
CONSISTENCY CONDITIONS FOR DIMER MODELS

RAF BOCKLANDT

ABSTRACT. Dimer models are a combinatorial tool to describe certain algebras that ap-
pear as noncommutative crepant resolutions of toric Gorenstein singularities. Unfortu-
nately, not every dimer model gives rise to a noncommutative crepant resolution. Several
notions of consistency have been introduced to deal with this problem. In this paper we
study the major different notions in detail and show that for dimer models on a torus they
are all equivalent.

1. INTRODUCTION

If X is a 3-dimensional normal Gorenstein singularity admitting a crepant resolution
X̃ → X , then one is interested to describe the bounded derived category DCohX̃ of co-
herent sheaves on X̃ . A well known result by Bridgeland [4] shows that this category only
depends on the singularity and not on the particular choice of crepant resolution.

In [23] Van den Bergh shows that this derived category can be described in terms of
a noncommutative algebra. More precisely, there exists a tilting bundle in U ∈ DCohX̃
such thatDCohX̃ is equivalent as a triangulated category to the derived category of finitely
generatedA-modulesDModAwhereA = EndX . This algebra is called a noncommutative
crepant resolution (NCCR) of X . The algebra is an order: a prime algebra which is a
finitely generated module over its center R = C[X]. This A is however far from unique
and in general there are an infinite number of different noncommutative crepant resolutions.
Moreover, characterizing these A by generators and relations can become quite hard.

If we make two restrictions, the problem becomes more manageable. First we assume
that X is a toric 3-dimensional Gorenstein singularity. This automaticly implies the exis-
tence of a commutative crepant resolution. Secondly, we assume that the tilting bundle is a
direct sum of non-isomorphic line bundles. It was noticed in string theory [11, 8, 10] that
under these conditions the algebra A can be described using a dimer model on a torus.

This means that A is the path algebra of a quiver Q with relations where Q is embedded
in a 2 dimensional real torus T such that every connected piece of T \ Q is bounded by a
cyclic path of length at least 3. The relations are given by demanding for every arrow a that
p = q where ap and aq are the bounding cycles that contain a.

This nice description follows from the fact that the algebra A is a toric order, a special
type of order compatible with the toric structure, and Calabi-Yau-3 (CY-3), i.e. it admits a
selfdual bimodule resolution of length 3. In [2] it was shown that every toric CY-3 order
comes from a dimer model.

Not every dimer model gives a noncommutative crepant resolution of its center. To do
so, it needs to satisfy some extra conditions called consistency conditions. In recent years,
several quite different consistency conditions were proposed such as cancellation [7], non-
intersecting zig and zag rays [15], consistent R-charges [14] and algebraic consistency [5].

The aim of this paper is to show that for dimer models on a torus all these consistency
conditions are equivalent. Moreover the condition of being an order and the condition
of being an NCCR are also equivalent to these consistency conditions. The situation for
the Calabi-Yau condition is less clear: it was shown by Davison [7] and Broomhead [5]
that cancellation and algebraic consistency imply the CY-3 condition, but there is no proof
for the other direction. We will give an example of an infinite dimer model that is not
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cancellation but satisfies a suitable generalization of the CY-3 property to the infinite case.
However, no finite counterexamples are known.

If one broadens the definition of a dimer model to allow other compact surfaces, the
consistency conditions are no longer equivalent. We will also discuss the differences for
those cases.

The paper is organized as follows. We start with a preliminary section on quivers and
dimer models. Then we introduce the cancellation property and discuss its relation with
the CY-3 property. In the other sections we introduce each time a notion of consistency and
show that is equivalent to the cancellation property for dimer models on a torus. We end
with a summary section which gives an overview of which equivalences hold for each type
of surface.
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3. PRELIMINARIES

3.1. Quivers. A quiver Q is an oriented graph. We denote the set of vertices by Q0, the
set of arrows by Q1 and the maps h, t assign to each arrow its head and tail. A nontrivial
path p is a sequence of arrows a1 · · · ak such that t(ai) = h(ai+1), whereas a trivial path
is just a vertex. We will denote the length of a path by |p| := k and the head and tail by
h(p) = h(a1), t(p) = t(ak). A path is called cyclic if h(p) = t(p). Later on we will
denote by p[i] the n− ith arrow of p and by p[i . . . j] the subpath p[i] . . . p[j].

�������� ��������p[n−1]oo ��������p[n−2]oo ��������p[1]oo ��������p[0]oo and p = p[n− 1]p[n− 2] . . . p[1]p[0].

A quiver is called connected if it is not the disjoint union of two subquivers and it is strongly
connected if there is a cyclic path through each pair of vertices.

The path algebra CQ is the complex vector space with as basis the paths in Q and the
multiplication of two paths p, q is their concatenation pq if t(p) = h(q) or else 0. The span
of all paths of nonzero length form an ideal which we denote by J . A path algebra with
relations A = CQ/I is the quotient of a path algebra by a finitely generated ideal I ⊂ J 2.
A path algebra is connected or strongly connected if and only if its underlying quiver is.
We will call a path algebra with relations CQ/I positively graded if there exists a grading
R : Q1 → R>0 such that I is generated by homogeneous relations.

3.2. Dimer models. A dimer model Q is a strongly connected quiver Q enriched with a 2
disjoint sets of cycles of length at least 3: Q+

2 and Q−2 , such that
DO Orientability condition. Every arrow is contained exactly once in one cycle in

Q+
2 and once in one in Q−2 .

