
COFREE QUIVER REPRESENTATIONS

RAF BOCKLANDT AND GEERT VAN DE WEYER

Abstract. We give a complete classification of all quivers Q and dimension

vectors α for which the representation space Rep(Q, α) is cofree, that is, for

which C[Rep(Q, α)] is a graded free C[Rep(Q, α)]GLα -module.

1. Introduction

Consider a linear reductive complex algebraic group G and a representation φ :

G → GL(V ). Such a representation is called cofree if its coordinate ring C[V ] is a

graded free module over the ring of invariants C[V ]G. Cofree representations were

studied amongst others by Popov in [1] and Schwarz in [2] and were classified by

Schwarz for G a connected simple complex algebraic group.

A representation of a quiver Q of dimension vector α is a natural example of

the situation described in the previous paragraph through the natural action of

the linear reductive complex algebraic group GL(α) on such a representation by

conjugation (base change). Recall that a quiver Q is a directed graph and that a

dimension vector for such a quiver assigns to each vertex of the graph a positive

integer. A representation of a given quiver with a given dimension vector then

assigns to each vertex a complex vector space of dimension equal to the integer

assigned to this vertex and to each arrow a linear map between the vector spaces on

the vertices connected by this arrow. The representation theory of quivers has by

now been shown to be very useful in such diverse fields as geometric invariant theory

(through e.g. the construction of moduli spaces as in [3]), representation theory of

(Lie) algebras (starting with the work of Gabriel [4]), quantum group theory (e.g.

through the use of Hall algebras [5]), etc.

In the current paper we give a complete classification of all quivers Q and di-

mension vectors α for which the corresponding representation space Rep(Q,α) is

cofree. This classification is presented in Theorem 1.1. Recall that a quiver set-

ting is a connected sum of two subquivers if the two subquivers have exactly one

vertex in common. A quiver setting is called a prime quiver setting if it is not a
1
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connected sum of two subquivers. The prime components of a quiver setting are

subquiver settings that are prime and are not contained in a larger subquiver that

is also prime. By reduction step Rc
I we mean the construction of a new quiver from

a given quiver by removing a vertex (and connecting all arrows) in the situation

illustrated below, where k is not smaller than the number of cycles through ��������k .
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We have

Theorem 1.1. A quiver setting (Q,α) is cofree if and only if its prime components

can be reduced using Rc
I to one of the following forms

• strongly connected quiver settings (P, ρ) for which

(1) ∃v ∈ P0 : ρ(v) = 1 and through which all cycles run

(2) ∀w 6= v ∈ P0 : ρ(w) ≥ #{ ��������v ///o/o ��������w }+ #{ ��������v ��������woo o/ o/ } − 1

• quiver settings (P, ρ) of the form

��������... // ��������...
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for which at exactly vertex x ∈ P0 in the path v ///o/o/o w has minimal

dimension.

• quiver settings (P, ρ) of the form

'&%$ !"#d1
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with di > 2 for all 1 ≤ i ≤ k.

• quiver settings of extended Dynkin type Ãn

• quiver settings (P, ρ) consisting of two cyclic quivers, Ãp+s and Ãq+s, co-

inciding on s + 1 subsequent vertices, one of these, which we denote by f ,
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with dimension ρ(f) = 2:

'&%$ !"#u1 // '&%$ !"#u2 // . . . // '&%$ !"#up

  A
AA

A

��������cs

;;xxxxx

##F
FF

FF . . .oo ��������2oo . . .oo ��������c2oo ��������c1oo

'&%$ !"#l1 //'&%$ !"#l2 // . . . //'&%$ !"#lq

>>}}}}

with

(1) either s = 0 and ui, lj , ck ≥ 2 for all 1 ≤ i ≤ p, 1 ≤ j ≤ q and 1 ≤ k ≤ s

or

(2) ρ(v) ≥ 4 for all vertices v 6= f .

• a cyclic quiver with exactly one vertex of dimension 2, extended with one

extra arrow between two subsequent vertices

'&%$ !"#d1 // . . . // '&%$ !"#di

!!C
CC

CC

'&%$ !"#dp
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[[ ii

. . .oo 76540123di+1oo

with di ≥ 4 for all 1 ≤ i ≤ p.

The classification is obtained starting from a classical result by Schwarz [6] which

states that a representation φ is cofree if and only if it is coregular (that is, C[V ]

is isomorphic to a polynomial ring) and the codimension in C[V ] of the zero set

NG(V ) of elements of positive degree in C[V ]G is equal to dim C[V ]G. This result,

in combination with the classification of coregular quiver representations by the first

author in [7] and the study of the nullcone of quiver representations by the second

author in [8] yields the complete classification presented.

The paper is organized in the following manner. In Section 2 we collect most

of the definitions and background material needed for the rest of the paper. In

Sections 3 and 4 the methods to obtain the classification are discussed.

2. Preliminaries

In this section we gather together all necessary material for the rest of the paper.

2.1. Definitions and Notations.

Definition 2.1.

• A quiver is a fourtuple Q = (Q0, Q1, s, t) consisting of a set of vertices Q0,

a set of arrows Q1 and two maps s : Q1 → Q0 and t : Q1 → Q0 assigning
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to each arrow its source resp. its target vector:

����	
� ����	
�aoo

t(a) s(a)

.

• A dimension vector of a quiver Q is a map

α : Q0 → N : v 7→ α(v) := αv

and a quiver setting is a couple (Q,α) of a quiver and an associated dimen-

sion vector.

• Fix an ordering of the vertices of Q. The Euler form of a quiver Q is the

bilinear form

χQ : N#Q1 × NZ#Q1 → Z

defined by the matrix having δij−#{a ∈ Q2 | h(a) = j, t(a) = i} as element

at location (i, j).

• A quiver is called strongly connected if and only if each pair of vertices in

its vertex set belongs to an oriented cycle.

A quiver setting is graphically depicted by drawing the quiver and either listing

in each vertex v the dimension α(v): 76540123α(v) or by listing the name of the vertex, in

which case the vertex is not encircled.

Definition 2.2.

