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ABSTRACT. In this paper we prove that Graded Calabi Yau Algebras of dimension3 are
isomorphic to path algebras of quivers with relations derived from a superpotential. We
show that for a given quiverQ and a degreed, the set of good superpotentials of degree
d, i.e. those that give rise to Calabi Yau algebras is either empty or almost everything (in
the measure theoretic sense). We also give some constraints on the structure of quivers
that allow good superpotentials, and for the simplest quivers we give a complete list of the
degrees for which good superpotentials exist.

1. INTRODUCTION AND MOTIVATION

If one studies boundary conditions of theB-model in super string theory over ann-
dimensional Calabi Yau manifoldX, one obtains naturally the derived category of coherent
sheavesDbCohX [10]. This category is called a Calabi Yau category of dimension three,
i.e. the third shift in the derived category is a Serre Functor:

∀A,B ∈ DbCohX : HomDbCohX(A,B) ∼= HomDbCohX(B,A[3])∗,

where the isomorphisms are natural inA andB. In general this category is too big to
study its structure directly and therefore it is interesting to look at full triangulated sub-
categories ofDbCohX that can be modeled using derived categories of module categories
of noncommutative algebras. In string theoretical papers this is often done using path al-
gebras of quivers with relations coming form a superpotential: ifQ is a quiver andCQ
the corresponding path algebra, then a superpotential is an element of the vector space
CQ/[CQ,CQ]. On this space we can define for every arrowa a ’derivation’∂a that cuts
outa (for a precise definition see section 2.1). Given a superpotentialW one can construct
thevacualgebra[4]

AW := CQ/(∂aW : a ∈ Q1).

In the exemplary cases worked out by physicists, the derived category of finite dimensional
modules of the vacualgebra is indeed a Calabi Yau category, and hence these algebras are
called Calabi Yau Algebras.

In this note we will show that in the case of graded algebras, every graded path alge-
bra with relations that is Calabi Yau of dimension3 must be isomorphic to a vacualgebra
of some superpotential. The converse is not true but we will show that being a Calabi Yau
algebra of dimension3 corresponds to the exactness of a certain bimodule complex. There-
fore, for a given quiverQ and a given degreed the subset of superpotentials of degreed
that give rise to Calabi Yau vacualgebras is either empty or almost everything. Further-
more we will use Groebner basis techniques to explicitly determine the list of degree of
good superpotentials of simple quivers.

The results in this paper build further on ideas introduced by M. Van den Bergh in
[8]. Similar results on Calabi Yau algebras in different settings have been obtained by R.
Rouquier and V. Ginzberg [1].
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2. PRELIMINARIES

2.1. Path Algebras with relations. As usual aquiverQ is an oriented graph. We denote
the set of vertices byQ0, the set of arrows byQ1 and the mapsh, t assign to each arrow
its head and tail. Anontrivial pathp is a sequence of arrowsa1 · · · ak such thatt(ai) =
h(ai+1), whereas atrivial path is just a vertex. We will denote the length of a path by
|p| := k and the head and tail byh(p) = h(a1), t(p) = t(ak). A path is called a cycle if
h(p) = t(p). A quiver is calledconnectedif it is not the disjoint union of two subquivers
and it isstrongly connectedif there is a cycle through each pair of vertices.

The path algebraCQ is the complex vector space with as basis the paths inQ and the
multiplication of two pathsp, q is their concatenationpq if t(p) = h(q) or else0. We can
put a gradation onCQ using the length of the paths. The space spanned by all paths of
nonzero length is a graded ideal ofCQ and we will denote it byJ .

The vector spaceCQ/[CQ,CQ] has as basis the set of cycles up to cyclic permutation
of the arrows. We can embed this space intoCQ by mapping a cycle onto the sum of all its
possible cyclic permutations:

�: CQ/[CQ,CQ]→ CQ : a1 · · · an 7→
∑
i

ai · · · ana1 · · · ai−1.

Another convention we will use is the inverse of arrows: ifp := a1 · · · an is a path andb
an arrow, thenpb−1 = a1 · · · an−1 if b = an and zero otherwise. Similarly one can define
b−1p. These new defined maps can be combined to obtain a ’derivation’

∂a : CQ/[CQ,CQ]→ CQ : p 7→� (p)a−1 = a−1 � (p).

