) which is again a rooted tree.
Denote the root vertex of this tree by v ∩ w. We then have

Theorem 9 Let ξ ∈ flat(Q, α) with local quiver data (Q,1, γ) where Q is
a connected sum of cyclic quivers. Let (T,1) be the quiver setting of an irre-
ducible component of Null(Q,1). Now let the rooted subtrees of T be connected
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as follows (we list the roots of the rooted subtrees):

v0

vv
vv

vv
vv

v

HHHHHHHHH

v01

{{
{{

{{
{{

{

EEEEEEEE . . . v0r0

FFFFFFFFFF

v011

yyyyyyyyy
. . . v2

01r01

vv
vv

vv
vv

v

IIIIIIIII
. . . . . .

GG
GG

GG
GG

GG
G

. . . . . . . . . . . . . . .

ttt
ttt

ttt
t

JJJJJJJJJ . . . . . .

v...1 . . . v...r...

That is, T (v0) has common subgraphs with T (v0i) for 1 ≤ i ≤ r0 but not with
any other T (w) for w 6∈ {v01, . . . , v0r0}, likewise for T (v01), and so on. Now
let

F0 = (. . . ((Γ(v0)×Γ(v0∩v01) Γ(v01))×Γ(v0∩v02) Γ(v02) . . . )×Γ(v0∩v0r0 ) Γ(v0r0)),

F1 = (. . . ((F0×Γ(v01∩v011)Γ(v011))×Γ(v01∩v012)Γ(v012) . . . )×Γ(v0r0∩v0r0r0r0
)Γ(v0r0r0r0

)),

. . .
Fn = (. . . ((Fn−1 ×Γ(v01...1∩v01...11) Γ(v01...11))×Γ(v01...1∩v01...12) Γ(v01...12) . . . )

×Γ(v0r0∩v0r0r0r0
...r0r0r0r0

... )
Γ(v0r0r0r0 ...r0r0r0r0

...)),

then the irreducible component of π−1(p) corresponding to T is equal to Fn.

Proof. We must describe mossθ(T̃ , 1̃). We will first describe ressθ(T̃ , 1̃) and
then see what the action of GL(1̃) on this subspace of semistable represen-
tations does. First of all, let v be a root vertex in T and let T̃ (v) be the
subquiver in T̃ corresponding to the rooted subtree of v. It is obvious that a
representation V is semistable for this setting if and only if each vertex in T is
reached by V . For a given vertex w ∈ T (v) this means that the representation
must be non-zero along at least one of the paths from v0 to w, and this for
each w. For any vertex w, denote the arrows from v0 to w by xw

1 , . . . , xw
γw

. By
abuse of notation, we will use the same notation for both the arrow a and the
value assigned to it by V . Now define for a top vertex t

t := (xt
1, . . . , x

t
γt

) ∈ Cγt

and define inductively for any vertex w with incoming arrows a1, . . . , aiw

w := (xw
1 , . . . , xw

γw
, a1t(a1), . . . , aiwt(aiw)) ∈ CNw+1.

Then the semistability condition for V yields that w 6= 0 for all w. Moreover,
we may identify V with its image in

∏
w∈TT0

CNw+1 under the map V 7→
(w)w∈T0 . The action of GL(1̃) on V translates in the natural action of

∏
w∈T0

C∗

19



on
∏

w∈T0
CDw+1 by left multiplication. This means the orbit of w corresponds

to a point in
∏

w∈T0
(P)Nw . Denote by

w ∈ PNw

the projective coordinates obtained from w, then the orbit of V is a M -tuple
of projective points (with M the number of vertices in T ):

OV = (. . . ,v, t(av
1), . . . , t(av

nv
), . . . ,w, t1, . . . , tnw , . . . ).

For the rooted subtree with root vertex v, the points corresponding to the
rooted subtree may be depicted as

t1

aw
1 !!D

DD
DD

DD
DD

. . . tnw

aw
nwzzvvvvvvvvv

. . .

w = (xw
1 : · · · : xw

dw
: aw

1 t1 : · · · : aw
nw

tnw)

��. . .

##G
GG

GG
GG

GG . . . . . .

{{www
ww

ww
ww

. . .

��

. . .

zzvvv
vv

vv
vv

t(av
1)

av
1

##G
GGGGGGGG
. . .

...

t(av
nv

)

av
nv

zzuuuuuuuuu

v = (xv
1 : · · · : xv

dv
: av

1t(a
v
1) : · · · : av

nv
t(av

nv
)

This corresponds exactly to a point in Γ(v), so for any root vertex v in T the
restriction of (the orbit of) V to T (v) yields a point in Γ(v). Now let v1 and v2

be two root vertices with connected rooted subtrees T (v1) and T (v2). Assume
these rooted subtrees coincide on a subquiver S, then this subquiver again is a
tree with root vertex w. The points in OV corresponding to v1 and v2 coincide
on all vertices of S, thus yielding a point in

Γ(v1)×Γ(w) Γ(v2).