• An α-dimensional representation V of a quiver Q assigns to each vertex

v ∈ Q0 a linear space Cα(v) and to each arrow a ∈ Q1 a matrix V (a) ∈

Mα(t(a))×α(s(a))(C). We denote by Rep(Q,α) the space of all α-dimensional

representations of Q. That is,

Rep(Q,α) =
⊕

a∈Q1

Mα(t(a))×α(s(a))(C).

• We have a natural action of the reductive group

GLα :=
∏

v∈Q0

GLα(v)(C)

on a representation V defined by basechange in the vectorspaces. That is

(gv)v∈Q0 .(V (a))a∈Q1 = (gt(a)V (a)g−1
s(a))a∈Q1 .



COFREE QUIVER REPRESENTATIONS 5

• The quotient space with respect to this action classifies all isomorphism

classes of semisimple representations and is denoted by iss(Q,α). The quo-

tient map with respect to this action will be denoted by

π : rep(Q,α) � iss(Q,α).

• The fibre of π in π(0) is called the nullcone of the quiver setting and is

denoted by Null(Q,α).

For the study of the equidimensionality of the quotient map we introduce

Definition 2.3. For a given quiver setting (Q,α), we define the defect of the equidi-

mensionality

def(Q, α) := dim Null(Q,α)− dim rep(Q,α) + dim iss(Q,α).

We then have

Proposition 1. [9, II.4.2, Folgerung 1] For a given quiver setting (Q,α) as above,

the quotient map π is equidimensional if and only if def(Q,α) = 0. We will say that

the quiver setting (Q,α) is equidimensional.

In order to formulate our main result we need one last definition.

Definition 2.4.

• A quiver Q is said to be the connected sum of 2 subquivers C and D at

vertex v, if Q0 = C0 ∪D0, Q1 = C1 ∪D1, C0 ∩D0 = {v} and C1 ∩D1 = ∅.

We denote this as Q = C#
vD.

C#
vD :=

. . .

  A
AA

AA
AA

AA
. . .

~~}}
}}

}}
}}

}

C ��������v
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AA

AA
AA

AA

~~}}
}}

}}
}}

} D

. . . . . .

• When three or more quivers are connected we write R#
vS#

wT instead of

(R#
vS)#wT .

• We call a quiver setting (Q,α) prime if Q can not be written as R#vS

where v is a vertex with dimension 1.

• Prime subsettings that are not contained in any larger prime subsetting are

called the prime components.
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Note that a quiver setting is cofree if and only if all its prime components are

cofree.

2.2. Reducing Quiver Settings. In [7], Raf Bocklandt introduced three different

types of reduction moves on a quiver setting (Q, α). These are

Rv
I : let v be a vertex without loops such that

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0.

Construct a new quiver setting (Rv
I (Q),Rv

I (α)) by removing v and connect-

ing all arrows running through v:

u1 . . . uk u1 . . . uk

v
b1

bbEEEEE
bk

<<yyyyy
→

i1
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. . . il
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cll

OOYY2222222222

cl1
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For this step we have iss(Q,α) ∼= iss(Rv
I (Q), Rv

I (α)).

Rv
II : let v be a vertex with α(v) = 1 and n loops. Let (Rv

II(Q), α) be the quiver

setting obtained by removing all these loops. We then have

iss(Q,α) ∼= iss(Rv
II(Q), α)× An.

Rv
III : let v be a vertex with one loop and α(v) = n such that

χQ(α, εv) = −1 or χQ(εv, α) = −1.

Let (Rv
III(Q), α) be the quiver setting obtained by removing the loop in v

and adding n− 1 additional arrows between v and its neighbouring vertex

with dimension 1 (all having the same orientation as the original arrow).

For this step we have

iss(Q, α) ∼= iss(Rv
III(Q), α)× An.

Definition 2.5. Let (Q,α) be a quiver setting.

(1) If none of the above reduction steps can be applied to (Q,α) then this

setting is called reduced.

(2) By (R(Q),R(α)) we denote the quiver setting obtained after repeatedly

applying all of the above reduction steps until no longer possible. This

setting is called the reduced quiver setting of (Q,α).
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We now have the following two results.

Theorem 2.1 (Bocklandt, [7]). Let (Q,α) be a strongly connected quiver setting,

then (Q,α) is coregular if and only if (R(Q),R(α)) is one of the following three

settings:

��������k ��������k
�� ��������2

��
[[.

We will denote these settings by Q0(k), Q1(k) and Q2.

Theorem 2.2 (Van de Weyer, [8]). Let (Q,α) be a quiver setting, then

def((Q, α) ≥ def(R(Q),R(α)).

These two results will be our main tools in classifying all cofree quiver settings.

Finally, we will use the Luna Slice Theorem, formulated for quiver representations

(see [10]).

Theorem 2.3 (Le Bruyn-Procesi). Let (Q,α) be a quiver setting. Let

π : rep(Q,α) � iss(Q,α)

be the quotient with respect to the natural GLα-action. Let S ∈ iss(Q, α) correspond

to the following decomposition in simples

S = S⊕e1
1 ⊕ · · · ⊕ S⊕ek

k ,

with Si a simple representation of dimension vector αi (for 1 ≤ i ≤ k).

Define the quiver QS as the quiver with k vertices and δij − χQ(αi, αj) arrows

from vertex i to vertex j. Define αS as the dimension vector that assigns ei to

vertex i (for 1 ≤ i ≤ k). Then

(1) there exists an étale isomorphism between an open neighbourhood of S in

iss(Q,α) and an open neighbourhood of the zero representation in iss(QS , αS).

(2) there is an isomorphism as GLα-varieties

π−1(S) ∼= GLα ×GLαS Null(QS , αS).

We define

Definition 2.6.

• An element S = S⊕e1
1 ⊕ · · · ⊕ S⊕ek

k is said to be of representation type

(α1, e1;α2, e2, . . . , αk, ek) where αi is the dimension vector of Si for 1 ≤

i, leqk.
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• The quiver setting (QS , αS) is called the local quiver of S.

3. Quiver Settings Reducing to Q0(1)

Lemma 3.1. Suppose (Q, α) is cofree. If (Q′, α′) is

(1) a subquiver of (Q,α),

(2) a local quiver of (Q,α) or

(3) a quiver obtained by applying reduction moves to (Q, α),

then (Q′, α′) is also cofree.