From now onA will denote the quotient algebraCQ/I by a finitely generated graded
ideal I ⊂ J 2. The setR ⊂ I will be a minimal set of homogeneous generators each
sitting inside someiCQj, i, j ∈ Q0.

We denote the semi-simple (left)A-moduleA/A≥1
∼= CQ/J byS. S is the direct sum

of #Q0 simple one-dimensionalA-modulesSi, each corresponding to a vertexi ∈ CQ.
To each vertex we can also assign a projective modulePi which is the left idealAi and
Si = Pi/(Pi)≥1. Although it is a little sloppy we will also useS to denote the subring
A0
∼= CQ0, generated by the vertices.

2.2. Calabi Yau Categories. Let C be an abelianC-linear category andDbC its bounded
derived category. Using the shift we can define a graded functor(s, ηs) in the sense of
A.5.2 wheres is the shift functor and theηs gives natural isomorphisms

ηsA : s(A[1])→ (sA)[1] : x 7→ −x.
As explained in the appendix, these maps are uniquely determined by the demand of com-
patibility with the triangulated structure ofDbC.

Definition 2.1. The categoryDbC is calledCalabi Yau of dimensionn if there are natural
isomorphisms

νA,B : HomDbC(A,B)→ HomDbC(B, s
nA)∗, (∗ is the complex dual)

or, in other words, thenth shift is a Serre Functor.

Starting with a graded path algebra with relationsA, we can construct the category of
finite dimensional leftA-modules:RepA. This is an abelian category so we can construct
its bounded derived categoryDbRepA. We will call A a graded Calabi Yau Algebra of
dimensionn if DbRepA is a Calabi Yau category of dimensionn.

Although the definition is asymmetric in the sense that one only uses left modules, it is
easy to see that ifA is Calabi Yau, the derived category of finite dimensionalright modules
DbRRepA is also a Calabi Yau Category. This can be proved using the complex dual as
an anti-equivalence betweenDbRepA andDbRRepA: let M,N be complexes of right
modules and define

νRRepA
M,N : HomDbRRepA(M,N)→ HomDbRRepA(N, snM)∗
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by the equality
νRRepA
M,N (f)(g) = νRepA

N∗,M∗(sn(fT ))(sn(gT )).
The Calabi Yau property of the derived category can be tracked back to the original

category to give us properties that we will often use

Property 2.2. If A is Calabi Yau of dimensionn then

C1 The global dimension ofA is alson.
C2 If X,Y ∈ RepA then

ExtkA(X,Y ) ∼= Extn−kA (Y,X)∗.

C3 The identifications above gives us a pairings〈, 〉kXY : ExtkA(X,Y )×Extn−kA (Y,X)→
C which satisfy

〈f, g〉kXY = 〈1X , g ∗ f〉0XX = (−1)k(n−k)〈1Y , f ∗ g〉0Y Y ,
where∗ denotes the standard composition of extensions.

Proof. (1) : if i > n then ExtiA(M,N) = Extn−i(M,N) = 0 so gldimA ≤ n and
ExtnA(A/A+, A/A+) = HomA(A/A+, A/A+) = A/A+ 6= 0 sogldimA ≥ n. For(2−3)
see the appendix. �

3. GRADED CALABI YAU ALGEBRA’ S OF DIMENSIONn ≤ 3

In this section we will give descriptions of the types of quivers and relations that appear
in graded Calabi Yau algebras of dimension3.

From now on we will also assume that the quiverQ is connected. This is not a severe
restriction becauseA is the direct sum of subalgebras defined over its connected compo-
nents. Many properties like the Calabi Yau property transfer from the algebra to its direct
summands:A1 ⊕ A2 is Calabi Yau of dimensionn if both A1 andA2 are Calabi Yau of
dimensionn. This follows from the fact that the representation category (and hence the
derived category) ofA decomposes as the direct sum ofRepA1 andRepA2.

Theorem 3.1. If A is Calabi Yau of dimension3 then

(1) there is a homogeneous superpotentialW ∈ CQ/[CQ,CQ] such that

A ∼= CQ/(∂aW : a ∈ Q1),

(2) every arrow inQ is contained in a cycle of� W .
(3) every vertex inQ is the source of two arrows and the target of two arrows.