DM Manifold condition. The incidence graph of the cycles and arrows meeting a
given vertex is connected.

The Euler characteristic of a dimer model is

χQ := #Q0 −#Q1 + #Q2 with Q2 = Q+
2 ∪Q

−
2 .

From a dimer model we can build a topological space |Q| by associating to every cycle
of length k in Q2 a k-gon. We label the edges of this k-gon cyclicly by the arrows of the
quiver and identify edges of different polygons labeled with the same arrow. If Q satisfies
DO and DM then |Q| is a compact orientable surface with Euler characteristic χQ ([2]).
We say that Q is a dimer model on |Q| and if χQ = 0 we speak of a dimer model on a
torus.
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To every dimer model we can associate its Jacobi algebra. For every a ∈ Q1 we set
ra = p+ − p− where p±a ∈ Q±2 and then set

AQ := CQ/〈ra|a ∈ Q1〉
This algebra can be expressed in terms of a superpotential but we will not pursue this
direction.

A dimer model is positively graded if there is a degree map R : Q1 → R>0 such that all
cycles in Q2 have the same degree. This turns AQ in a positively graded algebra.

Given a dimer model Q on X = |Q|, we can look at the universal cover X̃ → X . We
can lift the embedding of Q in X to obtain a possible infinite dimer model Q̃, which we
will call the universal cover of Q.

Remark 3.1. Usually the definition of a dimer model starts from the dual of Q: a bipartite
graph on a surface, with nodes Q2 and edges Q1, only after that the quiver is constructed
by taking the dual. We don’t do this because the switching can sometimes cause confusion.
We do keep the name dimer model, as it is most commonly used in the literature.

Example 3.2. Below we give 4 examples of dimer models. the first is a dimer model on a
sphere, the second and the third on a torus, the last on a double torus. Arrows and vertices
with the same label are identified.
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In the first example the cycles of Q+
2 (Q−2 ) are the (anti-)clockwise triangles of the octahe-

dron, in the last 3 examples the cyclesQ+
2 (Q−2 ) are (anti-)clockwise triangles, quadrangles

and pentagons.
Using the results of this paper, one can check that the first example is an order but not

CY-3, the second nor an order nor CY-3, the third both an order and CY-3, the last CY-3
but not an order. The third is the only NCCR and its center is the coordinate ring over the
cone over P1 × P1.

4. CANCELLATION

A path algebra of a quiver with relations is called a cancellation algebra if for every
arrow a and any two paths p, q with h(a) = t(p) = t(q) we have pa = qa =⇒ p = q and
for any two paths p, q with t(a) = h(p) = h(q) we have ap = aq =⇒ p = q.

For Jacobi algebras from dimer models we can restate the cancellation property. The
relations in the Jacobi algebra AQ imply that all cycles in Q2 are equivalent: c1p = pc2
for every p with h(p) = t(c1) and t(p) = h(c2). This implies that the algebra A has a
central element:

∑
c where we sum over a subset representatives of Q2 that contains just

one cyclic path c with h(c) = i for every i ∈ Q0. We will denote this central element by
`. For every arrow a we can find a path p such that ap ∈ Q+

2 and hence ap = h(a)` and
pa = t(a)`.

The cancellation property states that the map

AQ → AQ ⊗C[`] C[`, `−1]

is an embedding. This tensor product is the algebra obtained by making every arrow in-
vertible (i.e. for every a we have an a−1 such that aa−1 = h(a) and a−1a = t(a)). This
algebra is the localization of AQ by the Ore set {`k|k ∈ N} and we denote it by ÂQ.

We will take this property as the starting point from which we are going to prove the
equivalences of the different consistency conditions. But first we need to discuss the rela-
tion between cancellation and the Calabi-Yau property.
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5. THE CALABI-YAU-3 CONDITION

Definition 5.1. A path algebra with relations A is Calabi-Yau-3 if A has a projective bi-
module resolution P• that is dual to its third shift

HomA−A(P•, A⊗A)[3] ∼= P•

From this definition it is clear that a CY-3 algebra has global dimension 3 and there are
isomorphism between Exti(X,Y ) and Ext3−i(X,Y )∗ for every pair of finite dimensional
left A-modules X,Y . For more information about the CY-3 property we refer to [9] and
[1].

That cancellation implies CY-3 was proved by Ben Davison in [7].

Theorem 5.2 (Davison). The Jacobi algebra of a dimer modelQ with χQ ≤ 0 is CY-3 if it
is a cancellation algebra.

Remark 5.3. Davison’s work was a generalization of work by Mozgovoy and Reineke
[19] which used an extra consistency condition. This extra condition turned out to be a
consequence of the cancellation property.

The method in the proof involved showing that a certain complex C•, which is by con-
struction dual to its third shift, is acyclic. This complex looks like

⊕
s∈S

Fs δ3 //
⊕
r∈R

Fr δ2 //
⊕
b∈Q1

Fb δ1 //
⊕
i∈Q0

Fi

whereR = {ra|a ∈ Q1} is the set of relations and S = {v`|v ∈ Q0}. The bimodule Fp is
defined as Ah(p)⊗ p⊗ t(p)A. The differentials have the following form:

δ1(q1 ⊗ b⊗ q2) = q1b⊗ t(b)⊗ q2 − q1 ⊗ h(b)⊗ bq2

δ2(q1 ⊗ r ⊗ q2) =
∑
k

q1a1 · · · ⊗ ak ⊗ . . . anq2 −
∑
k

q1b1 · · · ⊗ bk ⊗ . . . bmq2

δ3(q1 ⊗ s⊗ q2) =
∑

h(a)=h(s)

q1a⊗ ra ⊗ 1−
∑

t(a)=h(s)

1⊗ ra ⊗ aq2.