We will call a path quasiprimitive if it does not run n+1 times trough a vertex of

dimension n. We will denote a quasiprimitive path between v and w by ��������v ///o/o ��������w .

Throughout the paper, we assume every path quasiprimitive unless stated other-

wise. Cycles will also be assumed quasiprimitive. The advantage of working with

quasiprimitive cycles is that there are only a finite number of them.

Reduction move RI does not change the number of quasiprimitive cycles, the

other moves respect the number of quasiprimitive cycles through the vertices where

they are not applied.

To every point V ∈ Rep(Q, α) and a vertex v, we can assign a new dimension

vector σv where σv
w is the dimension of the vector space

Span(
⋃

��������v
p
///o/o ��������w

Im Vp).

We will call σv the relevant dimension vector with base v. In this formula the trivial

path through v is not counted. When we do count the trivial path then we will

denote this by a σ̄v (i.e. σ̄v
v = αv while σv

v can be smaller). When the base vertex

is obvious we will omit the superscript.

Theorem 3.2. Suppose (Q,α) a strongly connected quiver setting without loops.

If Q has a vertex v with dimension 1 which all cycles run through then (Q,α) is

cofree if and only if for every vertex w the dimension

(1) αw ≥ #{ v ///o/o w }+ #{ ��������v ��������woo o/ o/ } − 1

Proof. We will denote the set of representations with a given relevant dimension σ

with base v by Relσ(Q,α).
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We now have that V ∈ Null(Q, α) if and only if σv = 0, so

Null(Q,α) =
⋃

σv=0

Relσ(Q,α) and dimNull(Q, α) = max
σv=0

dim Relσ(Q,α).

We can calculate the dimension of Relσ(Q,α) ⊂ Null(Q,α) as follows. If there exists

a vertex w such that

δw :=
∑

t(a)=w

σ̄s(a) − σw < 0,

Relσ(Q, α) will be empty (recall that σ̄ is the same dimension vector as σ except

that σv = 1). This also implies that σw ≤ #{ ��������v ///o/o/o ��������w }. If this is not the case

dim Relσ(Q, α) =
∑

w∈Q0

σw(αw − σw) +
∑

a∈Q1

(αs(a)αt(a) − σ̄s(a)(αt(a) − σt(a)))

= dim Rep(Q,α)−
∑
w 6=v

 ∑
t(a)=w

σ̄s(a) − σw

 (αw − σw)−
∑

t(a)=v

σs(a)

= dim Rep(Q,α)−
∑
w 6=v

∑
t(a)=w

δw(αw − σw)−
∑

t(a)=v

σs(a)

The first term on the first line calculates the dimension of all possible choices of a

σw-dimensional subspaces in an αw-dimensional subspace for every w. The second

term gives the dimension of the space of all possible maps Ra, a ∈ Q1 mapping the

correct subspaces onto each other.

Now we calculate the last term of the third line. For a given n we have that

∑
t(a)=v

σs(a) = #{cycles of length ≤ n}+
∑

w
p
///o/o v

|p|=n,w 6=v

σw −
∑
w 6=v

δw ·#{ w
p
///o/o v , |p| < n}.

We will prove this statement by induction. For n = 1 only the middle term of

the right hand side is non zero and it is equal to the right side. Suppose that the

formula is proven for n and we want to prove it for n + 1. We split up every σw as∑
t(a)=w σs(a) − δw. If s(a) = v then ap is a cycle of length n + 1 and in this case
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σs(a) = 1. We will put these terms apart.

∑
w

p
///o/o v

|p|=n,w 6=v

σw =
∑

w
p
///o/o v

|p|=n,w 6=v

 ∑
t(a)=s(p)

σs(a) − δw



=
∑

v
ap
///o/o v

|ap|=n+1

1 +
∑

w
ap
///o/o v

|ap|=n+1,w 6=v

σw −
∑

w
p
///o/o v

|p|=n,w 6=v

δw

= #{cycles of length n + 1}+
∑

w
p
///o/o v

|p|=n+1,w 6=v

σs(p) −
∑
w 6=v

δw ·#{ w
p
///o/o v , |p| = n}.

We can substitute this formule in (∗) and add the left term respectively the right

terms to obtain the equation for n + 1. Because every cycle contains v and the

length of the paths is bounded, we get for n >> 1 that middle term becomes zero

and hence ∑
t(a)=v

σs(a) = #{QP cycles} −
∑
w 6=v

δw ·#{ ��������w
p
///o/o ��������v }

= dim iss(Q,α)−
∑
w 6=v

δw ·#{ ��������w
p
///o/o ��������v }

The last equality holds because (Q, α) reduces to a quiver with one vertex of

dimension 1 and k loops where k is the number of cycles.

The formula for the dimension of Relσ(Q, α) now becomes

dim Relσ(Q,α) = dim Rep(Q,α)− iss(Q,α)−
∑
w 6=v

δw(
∑

t(a)=w

(αw − σw)−#{ w
p
///o/o v })

Note that if δw > 0 then σw ≤ #{ v ///o/o w } − 1, so if we suppose that

αw ≥ #{ v ///o/o w }+ #{ v ��������woo o/ o/ } − 1

then

(αw − σw)−#{p : ��������v ///o/o ��������w }) ≥ 0.

We now have that dim Relσ(Q, α) ≤ dim Rep(Q, α)− iss(Q,α) and therefore (Q,α)

is cofree.

On the other hand if there exists a vertex w such that

αw < #{ v ///o/o w }+ #{ v woo o/ o/ }
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we can construct a relevant dimension vector σ such that the corresponding δ is

only nonzero for such w (this is allways possible because the dimensions of the

other vertices are always big enough). The dimension of Relσ(Q,α) is then bigger

than dim Rep(Q,α)− iss(Q,α) so (Q,α) is not cofree. �

Lemma 3.3. Let (Q, α) be a quiver setting containing a subsetting like below and

let (Q′, α′) be the setting obtained by reducing the central vertex.

'&%$ !"#i1

!!D
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(1) If k is not smaller than the number of cycles through ��������k then (Q, α) is cofree

if and only if (Q′, α′) is cofree.