Proof. As the global dimension ofA must be3, there is a projective graded resolution⊕
j∈Q0

P
mij

j
� � (fr) //

⊕
t(r)=i Ph(r)

(rb−1) //
⊕

t(b)=i Ph(b)
(·b) // Pi // // Si.

In the diagram above ther′s are the relations inR and theb′s are arrows, thefr are maps
that are not further specified. Using the Calabi Yau property and comparing dimensions we
can conclude that

(1) mij = Dim Ext3(Si, Sj) = Dim Hom(Sj , Si) = δij ,
(2) #{r ∈ R : h(r) = j, t(r) = i} = Dim Ext2(Si, Sj) = Dim Ext1(Si, Sj) =

#{a ∈ Q1 : i a← j}.
Because of(1) we can identify eachfr with an element iniAh(r). Consider the finite
dimensional quotient algebra

M = A/(fr : r ∈ R, An : n ≥ N) where∀r : N > deg fr.

The Calabi Yau property allows us to calculate the dimension ofiMj:

Dim iMj = Dim Hom(Pi,Mj) = Dim Ext3(Si,Mj) CY= Dim Hom(Mj, Si) = δij ,

and conclude thatM must be isomorphic to the degree zero part ofA. As (2) implies there
are only as manyfr as there are arrows, we can conclude that thefr are linear and form a
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basis forA1. Hence, by linearly combining our original relations, we can assume that the
fr can be identified with the arrows. Letra be the (nonzero) relation for whichfra

= a.
This relation occurs only in the resolution ofSt(ra) = Sh(a) and thereforeh(a) = t(ra)
andt(a) = h(ra).

Every arrowa is contained in a cycle:ara, so if there is a path between two vertices
there is also a path in the opposite direction. This means we that becauseQ is assumed
to be connected,Q is also strongly connected. We will now prove that all thera have the
same degree.

Let a be the arrow for whichra has minimal degree. First of all note that if two arrows
a, b share their heads thendeg ra = deg rb because they occur in the same resolution.
Denote byrab := rab

−1 the terms that appear in the middle map of the resolution. These
terms are only nonzero ift(b) = h(a). The fact that the maps in the resolutions form a
complex implies that

∑
h(a)=i arab is zero inA. If deg ra = deg arab is minimal then

there exist scalars(gbc) such that∑
h(a)=i

arab =
∑

h(c)=h(b)
t(c)=h(a)

gbcrc =
∑

h(c)=h(b)
t(c)=t(b)

gbc
∑

t(d)=h(b)

rcdd evaluated inCQ.

Thedeg rc (which is the same for allc with h(c) = h(b) including b itself) must also be
minimal. All arrows following an arrow of minimalra-degree are also minimal, so by
induction all arrows inQ have the same degree.

We will now prove that(gab) can be seen as a diagonal matrix. First note that

Ext1(Si, Sj) = Hom(
⊕
t(a)=i

Ph(a), Sj) ∼= C{i→j}

and on the other hand

Ext2(Sj , Si) = Hom(
⊕

t(ra)=j

Ph(ra), Si) = Hom(
⊕
h(a)=j

Pt(a), Si) ∼= C{i→j}.

We can compose the spaces in two different ways:

Ext1(Si, Sj)× Ext2(Sj , Si)→ Ext3(Sj , Sj) ∼= C : (ξa) ∗ (ηb) =
∑
a

ξaηa

and

Ext2(Sj , Si)× Ext1(Si, Sj)→ Ext3(Si, Si) ∼= C : (ηb) ∗ (ξa) =
∑
a,b

gabξaηb

We only work out the last composition since the other one is similar. We extend the
sequence(ηb) to a sequence running over all arrows by adding zeros. We push out (dotted
lines) the mapη forward along the resolution to obtain an exact sequenceSi → · · · → Sj :

Pj
·c//
⊕

h(c)=j Pt(c)
·rcd //

(ηd)

��

⊕
t(d)=j Ph(d)

·d //

��

Pj

��

// Sj

��
Si // Si

L
t(d)=j Ph(d)

((−ηc,rcd),h(c)=j)
//
L

t(d)=j Ph(d)⊕Pj

((−δcd,d),c:t(d)=j)
// Sj .