In the second line we assume r = a1 . . . an − b1 . . . bm.
Let G be the groupoid of paths in ÂQ, this groupoid gives a G-grading on every Fp and

this grading makes the complex homogeneous.
This complex can even be defined for infinite dimer models, but in that case the complex

is not dual to its third shift because taking the dual is not well-behaved for infinite direct
sums. We will still continue to call AQ CY-3 in the infinite case if C is exact.

With this in mind we have the following observation:

Observation 5.4. There are infinite dimer models that are CY-3 but not cancellation.
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Proof. (Sketch). The example we give is
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We can give all arrows degree 1 to make AQ graded.
If C• were not a bimodule resolution then either there would be extra syzygies. Because

of the gradedness, there would be at least one simple Sv := AQv/(AQv)>0 for which
C• ⊗AQ Sv is not a projective resolution of v.

Now C• ⊗AQ Sv can be decomposed in its G-homogeneous components and for each
of the paths p in G one can check easily (see [3]) that the p-homogeneous part C• ⊗AQ Sv
is finite dimensional and acyclic. �

It is still an open question whether in the finite case there are CY-3 algebras that are not
cancellation.

6. ZIGZAG PATHS

Checking whether AQ is a cancellation algebra is not an easy task. Here we will intro-
duce a combinatorial criterion that will enable us to check this property visually. In order
to do this we need the following theorem from [2] relating a quiver polyhedron and its
universal cover.

Theorem 6.1. The Jacobi algebra AQ is a cancellation algebra if and only if AQ̃ is a
cancellation algebra.

We will now restrict ourselves to the case when the Euler characteristic is nonpositive,
so from now on we can assume that |Q̃| is a contractible manifold.

We can split any given path p in the universal cover into positive (negative) arcs. These
are maximal subpaths that are contained in a positive (negative) cycle. We will a call path
positively (negatively) irreducible if none of its positive (negative) arcs is the derivative of
a positive (negative) cycle or a cycle.

A zigzag path is an infinite length path Z = . . .Z[2]Z[1]Z[0]Z[−1]Z[−2] . . . for
which all positive and negative arcs have length 2. It is easy to see that there are exactly
two zigzag paths for which Z[0] equals a given arrow a (Z[1]Z[0] is either a positive or a
negative arc). We denote these two zigzag paths by Z+

a and Z−a . The part of the zigzag
path Z+

a starting from a, Z+
a [i]i≥0 is called the zig ray from a and is denoted by ~Z+

a .
Similarly we denote the zag ray by ~Z−a . The notion of a zigzag path is based on work by
Kenyon in [15] and Kenyon and Schlenker in [16].

Every zigzag path Z is bounded by a positively and a negatively irreducible path con-
sisting of the positive (negative) arcs ui such that uiZ[2i+ 1]Z[2i] is a positive (negative)
cycle.
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Theorem 6.2. If χQ ≤ 0 then Q is cancellation if and only if for every arrow a ∈ Q̃1 the
following condition hold

Z ~Z+
a and ~Z−a only intersect in a i.e.

∀i, j > 0 : Z+
a [i] 6= Z−a [j]

(note that the zigzag paths can intersect but only in different directions (f.i. Z+
a [i] =

Z−a [j] with i > 0 and j < 0)

Remark 6.3. Condition Z also implies that a zigzag path cannot selfintersect. Indeed if
there are selfintersecting zigzag paths, we can take Z such that a = Z[0] = Z[i] and
the loop Z[i − 1] . . .Z[0] encompasses the smallest number of cycles. If Z = Z±a then
the zigzag path Z∓a has an arrow inside the loop and as it cannot make a smaller loop it
must enter and leave the loop and hence there the zig and the zag ray of some arrow in Z
intersect.

Proof. Because χQ ≤ 0, the universal cover |Q̃| cannot have the topology of a sphere.
Therefore we have a definition of the interior and the exterior of a cyclic path that does not
selfintersect. Condition Z is necessary.
If Z+

a [i] = Z−a [j] and i, j are both positive and minimal, we look at the paths p+, p− that
are the irreducible paths accompanying Z+

a [i] . . .Z+
a [0] and Z−a [j] . . .Z−a [0] which lie in

the exterior of Z+
a [i] . . .Z+

a [0](Z−a [j] . . .Z−a [0])−1. By cancellation, we must have that
p+ = p−`

k or p+`k = p− for some k ≥ 0. This is impossible because p+ or p− is
positively or negatively irreducible.
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Condition Z is sufficient.
If Q is not cancellation, we will assume that condition Z holds and search for a contradic-
tion.