(2) If k is smaller than the number of cycles through ��������k then (Q,α) is not cofree.

Proof.

(1) We only have to proof that the condition is sufficient. The necessity fol-

lows from [8]. Let π denote the projection Null(Q,α) → Null(Q′, α′). The

dimension of the generic fiber of V ∈ Null(Q′, α′) is

dim Rep(Q,α)− dim Rep(Q′, α′) =
∑

r

ir(k − 1) + k

and this occurs when at least one of the linear maps Vbi
is nonzero. If they

are all zero the dimension is

max(
∑

r

ir(k − 1) + k,
∑

r

irk)

This is because the fiber is identical to the zero fiber of the map

Hom(X, Y )× Hom(Y,Z) 7→ Hom(X, Z) : (x, y) 7→ y ◦ x

with X a vector space of dimension
∑

r ir, Y a vector space of dimension

k and Z a vector space of dimension 1. This zero fiber is easily seen to be

identical to the nullcone of the quiver setting

��������1

(
P

r ir)

"*��������kjj ,
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and by Theorem 3.2 we know this dimension to be max(
∑

r ir(k − 1) +

k,
∑

r irk). The second argument is the larger one if
∑

r ir > k, and in that

case the dimension of the subset

X := {V ∈ Null(Q′, α′)|∀r ≤ l : Vbr
= 0}

is at most dim Null(Q′, α′)−
∑

r ir −#{cycles through ��������k } Indeed, through

every V ∈ X we can draw an affine space

V +{W | ∀1 ≤ j ≤ l : Span(Im V��������1 ///o/o/o '&%$ !"#ij
) ⊂ ker Wbj

,∀v 6= b1, . . . , bl ∈ Q′
0 : Wv = 0}

with dimension at least
∑

r ir −#{cycles through ��������k )} and all these spaces

are disjunct. This yields

dim π−1(X) ≤ dim X +
∑

r

irk

≤ dim Null(Q′, α′)−
∑

r

ir + #{cycles through ��������k +
∑

r

irk

≤ dim Null(Q′, α′) +
∑

r

ir(k − 1) + k

≤ dim Rep(Q′, α′)− dim iss(Q′, α′) +
∑

r

ir(k − 1) + k

≤ dim Rep(Q,α)− dim iss(Q,α)

(2) Let k < #{��������1 ///o/o/o ��������k } and let Qk be the subquiver containing all cycles

through ��������k . If (Q, α) is cofree then (Qk, α) must also be cofree. We will

show that this cannot be the case.

If every cycle in Qk runs through ��������1 then by Theorem 3.2 we are done.

For the other cases we will reduce the setting to this case. Suppose that

there is a cycle not through ��������1 . If the minimal dimension of the vertices in

this cycle is at least 2 we can get rid of this cycle using RI and RIII while

keeping the number of cycles through ��������k constant. If the minimal dimension

is 1 then we have a situation like

��������k

��

��������p

__
_�

_�
_�

_�
_�

c
''5u /o )i '&%$ !"#1′ff u5o/i)

��������1

??
?�

?�
?�

?�
?�
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There are no other paths going from vertices in c to ��������k because there can

only be one cycle through ��������1 and '&%$ !"#1′ . This means that we can remove c

using RI and RII .

�

By Rc
I we denote the reduction move described in the previous lemma; that is,

the reduction of the vertex with dimension k when this dimension is not smaller

than the number of cycles running through it. In order to find the cofree quiver

settings not satisfying the conditions of Theorem 3.2 we now have to classify all

prime quiver settings that cannot be reduced using Rc
I . We will consider different

cases

I. There exists a cycle c of higher dimension.

If (Q, α) does not reduce to ��������k cc or ��������2 cc;; , there is a unique arrow from the one

to this cycle and a unique arrow back because otherwise we could reduce the setting

to something containing a subsetting like

��������1
&&��������kbj cc

RIII→ ��������1

k
"*��������kbj

or its dual. Those two are not cofree by Theorem 3.2. Hence, (Q,α) must be of the

form

��������... // ��������...

��?
??

??
??

?

i

??�������� ��������1oo u

����
��

��
��

oo

��������...

__>>>>>>>> ��������...oo

Not all of these settings are cofree.

Theorem 3.4. A quiver setting of the form above is cofree if and only if at most

one vertex in the path i ///o/o/o u has minimal dimension.

Proof. Let (Q,α) be a setting of the previous form. For every positive integer n we

denote by pn (resp. p−n) the path of length n starting (ending) in i consisting only

of arrows in c. The notation i + n (i− n) will stand for the target of pn (source of

p−n).

u − i will be the smallest nonnegative integer such that i + (u − i) = u. Let m

be the first nonnegative integer such that αi+m is minimal and let k be the length

of c.
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To every nilpotent representation V ∈ Rep(Q,α) we can assign a sequence

σn :=


αi−n n ≤ 0

dim Im Vpn
n > 0

Let δ be the sequence of the differences between consecutive σ′s.

δn := σn − σn+1

These two sequences satisfy the following properties

(1) σj − σj+k = δj + · · ·+ δj+k−1 ≥ 1 if j ≥ 0 and σj > 0. Otherwise the map

from the vertex i + j to itself is not nilpotent.

(2)
∑

j δj = αi.

We define s to be the largest number such that image of the vertex ��������1 is contained

within the image of psk.

Now let Relσ,sQ be the set of all representations with a given σ and s then the

codimension of this set in Rep(Q,α) can be written as

codim Relσ,sQ =
∑
j≥0

(σj−k − σj)δj + αi − σks + σsk+u

=
∑
j≥0

(σj−k − σj)δj + αi − (δsk+1 + . . . δsk+u)

=
∑
j≥0

fjsδj + αi

where

fjs =


σj−k − σj − 1 j ∈ [sk + i, sk + u]

σj−k − σj j 6∈ [sk + i, sk + u]

The codimension of the nullcone is the minimum of all possible codim Relσ,sQ.

We will now prove that if there is at most one vertex in ��������i ///o/o/o ��������u which has the

dimension of c then (Q,α) is cofree i.e. codim Null(Q, α) = 2αi+m.