We use this sequence to pull back (dotted arrows) the map(ξb)

Pi
a //

m

''

P
bc gbcξbηc

��

⊕
h(a)=i Pt(a)

rab //

(0,
P

b rabξb)

))
(0,
P

b rabξbd
−1)

��

⊕
t(a)=i Ph(b) //

ξb

''

(0,ξb)

��

Pi

Si // Si

L
t(d)=j Ph(d)

((−ηc,rcd),h(c)=j)
//
L

t(d)=j Ph(d)⊕Pj

((−δcd,d),c:t(d)=j)
// Sj
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where

m = (0,
∑
ab

arabξbd
−1) = (0,

∑
bce

gbcrceeξbd
−1) = (0,

∑
bc

gbcrcdξb) = (
∑
bc

gbcηcξb, 0)

Because of the Calabi Yau property there exist traces TrSj : Ext3(Sj , Sj) → C. As these
Ext-spaces are one-dimensional we can represent these traces by scalarsαj . Property A.5.2
can be rewritten as

TrSj ((ξa) ∗ (ηb)) = TrSi((ηb) ∗ (ξa))

αj
∑
a

ξaηa = αi
∑
a,b

gabξaηb.

As this holds for arbitrary(ξa) and(ηb) we can conclude that

gab =
αh(a)

αt(a)
δab.

Now we construct the element ∑
a,b∈Q1

αh(a)arabb,

Which is a sum of cycles. It is also a homogeneous element that is invariant under cyclic
permutation:∑

a,b

αh(a)rabab =
∑
a,b

αt(b)rabab =
∑
a,b

αt(b)
αh(b)

αt(b)
brbaa =

∑
a,b

αh(b)brbaa.

This implies that we can identify it with� (W ) whereW ∈ CQ/[CQ,CQ] such thatra
is a scalar multiple of∂aW .

To prove the last condition on the structure of the quiver, assume first thatv is the tail of
a unique arrowa and let thebi be the vertices whose head ist(a). As ra =

∑
i birbia and

ra 6= 0 in CQ, there must be at least onerbia 6= 0 in CQ and because of its degree it is also
nonzero inA. Now rbia sits inside the kernel ofPh(a)

·a→ Pt(a) because∂bi
W = rbiaa.

This would imply that the resolution forSh(a) is not exact. Using right modules instead of
left one proves that every vertex is also the tail of at least two arrows. �

For reasons of completeness we also include the descriptions of Calabi Yau algebras of
smaller dimension because the techniques to do this are similar.

The zero-dimensional case is trivial and consists of the semi-simple algebras i.e. quivers
without arrows. The one-dimensional case consists a direct sums ofC[X] (disjunct unions
of one-vertex-one-loop quivers). This is a consequence of propertyC2: #{i ← j} =
Dim Ext1(Si, Sj)=Dim Hom(Sj , Si) = δij .

Theorem 3.2. If A is Calabi Yau of dimension2 thenA is the preprojective algebra of a
non-Dynkin quiver (for a definition of a preprojective algebra see[7]).

Proof. As the global dimension ofA = CQ/I is now2, the projective graded resolutions
look like ⊕

t(r)=i Ph(r)
� � ·ra−1

//
⊕

t(a)=i Ph(a)
·a // Pi // // Si

From the Calabi Yau property C2, we deduce that

#{r ∈ R|h(r) = i, t(r) = j} = Dim Ext2(Si, Sj)
CY= Dim Hom(Sj , Si) = δij ,

i.e. for every vertex there is a unique relation and vice versa.
Now, similarly to the three dimensional case, we consider the finite dimensional quotient

algebraM = A/(ra−1 : r ∈ R, a ∈ Q1, An : n ≥ N) where∀r : N > deg r. The Calabi
Yau property allows us to calculate the dimension ofiMj:

Dim iMj = Dim Hom(Pi,Mj) = Dim Ext2(Si,Mj) CY= Dim Hom(Mj, Si) = δij
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and conclude thatM must be isomorphic to the degree zero part ofA. This implies that the
ra−1 are all linear and spanA1. For everya there is also at most oner such thatra−1 is
nonzero: the uniquer with t(r) = t(a). If we group the relations together inR =

∑
r∈R r

then there exists an invertible complex matrixgab such that

Ra−1 =
∑
a,b

gabb.