Repeating this argument until all root vertices are accounted for then precisely
yields a point in Fn. �

Remark. These fibers are examples of framed quiver moduli as described by
Markus Reineke in [11]. The results here however were obtained independently
and through other methods than the results presented in [11].

The result above is a natural extension of [1]. In this paper M. Artin describes
the fibers of a Brauer Severi variety of a maximal order over a smooth curve.
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Theorem 10 (Artin) Let A be a maximal order in a central simple algebra
of dimension n2 over a Dedekind domain R. If p ∈ specR is a ramification
point with ramification index m then the fiber of the Brauer Severi Fibration
at p consists of m copies of the graph of the rational maps

Pn−1 → Pm−1
m

n−1 → . . . P 1
m

n−1 :

(x1, . . . , xn) 7→ (x1, . . . , xm−1
m

n, 0, . . . , 0) 7→ · · · (x1, . . . , x n
m

, 0, . . . , 0).

intersecting transversally.

Proof. The only strongly connected local quiver data for which this hold are
(Ãk,1, n

k+1
1). The structure of the quiver and the dimension vector follow

from the fact that issαpQp must be of dimension 1, the fact that γp must be
a multiple of 1 is a consequence of the maximality of the order.The number
k + 1 can be identified with the ramification index m of the point.

Lemma 4 gives us he correct number of components. Every component corre-
sponds to a tree which is in this case an ordinary dynkin quiver Ak, having a
unique maximal rooted subtree T (v) being the quiver itself. The component
is thus just the graph of the sequence of maps indicated above because all the
dw are equal to n

m
. �

6 Toric Varieties and the Brauer-Severi Fibration

We can also get a nice description of the fibers using toric geometry. This
discussion closely follows [5].

In the set of semistable representations of the quiver we can embed the big
torus TQ = (C∗)#Q1 as an open subset. On this torus there is an action of
Tα = GLα = (C∗)#Q0 , so that the moduli space contains a torus T = TQ/Tα =
(C∗)#Q1−#Q0+1 (the extra 1 comes from the fact that the action is not free).

Let v = v0 be the special source vertex and choose for every other vertex w an
arrow aw from v to w. Denote the set of all other arrows by P . We can identify
T with (C∗)#P by choosing for each point in T the unique representative whose
values at the aw is 1.

The space in which we are going to construct our fan is then Hom(C∗, T )⊗R ∼=
RP . A well known fact in toric geometry is that one can reconstruct the cones
from the variety using one parameter subgroups (1PSG’s).
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The space of one-parameter subgroups Hom(C∗, T ) = ZP can be identified
with Hom(C∗, TQ)/Im(Hom(C∗, Tα) → Hom(C∗, TQ)) = ZQ1/ZQ0−1. So every
1PSG λ̄ of T corresponds to an equivalence class of vectors λ : Q1 → Z that
differ by a vector of the form

ξ : Q1 → Z : a 7→ ζ(h(a))− ζ(t(a))

where ζ : Q0 → Z is a character of Tα.

Lemma 5 In every equivalence class of ZQ1/ZQ0−1 there is a representant
with only non-negative coefficients.

Proof. Suppose that λ ∈ ZQ1 is a vector with some negative coefficients.
Choose an arrow a such that λ(a) < 0 and let V1 be the set of vertices that
are targets of paths containing a. Let V0 be the complement of this set. Note
that s(a) ∈ V0 because the quiver has no cycles.

Consider the character ζ : Q0 → Z mapping the vertices in Vi to i. This
character gives a vector ξa that maps every arrow to something non-negative
because there are no arrows from V1 to V0. Moreover ξa(a) = 1 so the vector

λ′ = λ−
∑

a,λ(a)<0

λ(a)ξa

has no negative entries. �

The previous lemma implies that limz→0 λ̄(z) contains a representation that
assigns to every arrow either a 1 (for the zeroes in the vector) or a 0 (for the
strictly positive values in the vector). Also this limit representation must be
semistable, so there exists a path from v to every vertex w containing only
arrows with value 1.

Two such different limit points cannot belong to the same GLα-orbit, because
the GLα-action can never change a zero into a one or vice versa.

Moreover, every semistable representation with values 0 or 1 can be seen as a
limit point of a 1PSG (nl. one coming from a vector with zero’s on the arrows
with value 1, and positive values on the arrows with value 0). We can conclude
that

Lemma 6 There is a one to one correspondence between the limit points of
1PSGs and subquivers of Q which connect v to all other vertices in Q.