If s > 0 we have that all fjs ≥ 0 and if j > k then fjs ≥ δj−k+1 + · · · + δj − 1.

This implies that there is at most one j ∈ [i + sk, u + sk] such that δj 6= 0 and

fjs = 0. And for this j we have that δj = 1.

The other j such that δj 6= 0 and fjs = 0 are elements of [1,m] and because

fj0 = 0 if σj−1 − αj = δj we also have that
∑

fjs=0,j∈[1,m] δj ≤ αi − αi+m, so

codim Relσ,sQ ≥
∑

j

δj − αi + αi+m − 1 + αi = αi + αi+m − 1 ≥ 2αi+m − 1.
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If codim Relσ,sQ were equal to 2αi+m − 1 we must have that m = 0 and all

fjs ≤ 1. The equality also implies that if δj = 1 then δ′j = 0∀j < j′ < j + k and

δj+k = 1 if σj+k−1 > 0. Let j be the first nonnegative integer such that δj = 1 then

i + j < u because there should exist a ks < j′ ≤ ks + (u− i) such that δj′ = 1. The

dimension of the target of the jth arrow is bigger than αi+m = αi by the condition

in the theorem, so δjs > 1.

If s = 0 we can have that some of the fsj are negative. For this to happen we

should have that δj = σj − αi+j and m 6= 0. Again we have that the sum of the δj

for which this happens is not bigger than αi−αi+m. We can be even more specific:

if there are fsj = 0 with j < min(m,u− i) and δj 6= 0 we have that they decrease

the sum
∑

fjs=0,j∈[1,m] δj so we have the inequality

∑
fjs=−1,j∈[1,m]

+
∑

fjs=0,j∈[1,m]∩[1,u−i]

≤ αi − αi+m

An analoguous reasoning as in the case for s > 0 leads to the conclusion that for

the other fsj that are zero between m and u− i there can be at most one that has

δj = 1 and the rest has δj = 0.

The j for which δj 6= 0 and fsj = 0

codim Relσ,sQ ≥
∑

j

δj − 2
∑

fsj=−1

δj −
∑

fsj=0

δj + αi = αi + αi+m − 1

≥
∑

j

δj − 2(αi − αi+m)− 1 + αi = 2αi+m − 1.

The equality can only occur if all fsj ≤ 1 but for the unique j ∈ [m,u− i] such that

δj = 1, we have fsj = αj̄ − σj + 1 ≥ 2. �

II. There exists no cycle c of higher dimension.

If α = 1 every arrow must be contained in only one cycle because the codimension

of the nullcone is then equal to the minimal number of arrows that is needed to

block all cycles. In combination with the condition that (Q,α) must be prime we

can conclude that Q is of extended dynkin type Ãn.

In the case that there are vertices of higher dimension, there is allway such a

vertex that can be reduced. This is because an RI -move on a vertex with dimension

1 does not change the reducibility conditions on the other vertices. Therfore we can

construct the setting (QI , αI) where all vertices of higher dimension have been

reduced, this new setting needs not to be prime so it is a connected sum of Ãn’s.
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Every arrow in (QI , αI) corresponds to a unique path in (Q,α). If v is a vertex of

Q with αv > 1 then we can look at the subquiver P I
v of QI whose arrows correspond

to paths through v. If S is the set of source vertices for these arrows and T the set

of target vertices then there is an arrow between every vertex of S and every vertex

of T . This is because we can mix two paths p = p1vp2 and q = q1vq2 to p1vq2 and

q1vp2 which connect the source of p with the target of q and vice versa.

Because between every two vertices in QI there can be only one cycle, the only

possibilities for P I
v are

��������17? ��������1
""

;; ��������1bb cc

��������1

��������1 //

CC�����

��7
77

77;;
...

��������1

��������1

��7
77

77

...
//��������1 cc

��������1

CC�����

In the last 2 cases the vertex can be reduced using a sequence of Rc
I -reductions

Because (Q,α) is prime we have then that QI must be equal to P I
v . The first

case has been dealt with in Theorem 3.2. For the second case (Q,α) must look like

'&%$ !"#a1

��
��������1

AA���������� ...

��

��������1

]]::::::::::

'&%$ !"#ak

]]::::::::::

AA����������

with all the ai > 2.

Lemma 3.5. All settings of the previous form are cofree

Proof. We have to prove that the codimension of the nullcone is not smaller than

3. For a given representation V we can define the subspaces H1
ai

and H2
ai

, as the

images of the two maps that go from the ones to the vertex ai.

For every vertex we have 5 possible states

A: 0 6= H1
ai
6= H2

ai
6= 0,

B1: 0 = H1
ai
6= H2

ai
6= 0,

B2: 0 6= H1
ai
6= H2

ai
= 0,

C: H1
ai

= H2
ai
6= 0,

0: H1
ai

= H2
ai

= 0.



COFREE QUIVER REPRESENTATIONS 17

The states can be ordered as follows: A > Bj > 0, A > C > 0. To every represen-

tation we can assign a sequence of decreasing states Sai . We will now calculate the

codimension of the set of nilpotent representations with a given sequence.

Every transition to a lower state gives a nonzero contribution to the codimension:

A → Bj : +ai+1, → C : +ai+1 − 1, → 0 : +2ai+1

Bj → 0 : +ai+1,

C → 0 : +ai+1.

Apart from that the final state also gives a contribution: on of the two arrows

leaving ak must contain both Hi
ak

the other one must contain one of the Hi
ak

so we

get as contributions:

A 3

B1 1

B2 1

C 2

0 0

As all the ai ≥ 2 we have that the codimension is at least 3 for every sequence. �

4. Quivers Settings reducing to Q1(k), k ≥ 2, and Q2

In this section we will classify all cofree quiver settings reducing to Q1(k) and Q2.