Let p, q be paths such that in AQ p 6= q but p`k = q`k for some k > 0.
A pair of paths (p, q) with h(p) = h(q) and t(p) = h(q) such that pq−1 is a loop that

does not selfintersect and its their interior cannot be shrunk by applying the relations ra
to p or q, is called an irreducible pair. It is clear that if (p, q) is an irreducible pair then
either p or q is a cycle in Q2 or one of the paths is negatively irreducible and the other one
positively irreducible.

If the last case does not happen, AQ must be cancellation. Indeed, given two paths p, q
with the same head and tail, we can turn every loop in p or q to a product of cycles in Q2.
After puting these cycles in front, we can split p = `up1 . . . pk and q = `vq1 . . . ql such
that pi and qi coincide or do not intersect. By assumption (pi, qi) is not irreducible so we
can shrink it until the two paths coincide up to a power of `. Hence, we can transform p
into q`k or q into p`k for some k ∈ N.

So let (p, q) such that p is a negatively irreducible path and q a positively reducible path.
At t(p) we consider the arrow a with h(a) = t(p) such that a sits in the same negative

cycle as the last positive arc of p. The zigzag path Z+
a must enter S at some vertex on the

boundary.
This vertex v cannot lie on p. Indeed, if this were the case it would be the head of one

of the negative arcs of p and Z+
a [j1] = b with j1 < 0 odd, p = r2br1 and h(b) = v. Now

the negative cycle containing b contains at least two arrows not in p because p is negatively
reduced. One of these arrows is c = Z+

a [j1 + 1]. Through c we can look at the zigzag
path Z−c . This path enters the simply connected piece S(1) bounded by p(1) = br1 and
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Z+
a [0] . . .Z+

a [j1 + 1]. It cannot leave S(1) through Z+
a by Z, so it must leave S(1) at a

vertex which is the tail of some negative arc of p. This cannot be the first arc or otherwise
the two zigzag paths intersect at a. This means that for some j2 > 0 Z−c [j2 − 1] . . .Z−c [0]
and a piece p(2) of p cut out an even smaller piece S(2).

a Z+
a

Z−c

bc

S(1)

S(2)

S(3)p(1)

p(2)Z+
d

Through d = Z−c [j2−1] we can look at the zigzag path Z−d which cuts out an even smaller
piece S(3). If we continue this procedure we get to a point where p(k) has length zero. But
this implies that the corresponding zigzag path will selfintersect (contradicting remark 6.3).

So Z+
a will leave S through q. Because Z does hold, Z−a must also leave through

q. Analogously to the previous paragraph we can now construct a sequence of zigzag
paths cutting a shorter and shorter pieces of q′ until we get a selfintersecting zigzag path
(contradicting remark 6.3). �

Remark 6.4. Dimer models with positive Euler characteristic can never satisfy the zigzag
condition because the universal cover is the quiver itself. As this quiver is finite, the zig
and zag path ray intersect multiple times.

7. CONSISTENT R-CHARGES

We borrow the following definition from Kennaway [14]:

Definition 7.1. A grading R : Q1 → R>0 is consistent if

R1 ∀c ∈ Q2 :
∑
a∈c Ra = 2,

R2 ∀v ∈ Q0 :
∑
h(a)=v(1− Ra) +

∑
t(a)=v(1− Ra) = 2.

Remark 7.2. In [5] a distinction is made between geometrically consistent and marginally
consistent R-charges. The former have the extra condition that Ra < 1 for every a, while
for the latter one also allows Ra ≥ 1. We will not make this distinction: for us marginally
consistent R-charges are also consistent.

It has been pointed out in e.g. [14] that consistency implies that the Euler characteristic
is zero

2χQ = 2(#Q2 −#Q1 + #Q0)

=
∑
c∈Q2

∑
a∈c

Ra −
∑
a

2 +
∑
v

 ∑
h(a)=v

(1− Ra) +
∑
t(a)=v

(1− Ra)


=

∑
a

 2Ra︸︷︷︸
a sits in 2 cycles

−2 + 1− Ra︸ ︷︷ ︸
v=h(a)

+ 1− Ra︸ ︷︷ ︸
v=t(a)

 = 0

Given a consistent R-charge we can realize the universal cover of the dimer model,
which is the Euclidean plane, in the following way: turn every cycle in Q2 into a polygon
the vertices of which are all on the unit circle and every arrow a stands on an arc of πRa
radians. Condition R1 implies that such a polygon exists as the arcs add up to 2π. If a
and b are consecutive arrows in a cycle then one can check that the angle between the two
arrows is π2 (2−Ra−Rb) because it is the inscribed angle standing on the arc spanned by the
rest of the cycle. Pasting all these polygons together one gets a tiling of the plane because
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condition R2 implies that the angles of the polygons at one vertex add up to 2π (see also
[16]). Such an embedding is called an embedding with isoradial cycles1.

A second ingredient we need are perfect matchings.

Definition 7.3. A perfect matching is a subset of arrows P ⊂ Q1 such that every cycle in
Q2 has exactly one arrow from P . A perfect matching gives a nonnegative grading on AQ
by assigning degree 1 to each arrow in P and zero to the others:

degP a =

{
1 a ∈ P
0 a 6∈ P

For an embedding with isoradial cycles we can construct special perfect matchings:

Lemma 7.4 (Definition of P±θ ). Given aQ embedded with isoradial cycles and a direction
θ, then the set P+

θ (P−θ ) of all arrows a such that the ray from the center of its positive
cycle in direction θ in the isoradial embedding hits a but not in its head (tail), is a perfect
matching.