We can use thisg to explicitly calculate the pairing (the calculation is analogous to the
thee-dimensional case).

Ext1(Si, Sj)× Ext1(Sj , Si)→ Ext2(Si, Si)(ξa) ∗ (ηb) =
∑
ab

gabξaηb.

PropertyC3 now implies thatgab is antisymmetric and non-degenerate so using a base
transformation on the arrows we can putgab in its standard symplectic form. The fact that
gab 6= 0 =⇒ h(a) = t(b) ∧ t(a) = h(b) indicates that this base transformation only
mixes arrows with identical head and tail. In this new basis the arrows can be partitioned
in couples(a, a∗) with gaa∗ = 1 andgab = 0 if b 6= a∗. The relationR assumes the form
of the standard preprojective relations:∑

a

aa∗ − a∗a

wherea runs over the unstarred half of the arrows. AlsoQ cannot be the double of a
Dynkin quiver becauseA must have global dimension2, see [7]. �

4. SELFDUAL RESOLUTIONS

In this section we use the notion of selfdual resolutions to give a criterium to check
whether a vacualgebraAW is indeed Calabi Yau.

4.1. ProjectiveA-modules. LetA be a finitely generated graded algebra that is the quo-
tient of a path algebraCQ and letS = A0.

For every finite dimensionalS-bimoduleT we can define a projectiveA-bimodule

FT := A⊗S T ⊗S A.
We denote the full subcategory ofModA − A containing these projective modules asP.
The basic objects of this category are of the formFij := FSi⊗jS = Ai⊗jAwith i, j ∈ Q0.

The bimodule homomorphisms betweenFT ∈ P and a bimoduleM ∈ ModA−A can
be identified with

HomA−A(FT ,M) ∼= T ∗ ⊗
S–S
M.

The tensor product in this formula tensors over both the left and the rightS action. The
identification can be expressed explicitly as

θ ⊗
S–S
m : b1 ⊗S t⊗S b2 7→

∑
i,j∈Q0

θ(itj)b1imjb2

A special role is played byFS⊗S ∼= A⊗A. We will denote this space byF . On this vector
space we can define two commutingA-bimodule structures

FOuter :(a1(b1 ⊗ b2)a2) = a1b1 ⊗ b2a2,

FInner :(a1(b1 ⊗ b2)a2) = b1a2 ⊗ a1b2.

If we use no subscript, we automatically assume the outer structure. These structures are
both isomorphic as bimodules to the free bimodule of rank one and the isomorphism be-
tween them is given by the twist

τ : FOuter→ FInner : (b1 ⊗ b2) 7→ (b2 ⊗ b1).
The existence of these two commuting structures implies that for anyA-bimoduleM

the object HomA−A(M,FOuter) is again anA-bimodule using the inner structure. This
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bimodule will be denoted byM∨. Maps can also be dualized in the standard way to turn
−∨ into a functor:

∀f ∈ HomA−A(M,N) : ∀m ∈M : ∀ν ∈ N∨ : f∨(ν)(m) := ν(f(m)).

For the standard projective bimodules we have the following natural identities

• F∨T = HomA−A(FT , F ) ∼= (T ∗ ⊗
S–S
F )Inner

∼= A⊗S T ∗ ⊗S A = FT∗ ,

• HomA−A(FT ,M) ∼= T ∗ ⊗
S–S
M ∼= FT∗ ⊗

A–A
M ∼= F∨T ⊗

A–A
M.

We can also write out the duality for the morphisms:

(θ ⊗
S–S
a1 ⊗S t⊗S a2)∨ = t ⊗

S–S
a2 ⊗S θ ⊗S a1

These formulas imply that there is a natural equivalence between

(− ⊗
A–A
−)∗ and(−∨ ⊗

A–A
−∗) : P × RepA−A→ ModC

and between−∨∨|P andP ↪→ ModA−A. These functors and identities can be transferred
to complexes if we assume that

(M•)∗ = (M∗
−i,−(dM−i+1)

∗) and(P •)∨ = (P∨−i,−(dP−i+1)
∨)

Keeping all this in mind we can propose the following definition:

Definition 4.1. A projective resolutionP • of left A-bimodules is selfdual with shiftn if
and only if there exists a commutative diagram

Pn
dn //

αn

��

Pn−1

αn−1

��

dn−1 // . . . // P1
d1 //

α1

��

P0

α0

��
P∨0

−d∨1 // P∨1
−d∨2 // . . . // P∨n−1

−d∨n // P∨n

for which theαi are isomorphisms ofA-bimodules. In short hand we can writeP • ∼=
(P •)∨[n].