First of all note that Q1(k) is a reduced quiver setting only if its dimension vector

k is at least 2. But then the only quiver setting reducing to Q1(k) is the cyclic

quiver with smallest dimension in its dimension vector equal to k. The nilpotent

representations of the cyclic quiver were studied extensively in a.o. [11] and it is

known that there are only finitely many orbits of nilpotent representations of the

cyclic quiver. But a classical result (e.g. [9, II.4.2, Satz 1]) then yields that the

quotient map must be equidimensional, so we have a first result

Proposition 2. Let Ãn be the cyclic quiver with n vertices and let α be a dimension

vector for Ãn such that α(v) ≥ 2 for some vertex v of Ãn, then (Ãn, α) is a cofree

quiver setting.

Next, we turn our attention towards all quivers reducing to Q2. Recall the

following lemma from [12]

Lemma 4.1. Let (Q,α) be a quiver setting reducing to Q2, then (Q, α) is of one

of the following forms
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• two cyclic quivers, Ãp+s and Ãq+s, coinciding on s + 1 subsequent vertices,

one of these of dimension 2:

'&%$ !"#u1 // '&%$ !"#u2 // . . . // '&%$ !"#up

  A
AA

A

��������cs

;;xxxxx

##F
FF

FF . . .oo ��������2oo . . .oo ��������c2oo ��������c1oo

'&%$ !"#l1 //'&%$ !"#l2 // . . . //'&%$ !"#lq

>>}}}}

with ui, lj , ck ≥ 2 for all 1 ≤ i ≤ p, 1 ≤ j ≤ q and 1 ≤ k ≤ s. Such a setting

will be denoted by Q2(p, q, s);

• a cyclic quiver with at least one vertex of dimension 2, extended with one

extra arrow between two subsequent vertices

'&%$ !"#d1 // . . . // '&%$ !"#di

!!C
CC

CC

'&%$ !"#dp

;;xxxxx ��������2

}}{{
{{?>=<89:;dp−1

[[ ii

. . .oo 76540123di+1oo

with di ≥ 2 for all 1 ≤ i ≤ p. Such a setting will be denoted by Qdouble
2 (p).

When considering the situations of the lemma above, the following result will

prove useful.

Lemma 4.2. The quiver settings

��������2
&.��������djj ��������2

**��������dbj

with 3 ≥ d ≥ 2 are not equidimensional.

Proof. We will prove this for the first setting, which we will denote by (Q,α). The

proof for the second setting is completely analogous. We will construct a stra-

tum in the Hesselink stratification of Null(Q,α) of dimension strictly greater than

dim Rep(Q, α)−dim iss(Q, α), so def(Q, α) > 0. Using the notations and conventions

from [13], consider the following level quivers with corresponding coweight:

if d = 2:

− 3
2

1
2

��������1

����

��������1

����

− 1
2

3
2

��������1

FF���������� ��������1
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if d = 3:

− 9
5

1
5

��������1

����

��������1

����

− 4
5

6
5

��������1

FF���������� ��������2

For d = 2 this level quiver with corresponding coweight determines a Hes-

selink stratum of dimension 9, whereas dim Rep(Q,α) − dim iss(Q, α) = 7.

For d = 3 the level quiver determines a Hesselink stratum of dimension 14

whereas dim Rep(Q,α)− dim iss(Q,α) = 13.

�

An immediate consequence of this lemma is

Lemma 4.3. With notations as above

(1) Q2(p, q, s) is not cofree if s ≥ 1 and at least vertices have dimension 2 or 3;

(2) Qdouble
2 (p) is not cofree if at least one two vertices have at least 2 or 3.

Proof. Consistently applying reduction step RI to the vertex with greatest dimen-

sion in either of these settings reduces the quiver setting to one of the two settings

from Lemma 4.2. Now because these settings are not cofree, the original quiver

setting cannot be cofree either. �

We will now show that these are the only situations reducing to Q2 that are not

cofree. For this, we need another two lemmas.

Lemma 4.4. Consider the map

π : Hom(U, V )× Hom(V,W ) � Hom(U,W ) : (X, Y ) 7→ Y ◦X

where U and V are vector spaces of dimension at least 2, W is a vector space of

dimension exactly 2 and dim U − dim V + 1 ≥ 0, then

(1) dim π−1(0) = dim U dim V + dim V − dim U + 1;

(2) for Z 6= 0 ∈ Hom(U,W ) with rk(Z) <= 1 we have that dim π−1(Z) =

dim U dim V + dim V − dim U ;

(3) for Z ∈ Hom(U,W ) with rk(Z) = 2 we have that dim π−1(Z) = dim U dim V +

2 dim V − 2 dim U .
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If dim U − dim V + 1 < 0 we have for all Z ∈ Hom(U,W ) that

dim π−1(Z) = dimU dim V + 2 dim V − 2 dim U.

Proof. We let dim U = m and dim V = n so we may identify the above situation

with the quotient map of the representation space of the following quiver setting

(Q,α):

��������1

(m)

"* ��������n

(2)

fn .

In order to prove (1), we have to compute the dimension of the nullcone of this

quiver setting. This was done in Theorem 3.2 and from this we obtain

dim Null(Q,α) = mn + 2n− 2m + m + 2− n− 1

if m + 2− n− 1 ≥ 0.

To show that (2) holds, we first note that if Z 6= 0 has rank at most one, it has

representation type ((1, 1), 1; (0, 1), n − 1). Its local quiver setting (QZ , αZ) then

corresponds to the quiver setting

��������1

(m−1)
&.

(m+1) 7? 76540123n−1gg

and the dimension of its fiber has to be

dim π−1(Z) = dim Null(QZ , αZ) + dim GLα − dim GLαZ

= (m− 1)(n− 1) + n− 1− (m− 1) + (m− n) + 1 + n2 − 1− (n− 1)2

= mn−m + n

where the dimension of the nullcone is again due to Theorem 3.2.

Finally, (3) holds by a similar computation. If Z has rank 2 it has to be of

representation type ((1, 2), 1; (0, 1);n− 2). Then its local quiver (QZ , αZ) becomes

��������1

(m−2)
+3 76540123n−2

and the dimension of its fiber becomes

dim π−1(Z) = dim Null(QZ , αZ) + dim GLα − dim GLαZ

= (m− 2)(n− 2) + 1 + n2 − 1− (n− 2)2

= mn− 2m + 2n
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If dim U −dim V +1 < 0 in each of the situations the local quiver is cofree, proving

the last claim of the lemma. �

Lemma 4.5. Let (Ãn, α) be a cyclic quiver setting with minv∈(Ãn)0
α(v) = 2. Call

the arrows of this cyclic quiver a0 through an, with s(a0) a vertex v0 with α(v0) =

2 and t(ai) = s(ai+1 mod n). Then Null(Ãn, α) has no irreducible component C

contained in

Nn = {V ∈ Null(Ãn, α) | V (an)V (an−1). . . . .V (a0) = 0}.