Proof. It is clear from the construction that every positive cycle has exactly one arrow in
P±θ . The same holds for the negative cycles because a ∈ P±θ if and only if the ray from
the center of its negative cycle in direction −θ in the isoradial embedding hits a but not in
its tail (head).

θ

−θ

�

Now let Z = Z+
a be a zigzag path in a dimer model embedded with isoradial cycles.

We define εZ ∈ R/2πR to be the angle of h(a) as viewed from the center of the positive
cycle containing Z+

a [1]Z+
a [0]. It is easy to check that this definition does not depend on

the a.

Z−a

Z+
a

a

εZ

−εZ −εZ

εZ

Lemma 7.5. Let θ = εZ±a .

(1) P±θ intersects Z±a in all the arrows Z±a [i] with i odd.
(2) Both a and Z∓a [1] are not in P±θ .

1Such an embedding is a bit different from an isoradial embedding of the dimer model, which embeds the
dual graph isoradially i.e. the centers of the faces sharing a common vertex lie on a unit circle. Our definition
also includes cases where the cycle does not contain the center of the circle (when one of the arrows has R-charge
≥ 1)
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Proof. We prove the statement for θ = εZ+
a

. As illustrated above, viewed from the centers
of the positive cycles, t(Z+

a [i]) points in direction θ for all odd i. Viewed from the center
of the negative cycle, t(a) points in the direction −θ, so the arrow b = Z+

a [−1] with head
t(a) must sit in P+

θ , this cannot be Z−a [1] because the cycle containing ab has length at
least 3. �

We are now ready to prove the equivalence between cancellation and the existence of a
consistent R-charge.

Theorem 7.6. Let Q be a dimer model on a torus then Q is cancellation if and only if it
admits a consistent R-charge.

Proof. We will prove the equivalence of the existence of a consistent R-charge with prop-
erty Z. After that we can apply theorem 6.2.

The condition is sufficient. SupposeQ has an R-charge and construct the corresponding
tiling of the plane with isoradial cycles. Suppose Z+

a [i] = Z−a [j] = b and let p+ and
p− be the positively and negatively irreducible paths in the opposite direction such that
h(p+) = h(p−) = t(a) and t(p+) = t(p−) = h(b).

If we take θ = εZ+
a

then it follows from lemma 7.5 degP+
θ
p+ = 0. This implies that

neither a nor Z−a [1] sit in P+
θ . But P+

θ must contain an arrow of the cycle through Z−a [1]a

so degP+
θ
p− > 0. This means that p− = `kp+ in ÂQ for some k > 0, so Rp− > Rp+ .

On the other hand if we take θ = εZ−a then for similar reasons degP−θ
p− = 0 but

degP−θ
p+ > 0 and we get in ÂQ, p+ = `lp− for some l > 0 and Rp− < Rp+ . This

contradicts the previous paragraph.
The condition is necessary. Every zigzag path Z on the torus |Q| is periodic and hence

its lift |Q̃| can be assigned a direction vector in the Euclidean plane. The unit vector in this
direction will be denoted by eZ .

From condition Z, we can deduce that eZ+
a
6= eZ−a for every arrow a. If this were not the

case Z+
a and Z−a would intersect an infinite number of times (in shifts of a in the direction

eZ−a ).
We now define an R-charge as 1

π times the positive angle in clockwise direction from
eZ−a to eZ+

a

Ra :=
1

π
](eZ−a , eZ+

a
).

The value of Ra is always nonzero and smaller than 2.
We now prove that the following two conditions hold:∑

a∈c
Ra = 2 and

∑
h(a)=v

(1− Ra) +
∑
t(a)=v

(1− Ra) = 2.

First look at the incidence structure of the zag rays starting from arrows around a positive
cycle c (i.e the ~Z−a ). These rays do not intersect. If a, b are consecutive arrows, the inter-
section of ~Z−a and ~Z−b would imply that ~Z+

a = a ~Z−b and ~Z−a intersect twice. If a, b are not
consecutive in the cycle, there must be an arrow u between a and b. But then ~Z−u must ei-
ther intersect ~Z−a or ~Z−b . Proceeding in the same way, we can always find two consecutive
arrows for which the zag rays intersect.

The non-intersection implies that the directions eZ−a are ordered on the unit circle in the
same way as the arrows a. For consecutive arrows a, b eZ+

a
= eZ−b

so the sum of the angles
add up to 2π and hence the sum of the R-charges is 2.

We can now repeat this for the vertices. Look at all arrows leaving a vertex v. The zig
rays of two consecutive leaving arrows do not intersect because otherwise we could follow
the second zig path backwards inside the piece cut out by the two zig rays. This backwards
path must leave this piece by an arrow b of the first zig ray (because the second zag path
cannot selfintersect). But now the zigzag rays from b intersect twice, which contradicts Z.
If two zag rays of non-consecutive leaving arrows intersect then the zig ray of an arrow in
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between must intersect one of these zig rays so we can always reduce to the consecutive
case.

The angle between the directions of the zig rays of 2 consecutive leaving arrows a1, a2
is π(2 − Ra1 − Rb) where b is the incoming arrow between a1 and a2. The fact that these
angles add up to 2π gives us the second consistency condition.
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Remark 7.7. The first part of this theorem is an extension of Lemma 5.3.1 in [10] to the
marginally consistent case.