Theorem 4.2. If an algebraA has a selfdual resolution of lengthn with entries inP then
A is Calabi Yau of dimensionn.

Proof. LetM• andN• be two complexes inRepA. Standard homological algebra allows
us to identify naturally

HomDbRepA(M•, N•) ∼= HomDbModA−A(A,N• ⊗ (M•)∗)
∼= HomDbModA−A(P •, N• ⊗ (M•)∗)
∼= H0RHomDbModA−A(P •, N• ⊗ (M•)∗)
∼= H0Hom•KModA−A(P •, N• ⊗ (M•)∗)

So if we can prove that there is a natural equivalence between

Hom•KModA−A(P •, N• ⊗ (M•)∗) and Hom•KModA−A(P •,M• ⊗ (N•)∗[n])

we are done.
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Now using the fact that the resolution is composed of projectives inP we can make the
following identifications

(Hom•KModA−A(P •, N• ⊗ (M•)∗))∗

∼= ((P •)∨ ⊗
A–A
N• ⊗ (M•)∗)∗

∼= (P •)∨∨ ⊗
A–A

(N• ⊗ (M•)∗)∗

∼= (P •) ⊗
A–A
M• ⊗ (N•)∗

α∼= (P •)∨[n] ⊗
A–A
M• ⊗ (N•)∗

∼= (P •)∨ ⊗
A–A
M• ⊗ (N•)∗[n]

∼= Hom•DbModA−A(P •,M• ⊗ (N•)∗[n])

which are natural in theM• anN•. �

For an explicit write-out of the corresponding pairing between HomKModA−A(P •, N•⊗
(M•)∗) and HomKModA−A(P •,M•⊗ (N•)∗[n]) we first need some notation: for simplic-
ity we will work with elements that are pure tensors:

f ∈ HomKModA−A(P •, N• ⊗ (M•)∗) : f ij = φij ⊗
A–A
µij ∈ P i∨ ⊗

A–A
N i+j ⊗M j∗

g ∈ HomKModA−A(P •,M• ⊗ (N•)∗[n]) : gij = γij ⊗
A–A
mij ∈ P i∨ ⊗

A–A
M j ⊗ (Nn−i+j)∗.

With these expressions forf andg we can track back the pairing in the previous identifica-
tions:

〈f, g〉M•N• =
∑
ij

Trµij ◦ φijα−1
n−i(γ

n−i,j)mn−i,j .

4.2. Superpotentials and Selfduality. In the case of a graded algebraA := CQ/I, I ⊂
J 2 one can construct its minimal resolution using standard presentations ofIn/In+1.
These objects, introduced in [6], consist of quintuples(U, V, r, l,∆)n where

(1) U, V ⊂ In areS-bimodule complements such that

In = U ⊕ JIn + InJ andJ In ∩ InJ = V ⊕ JInJ ,
(2) r, l : In → A ⊗S U ⊗S A are aCQ − S and aS − CQ-bimodule section of the

CQ-bimodule morphism

e : A⊗S U ⊗S A→ In : 1⊗S u⊗S 1 7→ u.

and use these to define a map

d : A⊗S V ⊗S A→ A⊗S U ⊗S A : 1⊗S v ⊗S 1 7→ l(v)− r(v)
(3) ∆ : In → A⊗SV ⊗SA is aCQ-bimodule derivation (i.e. aS-bimodule morphism

satisfying∆(azb) = ∆(az)b + a∆(zb) − a∆(z)b) such thatd∆ = l − r and
∀v ∈ V : ∆(v) = 1⊗S v ⊗S 1.