Proof. We identify such subquivers with the representation of Q that maps
the arrows of the subquiver to 1 and the others to 0. �
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From toric geometry (see e.g. [4]) we know that the poset of cones in the fan of a
toric variety is isomorphic to the poset of limit points under degeneration. The
identification goes as follows: to every limit point p we assign the semigroup

{λ̄ ∈ Hom(C∗, T ) : ∀a ∈ Q1 : pa = 0 =⇒ (lim
z→0

λ̄(z))a = 0}

This semigroup comes from the cone

σp := {η ∈ RP : ∀a ∈ Q1 : pa = 0 =⇒ η(a)−
∑

a,η(a)<0

η(a)ξa = 0}

We know the fiber is smooth so this poset comes from a simplicial set. There-
fore we can conclude

Theorem 11 The set of subquivers of Q such that v can be connected to
all other vertices forms a poset under the reverse inclusion. This poset is
simplicial and the set of cones

σQ′ := {η ∈ RP : ∀a ∈ Q′
1 : η(a)−

∑
a,η(a)<0

η(a)ξa = 0}

form a fan. Its corresponding smooth toric variety is isomorphic to the com-
ponent of the Brauer-Severi fiber.

We will now use this identification to compute the cohomology of the fibers.
This cohomology can in some ways be used as a shortcut to check certain
properties of the fibers without having to go through the rather lengthy explicit
description of Theorem 9.

For this we use the theorem by Fulton which allows one to compute the coho-
mology ring from the one dimensional cones in the fan:

Theorem 12 For a smooth toric variety with fan ∆ the cohomology is given
by the quotient of the polynomial ring generated by the one-dimensional cones
Di = Nvi by the relations

• Di1 · · · · ·Dik if Nvi1 + · · ·+ Nvik is not contained in a cone of ∆.
• ∑

i〈u, vi〉Di for all possible u ∈ Hom(T, C∗).

In order to translate this statement to the setting of this paper, we first of all
note that the one-dimensional cones correspond to the subquivers that lack
one arrow of the original. However, not all arrows correspond necessarily to a
cone because it might be that the representations that map this arrow to zero
is not semistable. This happens only if a = aw for some vertex and no arrow
in P terminates in w. Let us postpone this case for a moment.

So suppose that there are at least two paths from v to every other vertex. For
every arrow a let Da be the corresponding cone. The vector corresponding to
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Da has the following form: if a ∈ P then va : P → Z : b 7→ δab, if a = aw for
some vertex aw then

va : P → Z : b 7→


−1 h(b) = w

1 t(b) = w

0 otherwise

The second set of relations now becomes∑
a

va(b)Da for all possible b ∈ P.

These relations imply that for two arrows a, b starting in v and ending in the
same vertex w, Da = Db inside the homology ring. Let us denote this generator
by Dw. For arrows that do not start in v we have that Da = Dh(a) −Dt(a), so
the Dw are the generators of the homology ring.

Now let us determine what happens with the first set of relations. A repre-
sentation is not semistable if there is a vertex that is not the target of a path
from v. So the product of some Da is zero as long a the corresponding set of
arrows meets all paths from v to a certain vertex w. As there are arrows from
v to every other vertex this also implies that such a set of arrows must meet
all the arrows terminating in a given vertex. Therefore the relations can be
rewritten as∏

a,h(a)=w

Da or
∏

a,h(a)=w

(Dh(a) −Dt(a)) for all vertices w and Dv := 0

So we can conclude that

Theorem 13 The cohomology ring of the component of the fiber π−1(ξ) as-
sociated to Q is isomorphic to the ring

Z[Dw : w ∈ Q0]/(
∏

a,h(a)=w

(Dh(a) −Dt(a)) : w ∈ Q0 \ {v}, Dv)

Proof. For the case where there are at least two paths from v to every other
vertex this follows immediately from the discussion above.

If there is a vertex w with a unique arrow a that terminates in it, we can
construct a new quiver setting by removing this vertex and arrow like this

����	
�

��������v // ��������w

@@��������� //

��<
<<

<<
<<

<<
...

����	
�

7→

����	
�

��������v

99rrrrrrrrrrrrr //

%%LLLLLLLLLLLLL ...

����	
�
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The moduli space of this new quiver is the same as the old one because the
value of a is invertible and can be set to 1 using the action in w. The homology
ring of the new quiver can be calculated as above, but if one calculates the
relations for the old quiver one sees that these relations are the same because
Dw = 0 by the relation in w. �
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