Remark 7.8. The second part of the theorem gives us an R-charge from the directions of the
zigzag paths in the plane. We can use this R-charge to construct an embedding with isoradial
cycles. Note however that the angles between the zigzag paths in this new embedding are
in general not the same as the ones we used to construct the R-charge. We can recover
these original directions from the embedding with isoradial cycles, because the eZ+

a
in the

original embedding point precisely in the directions εZ+
a

of the new embedding.

8. ALGEBRAIC CONSISTENCY

In [5] Broomhead introduced the notion of algebraic consistency. For this he constructed
a second algebra from the dimer model: BQ. From Q one can construct the following
diagram of maps

Z e← ZQ2
d→ ZQ1

d→ ZQ0

with e(c) = 1 and d(c) =
∑
a∈c a for any cycle c ∈ Q2 and d(a) = h(a) − t(a). We

define M = ZQ1/de−1(0) and for any vertices i, j we set

M+
ij =

d−1(i− j) ∩ NQ1

de−1(0)
.

Then the B-algebra is defined as

BQ =
⊕
i,j∈Q0

Span(M+
ij ) ⊂ Mat|Q0|(C[M ])

There is a natural map τ : AQ → BQ : a 7→ a ∈ Span(Mh(a)t(a)).

Definition 8.1. A dimer model is called algebraicly consistent if and only if τ : AQ → BQ
is an isomorphism.

In [5] Broomhead proved:

Theorem 8.2 (Broomhead). If a quiver polyhedron admits a geometrically consistent R-
charge then it is algebraically consistent.

In this section we will extend this result to any consistent R-charge. The proof given
will follow the same lines as Broomhead’s proof. In particular we will use the following
important lemma:

Lemma 8.3. [5][Broomhead Lemma 6.1.1] If Q is a dimer model on a torus then AQ
is algebraically consistent if it is cancellation and for every pair of vertices v, w in the
universal cover Q̃, there is a path p : v → w and a perfect matching P̃ that does not meet
p.
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We also need these 3 lemmas.

Lemma 8.4. Suppose AQ is cancellation and deg : Q1 → R is any (not necessarily
positive) grading such that deg ` 6= 0. Then two paths in AQ are equivalent if and only if
they are homotopic and have the same deg-degree.

Proof. It is clear that the relations ra imply that equivalent paths are homotopic and must
have the same degree. Because homotopies in the dimer model are generated by substitut-
ing paths p → q such that pq−1 = `, homotopic paths can only differ by a factor `k. The
degree of ` is not zero, so if homotopic paths have the same degree they must be equal in
AQ. �

Lemma 8.5. If AQ admits a consistent R-charge, P is a perfect matching and p, q are
cyclic paths with opposite homology classes then either p or q meets P .

Proof. Suppose degP p = degP q = 0. Take any path r from h(p) to h(q), then degP prq =
degP r and prq and r have the same homology class, so by lemma 8.4 they must be the
same. But this is impossible because for the R-charge, prq and r must have different de-
grees. �

Lemma 8.6. If Q satisfies condition Z and χQ = 0 then given a zigzag path Z1 in the
universal cover, there is always another zigzag path Z2 making a positive angle with Z1

less than π radians: 0 < ](eZ1 , eZ2) < π.

Proof. Suppose that the lemma does not hold. Let Z2 be the zigzag path whose angle
with Z1 is smallest and let a be an arrow in their intersection. There are two possibilities:
Z1 = ~Z+

a and Z2 = Z−a or Z1 = ~Z−a and Z2 = Z+
a . In the first case, the directions in

the zigzag paths show that there must be another arrow in the intersection behaving like the
second case.

Z1
��������

ww ''

Z2

Z2
��������
OO

'' ww Z1

So suppose Z1 = ~Z+
a and Z2 = Z−a and let b = Z+

a [−1]. By our hypothesis, the
zigzag path Z+

b makes a positive angle with Z1 that is at least as big as the angle with
Z2. Therefore the Z+

b must intersect Z1 a second time, but by condition Z Z+
b [i] =

Z1[j] =⇒ ij < 0. This also implies an intersection of Z+
b with Z2. This implies that

Z2 and Z+
b cannot have the same direction otherwise they would intersect multiple times

in this direction (take shifts of the intersection). So Z+
b makes a positive angle with Z1

that is bigger than the angle with Z2. Now this implies a second intersection with Z2

contradicting Z.

Z1

��

Z+
b Z2

xx
��������
b

$$IIII ��������
a ����������

&&xx
Z2 Z+

b

OO

Z1

�

Theorem 8.7. A dimer model with χQ = 0 is algebraically consistent if and only if it is
cancellation.
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Proof. Note that algebraic consistency automatically implies cancellation as BQ is a sub-
algebra of the cancellation algebra Matn(C[M ]).

Suppose that Q is cancellation and let 0 ≥ θ1 > · · · > θu > 2π be the directions
of the zigzag paths. Use these directions to construct an R-charge as in theorem 7.6 and
its corresponding embedding with isoradial cycles. For each i ∈ {1, . . . , u} we define
Pi := P+

θi
(note that by the isoradial construction θi = εZi ).