Proof. We will prove this by induction on n. For n = 0 the claim is trivial as

Null(Ã0, 2) is the irreducible variety of all nilpotent 2 × 2 matrices. Assume the

claim holds for 1, . . . , n−1. Let v1 = t(a0) and v2 = t(a1). Applying reduction step

RI to v1 maps Nn onto Nn−1. Denote the map corresponding to this reduction step

by π. Let C be an irreducible component in Nn and let C ′ be its image in Nn−1. If

C ′ contains a representation W such that rk(W (a0)) = 2 then computations similar

to the ones in the previous lemma show that

dim π−1(W ) = 2α(v1) + α(v1)α(v2)− 2α(v2).

This yields

dim C ≤ dim C ′ + dim π−1(W )

= dim C ′ + 2α(v1) + α(v1)α(v2)− 2α(v2) + 2α(v1)

< dim Null(Ãn−1, α
′) + 2α(v1) + α(v1)α(v2)− 2α(v2)

= dim Rep(Ãn, α)− 2α(v1)− α(v1)α(v2) + 2α(v2)− 2

+α(v1)α(v2)− 2α(v2) + 2α(v1)

= dim Rep(Ãn, α)− 2.

So C cannot be an irreducible component of Null(Ãn, α).

If C ′ contains only representations W such that W (a0) = 0, we obtain that

dim π−1(W ) = 2α(v1) + α(v1)α(v2)− 2α(v2) + max(0, α(v2)− α(v1) + 1).

And as W (a0) = 0 we have

dim C ′ ≤ dim Rep(Ãn−1, α
′)− 2α(v2).
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This gives

dim C ≤ dim C ′ + dim π−1(W )

= dim C ′ + 2α(v1) + α(v1)α(v2)− 2α(v2) + 2α(v1) + max(0, α(v2)− α(v1) + 1)

≤ dim Rep(Ãn−1, α
′)− 2α(v2) + 2α(v1) + α(v1)α(v2)− 2α(v2)

+max(0, α(v2)− α(v1) + 1)

= dim Rep(Ãn, α)− 2α(v1)− α(v1)α(v2) + 2α(v2)− 2α(v2)

+α(v1)α(v2)− 2α(v2) + 2α(v1) + max(0, α(v2)− α(v1)) + 1

= dim Rep(Ãn, α)− 2α(v2) + max(0, α(v2)− α(v1) + 1)

≤ dim Rep(Ãn, α)− 3.

So again, C cannot be an irreducible component of Null(Ãn, α).

If C ′ contains only representations W such that rk(W (a0)) ≤ 1, let W be a

representation such that rk(W (a0)) = 1. We have that

dim π−1(W ) = 2α(v1) + α(v1)α(v2)− 2α(v2) + max(0, α(v2)− α(v1)).

We also have that C ′ is strictly contained within the irreducible set

R = {W ∈ Rep(Ãn−1, α
′) | rk(W (a0)) ≤ 1}

where

dim R = dim Rep(Ãn−1, α
′)− α(v2) + 1.

First of all assume α(v2) ≤ α(v1). In this case we again have

dim C ≤ dim C ′ + dim π−1(W )

= dim C ′ + 2α(v1) + α(v1)α(v2)− 2α(v2) + 2α(v1)

< dim Null(Ãn−1, α
′) + 2α(v1) + α(v1)α(v2)− 2α(v2)

= dim Rep(Ãn, α)− 2α(v1)− α(v1)α(v2) + 2α(v2)− 2

+α(v1)α(v2)− 2α(v2) + 2α(v1)

= dim Rep(Ãn, α)− 2.

So C cannot be an irreducible component of Null(Ãn, α).

Now assume α(v2) > α(v1) ≥ 2, then

dim C ≤ dim C ′ + dim π−1(W )
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= dim C ′ + 2α(v1) + α(v1)α(v2)− 2α(v2) + α(v2)− α(v1)

< dim R + 2α(v1) + α(v1)α(v2)− 2α(v2) + α(v2)− α(v1)

= dim Rep(Ãn, α)− 2α(v1)− α(v1)α(v2) + 2α(v2)− α(v2) + 1.

+2α(v1) + α(v1)α(v2)− 2α(v2) + α(v2)− α(v1)

= dim Rep(Ãn, α)− α(v1) + 1.

If α(v1) ≥ 3 this means dim C < dim Null(Ãn, α) so C cannot be an irreducible

component. If α(v1) = 2 we reorder the vertices so that v1 becomes the first vertex

and apply the reduction step on v2. Repeating the different possible cases from the

previous paragraphs then yields that C cannot be an irreducible component as in

the last case we have α(v2) ≥ 3. �

These last lemmas now allow us to prove

Theorem 4.6. A quiver setting (Q,α) reducing to Q2 is cofree if and only if either

(1) it is of the form Q2(p, q, s) with either s = 0 or α(v) ≥ 4 for all v but one;

(2) it is of the form Qdouble
2 (p) for any p and α(v) ≥ 4 for all v different from

the final vertex.

Proof. In order to prove (1), first assume s = 0. In this case the quiver (Q, α)

is a connected sum of two cyclic quiver settings (Ãp, αp) and (Ãq, αq) in a vertex

with dimension 2 which we denote by v. We will denote the arrows of the first

cyclic quiver by a0, . . . , ap and of the second cyclic quiver by b0, . . . , bq with s(a0) =

s(b0) = v and t(ai) = s(ai+1 mod p+1) resp. t(bj) = s(aj+1 mod q+1). We have an

embedding

Null(Q,α) ⊂ Null(Ãp, αp)× Null(Ãq, αq).