Every vertex in the universal cover has an arriving and a leaving arrow not in Pi−1∪Pi.
Indeed if we look at the arrows in a vertex v then by remark 7.8 every arrow is a vector
from eZ−a to eZ+

a
, so the tail of each arriving arrow a and the head of the leaving arrow b

in the same negative cycle are both in the same direction viewed from their positive cycles.
So if we shift all arrows arriving in and leaving from v to the unit circle they will form a
path

The 2nd consistency condition implies that the path goes around the unit circle n − 1
times where n is the number of incoming arrows.∑

h(a)=v

(1− Ra) +
∑
t(a)=v

(1− Ra) = 2 =⇒
∑

h(a)=v

Ra +
∑
t(a)=v

Ra = 2n− 2

An arrow sits in Pi−1∪Pi if and only if its head, tail or body crosses the direction θi. If all
incoming arrows would cross θi, the path would go round n times which is a contradiction.
The same can be said about the leaving arrows.

This means there is a path from every vertex v that does not meet Pi−1 ∪ Pi and hence
does not intersects the zigzag path Zi. It also does not selfintersect because it does not
meet Pi. Therefore it must either be parallel or antiparallel to the zigzag path. Parallel is
impossible because of lemma 8.5 and the existence of a path in the opposite direction of
the zigzag path.

Let us call this ray Yvi . If Yvi and Yvi+1 intersect multiple times we know that the pieces
between the intersections are equivalent because they both do not meet Pi. Hence they also
both do not meet Pi±1. We can chose Yvi and Yvi+1 to overlap on that piece. Choosing the
Yvi this way, we can divide the plane into sectors lying between the Yvi and Yvi+1.

Now let w be another vertex in the universal cover. If it lies on one of the rays Yi then
there is a path from v to w that does not meet Pi. If it lies between Yvi and Yvi+1 we can
find a vertex u1 far enough on Yvi and u2 far enough on Yvi+1 such that w lies in the piece
cut out by Yvi , Yu1

i+1, Yu2
i and Yvi+1. Note that the middle two paths intersect because by

lemma 8 the angle in the original embedding between them is smaller than π.

'&%$ !"#u2

Yu2i+1 //

��������w
��������v

Yvi

==

Yvi+1

//'&%$ !"#u1

Yu1i

@@

The piece is bounded by two paths that do not meet Pi so they have the same homology
and degPi and by lemma 8.4 they are equivalent. Hence, there is a sequence of relations
turning the first path in to the second. One of the intermediate steps must meet w because
it is inside the piece. This will give us a path from v to w that does not meet Pi. �
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Remark 8.8. The idea of cutting out a piece bounded by paths that do not meet a certain
perfect matching is borrowed from section 6.3.1 in [5]. In order to make this work in the
marginal consistent case, we used the new notion of these Pθ which do not appear in [5].

9. ORDERS

Definition 9.1. An orderA is a prime algebra (i.e. the product of nonzero ideals is nonzero)
which is a finitely generated module over its center R. If K is the quotient field of R and
∆ = A⊗R K then we say A is an R-order in ∆.

Orders have a special property: Reichstein and Vonessen [21] showed they can be re-
constructed from a certain representation space. SupposeA can be written as a path algebra
with relations CQ/I.

For any dimension vector α we can define rep(Q,α) as

rep(Q,α) :=
⊕
a∈Q1

Matαh(a)×αt(a)(C).

This space parametrizes the α-dimensional representations of Q.
On this space we have a base change action of the group GLα =

∏
v∈Q0

GLαv (C).
This group also acts on Mat|α|(C) by base change and we define Eqv(Q,α) as the ring of
equivariant polynomial maps from rep(Q,α) to Mat|α|(C)

Eqv(Q,α) := {f : rep(Q,α)→ Mat|α|(C)|∀g ∈ GLα : f(ρg) = f(ρ)g}

The multiplication in this ring comes from Mat|α|(C).
For A we define the simples(A,α) as the subset of rep(Q,α) containing all representa-

tions of Q that are simple representation of A.

Theorem 9.2 (Reichstein, Vonessen). If A is an order then there is an α such that

A ∼=
Eqv(Q,α)

{f : f(simples(A,α)) = 0}
Remark 9.3. The original version of the theorem uses the terminology of PI-rings which
is a bit broader than orders. We also reformulated the theorem in the language of quivers
whereas the original works with generators of an algebra. The dimension vector is such that
the PI-degree of A is |α|, this is the biggest α for which there exist simples or equivalently
the dimension vector of a simple representation of the form ρ : A → A ⊗R R/m where
mCR is a maximal ideal.

In the case of dimer models we already had a notion of reconstructing the algebra A
using the algebraic consistency. Algebraic consistency fits in this more general framework
because of the following lemma

Lemma 9.4. IfQ is a dimer model thenBQ ∼= Eqv(Q,α)
{f :f(simples(AQ,α))=0} with α the dimension

vector that assigns 1 to each vertex.

Proof. One can easily check that using the terminology of the previous section

Eqv(Q,α) =
⊕
i,j

Span(d−1(i− j) ∩ NQ1) ⊂ Mat(C[ZQ1 ]).

If two monomials of xα, xβ ∈ C[ZQ1 ] evaluate the same on all simples, then they evaluate
the same on all representations for which all arrows are nonzero. This implies that α−β ∈
de−1(0) because such a simple representation is a representation of AQ if and only if all
cycles evaluate to the same number. Therefore

Span(d−1(i− j) ∩ NQ1)

{f : f(simples(AQ, α)) = 0}
= Span(

d−1(i− j) ∩ NQ1

de−1(0)
)

�
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So algebraic consistency seems just a specific consequence of being an order and indeed
we have the following theorem.

Theorem 9.5. A Jacobi algebra of a dimer model on a torus is an order if and only if it is
algebraicly consistent.

Proof. An algebraicly consistent dimer model is always an order because BQ by construc-
tion is prime and finite over its center. If AQ is an order then it is cancellation because it is
prime. Theorem 8.7 implies it is algebraicly consistent. �

Remark 9.6. A dimer model on a higher genus surface can never be an order, because if it
is prime, it must be cancellation, but then ÂQ must also be finite over its center but this is
impossible because ÂQ/(`−1) is Morita equivalent to the group algebra of a higher genus
surface group.

A dimer model on a sphere is an order if and only if it is cancellation. Indeed if it is
cancellation and we are on a sphere then every path p is isomorphic to a `kp′ where p′

does not self intersect. There are only a finite number of paths that do not self intersect
so AQ is finite over its center. On the other hand, if AQ is an order then it is cancellation
because it is prime. Such dimer models are also algebraicly consistent: the representation
AQ → AQ ⊗C[`] C[`]/(` − 1) = Mat|Q0|(C) so the α from theorem 9.2 is the dimension
vector that assigns 1 to each vertex.

10. NONCOMMUTATIVE CREPANT RESOLUTIONS

In [23] Van den Bergh introduced the notion of a noncommutative crepant resolution.

Definition 10.1. Let R be an affine commutative Gorenstein domain, with quotient field
K. An algebra A is a noncommutative crepant resolution of R if A is homologically
homogeneous (i.e. the projective dimension of all simple representations of A is the same)
and A ∼= EndR(M) for some finitely generated R-reflexive module M (reflexive means
HomR(HomR(M,R), R) ∼= M ).

As is explained in the discussion following this definition in and using results [23] from
[18] and [20], this definition is satisfied if

(1) A is an R-order in Matn×n(K),
(2) A has finite global dimension,
(3) A is Cohen-Macaulay over R,
(4) the ramification locus has codimension ≥ 2.

The ramification locus of an order is defined as the set of points p ∈ MspecR such that
A ⊗R R/p 6= Matn×n(C) (or in other words the representation of A at the point p is not
simple).

Theorem 10.2. The Jacobi algebra of a dimer model on a torus is a noncommutative
crepant resolution of its center if and only if it is cancellation.

Proof. If AQ is a noncommutative crepant resolution of its center then it is an order and
hence cancellation.

Suppose that AQ is cancellation, then AQ is an order. Because AQ ⊗C[`] C[`, `−1] =

Matn(C[X±11 , X±12 , X±13 ]) andK = C(X1, X2, X3) we have thatAQ⊗RK = Matn×n(K).
By the CY-3 property the global dimension is 3. From [22][theorem 2.2] we conclude that
A is Cohen-Macaulay.

Finally, if we show that the ramification locus has codimension at least 2, we are done.
If pCZ(A) lies in the ramification locus then ` must be in p, because otherwise all arrows
must evaluate to something nonzero and the representation is simple.

Now we show that there is at least one cycle with nonzero homology class that evaluates
to zero: if this were not the case we could find two cycles c1,c2 with linearly independent
homotopy classes that are not zero. Both cycles can be seen as h(c1)Trc1 and h(c2)Trc2
where Trc1,Trc2 ∈ R. If v1 and v2 are two vertices then we can look at v1Trc1 and
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v2Trc2. These are two cycles, they are nonzero and because the homotopy classes are
linearly independent, they must intersect. This means that there is a path of nonzero arrows
between v1 and v2. As this holds for every couple of vertices, the representation must be
simple.

Two zero cycles (` and the one with nontrivial homology) with different homology gen-
erate an ideal which defines a subscheme of codimension 2. �

Remark 10.3. A dimer model on a higher genus surface can never be an NCCR because it
is not an order. A dimer model on a sphere can never be an NCCR because even if it were
an order, its center is C[`], which is smooth so the NCCR should be equal to C[`].

11. SUMMARY

The following theorem is a summary of all main theorems from the previous sections:

Theorem 11.1. For a dimer model Q on a torus the following are equivalent:
(1) AQ is cancellation.
(2) AQ is algebraically consistent.
(3) AQ is an order.
(4) AQ is an NCCR of its center.
(5) The zig and zag rays in the universal cover do not intersect twice.
(6) There exists a consistent R-charge.

The remarks following these proofs show that in the higher genus case this theorem
changes to:

Theorem 11.2. For a dimer model Q on a higher genus surface the following are equiva-
lent:

(1) AQ is cancellation.
(2) The zig and zag rays in the universal cover do not intersect twice.

While the following can never happen
(1) There exists a consistent R-charge.
(2) AQ is algebraically consistent.
(3) AQ is an order.
(4) AQ is an NCCR of its center.

In the genus zero case we have got:

Theorem 11.3. For a dimer model Q on a sphere the following are equivalent:
(1) AQ is cancellation.
(2) AQ is algebraically consistent.
(3) AQ is an order.

While the following can never happen
(1) AQ is CY-3.
(2) The zig and zag rays in the universal cover do not intersect twice.
(3) There exists a consistent R-charge.
(4) AQ is an NCCR of its center.
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