Any maximal irreducible component of Null(Q, α) has to be a real closed subset

of an irreducible component of Null(Ãp, αp) × Null(Ãq, αq). Indeed, if we denote a

representation in such an irreducible component of Null(Q,α) as (V,W ), we know

that

tr(V (ap). . . . .V (a0)W (bq). . . . .W (b0)) = 0

Now by Lemma 4.5 we know that in all irreducible components of Null(Ãp, αp) there

are elements V satisfying

V (ap). . . . .V (a0) 6= 0,
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and in all irreducible components of Null(Ãq, αq) there are elements W satisfying

W (bq). . . . .V (b0) 6= 0.

This means in any irreducible component of Null(Ãp, αp) we get a representation V

such that

V (ap). . . . .V (a0) =

 0 1

0 0


and in any irreducible component of Null(Ãq, αq) we get a representation W such

that

W (bq). . . . .V (b0) =

 0 0

1 0

 .

This yields

tr(V (ap). . . . .V (a0)W (bq). . . . .W (b0)) = 1.

But then we have

dim Null(Q,α) <= dim Null(Ãp, αp) + dim Null(Ãq, αq)− 1

and hence

dim Null(Q,α) = dim Rep(Q,α)− dim iss(Q,α).

Now assume s > 0 and α(v) ≥ 4 for all but one vertex f which has α(f) = 2. Let

us first consider the situation where #{a ∈ Q0 | h(a) = f} = 1 and let v = s(a) for

a the unique arrow with t(a) = f . We apply reduction step RI to v and consider

the corresponding map

π : Null(Q, α) � Null(RI(Q),RI(α)).

If
∑

x∈Q1,t(x)=v α(s(x))−α(v)+1 ≤ 0 then the dimension d of any fiber of π equals

d = α(v)
∑

x∈Q1,t(x)=v

α(s(x)) + 2α(v)− 2
∑

x∈Q1,t(x)=v

α(t(x)).

But then, for any maximal irreducible component C of Null(Q, α) and any element

Z ∈ π(C) we have by the dimension formula for morphisms in combination with

Lemma 4.4

dim C ≤ dim π(C) + dim π−1(Z)

= dim Null(RI(Q),RI(α)) + α(v)
∑

x∈Q1,h(x)=v

α(t(x)) + 2α(v)− 2
∑

x∈Q1,h(x)=v

α(t(x))
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= dim Rep(RI(Q),RI(α))− dim iss(RI(Q),RI(α))

+α(v)
∑

x∈Q1,t(x)=v

α(s(x)) + 2α(v)− 2
∑

x∈Q1,t(x)=v

α(s(x))

= dim Rep(Q,α)− α(v)
∑

x∈Q1,t(x)=v

α(s(x))− 2α(v)

+2
∑

x∈Q1,t(x)=v

α(s(x))− dim iss(Q,α)

+α(v)
∑

x∈Q1,t(x)=v

α(s(x)) + 2α(v)− 2
∑

x∈Q1,t(x)=v

α(s(x))

= dim Rep(Q, α)− dim iss(Q, α)

so dim Null(Q, α) = dim Rep(Q,α)− dim iss(Q, α).

Now assume
∑

x∈Q1,t(x)=v α(s(x)) − α(v) + 1 > 0 and let C be a maximal irre-

ducible component of Null(Q,α). By the dimension formula for morphisms we have

for any element in Z ∈ π(C) that

dim(C) ≤ dim π(C) + dim π−1(Z).

If π(C) contains an element Z such that

rk((Z(x))x∈Q1,h(x)=f ) = 2

then by lemma 4.4 we have

dim C ≤ dim π(C) + dim π−1(Z)

= dim Null(RI(Q),RI(α))

+α(v)
∑

x∈Q1,t(x)=v

α(s(x)) + 2α(v)− 2
∑

x∈Q1,t(x)=v

α(s(x))

= dim Rep(Q,α)− dim iss(Q, α)

through the same computation as in the previous paragraph. If π(C) does not

contain such an element, we must have

rk((Z(x))x∈Q1,t(x)=f ) ≤ 1.

Assume we have an element with rk((Z(x))x∈Q1,t(x)=f ) = 1, then

π(C) ⊂ L1 × Rep(Q,α)

with (Q,α) the quiver setting with all arrows x with h(x) = f removed and L1 the

set of all linear maps from a vectorspace of dimension
∑

x∈Q1,t(x)=v α(s(x)) to a

vectorspace of dimension 2 that have rank at most 1. By [9, II.4.1, Lemma 1], we
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have that L1 is irreducible of dimension
∑

x∈Q1,t(x)=v α(s(x)) + 1. Now any Z in

π(C) has to satisfy tr(X) = tr(Y ) = 0 for X the cycle along the first cyclic quiver

and Y the cycle along the second cyclic quiver. This means

dim π(C) ≤ dim L1 + dim Rep(Q,α)− 2.

But then

dim C ≤ dim π(C) + dim π−1(Z)

= dim L1 + dim Rep(Q,α)− 2

+α(v)
∑

x∈Q1,t(x)=v

α(s(x)) + α(v)−
∑

x∈Q1,t(x)=v

α(s(x))

= dim Rep(Q,α)− α(v)− 1

≤ dim Rep(Q,α)− 5

= dim Rep(Q,α)− dim iss(Q,α)

Finally, assume we have no element Z in π(C) such that rk((Z(x))x∈Q1,t(x)=f ) ≥ 1,

then (Z(x))x∈Q1,t(x)=f = 0 and

π(C) ⊂ {0} × Rep(Q,α).

But then

dim C ≤ dim π(C) + dim π−1(Z)

≤ dim Rep(Q,α)

+α(v)
∑

x∈Q1,t(x)=v

α(s(x)) + α(v)−
∑

x∈Q1,t(x)=v

α(s(x)) + 1

≤ dim Rep(Q,α)− α(v)−
∑

x∈Q1,t(x)=v

α(s(x)) + 1

≤ dim Rep(Q,α)− 5

= dim Rep(Q,α)− dim iss(Q,α)

To show that the settings in (2) are cofree, the same computations as in the

previous paragraph may be made. Finally, in order to show that these are all cofree

settings reducing to Q2, note that all other possibilities were already shown to be

not cofree in lemma 4.3. �
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