Although the mapd is a morphism asCQ-bimodules it can also be considered as a mor-
phism ofA-modulesdA : FV → FU because theCQ-action factors overA. The same
can be done withe provided we factor outIn+1 in the target:eA : FU → In/In+1.
To turn ∆ into aA-bimodule morphism we have to do two things: look at the subspace
In+1 ⊂ In (this turns the derivation law into a morphism law) and mod outIn+2 (this
turns the domain into aA-bimodule):

cA :
In+1

In+2
→ FV : x+ In+2 7→ ∆(x).

These maps can be packed together in sequences ofA−A bimodules

0 // In+1

In+2

cA // FJIn∩InJ
JInJ

dA // F In

JIn+InJ

eA // In

In+1
// 0.
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In [6] it is proved that these sequences are exact and they can be spliced together to get a
projective bimodule resolution ofI0/I1 = A. This resolution is not minimal but it can be
made minimal if one cuts out the excess summands that occur at the splicing boundaries.
These terms are of the form

A⊗S
In+1

In+1 ∩ J InJ
⊗S A ∼= A⊗S

In+1 + J InJ
J InJ

⊗S A ⊂ FJIn∩InJ
JInJ

We will now apply this to the case of Calabi Yau algebras of dimension3. As we already
know from section 3.1 the ideal is generated by

∂aW,a ∈ Q1

whereW ∈ CQ/[CQ,CQ] is a superpotential and as the global dimension is3 we only
need to look at the standard presentations forn = 0, 1.

The casen = 0 has the same form for every algebra

• U0 = S, V0 = CQ1

• l0 : a 7→ a⊗S t(a)⊗S 1
r0 : a 7→ 1⊗S h(a)⊗S a,
• ∆ : a1 · · · ak 7→

∑
1≤j≤k a1 · · · aj−1 ⊗S aj ⊗S aj+1 · · · ak).

For n = 1 we do not need to bother about the∆1 because it does not affect the minimal
resolution:

• I = C{∂aW,a ∈ Q1} ⊕ J I + IJ , U1 = C{∂aW,a ∈ Q1} ∼= CQop1 .
ForV1 we chose a complement that contains the subspaceC{i � W, i ∈ Q0}.
• l1 : x∂aWy 7→ x⊗S ∂aW ⊗S y if y /∈ I,
r1 : x∂aWy 7→ x⊗S ∂aW ⊗S y if x /∈ I.

Because thei � W are not contained inI2 they are not cut out by restricting to the minimal
resolution. Moreover, because

Ext3A(S, S) = HomS(
V1

I2 ∩ V1
, S)

CY∼= HomA(S, S)∗

∼= HomS(C{i, i ∈ Q0}, S)∗

∼= HomS(C{i � W, i ∈ Q0}, S)∗

We have that the third term in the minimal resolution must beF V1
I2∩V1

= FC{i�W,i∈Q0}
∼=

FS . Putting everything together we get

FC{i�W,i∈Q0}
δ3 // FC{∂aW,a∈Q1}

δ2 // FCQ1

δ1 // FS // 0

with maps

δ1(1⊗S a⊗S 1) = a⊗S t(a)⊗S 1− 1⊗S h(a)⊗S a
δ2(1⊗S ∂aW ⊗S 1) = ∆(∂aW )

δ3(1⊗S W ⊗S 1) =
∑
a∈Q1

a⊗S ∂aW ⊗S 1− 1⊗S ∂aW ⊗S a

A more explicit write-out of the complexCW , whose0th homology is equal toA, in
terms of the basic projectiveFij looks like

CW :
⊕
i∈Q0

Fii (·τda·)//
⊕
a∈Q1

Ft(a)h(a)(·∂
2
baW ·)//

⊕
b∈Q1

Fh(b)t(b)(·db·) //
⊕
i∈Q0

Fii m // A

where the differential isda := a⊗ t(a)−h(a)⊗ a and the second derivatives are∂2
baW =

πFt(b)h(b)∆∂aW . More explicitly, if c is a cycle then

∂2
bac =

∑
p1,p2:�ap1bp2=�c

p1 ⊗ p2.
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Note that because� W is invariant under cyclic permutation,∂2
abW = τ∂2

baW( ⊕
i∈Q0

Fii
(·τda·)//

⊕
a∈Q1

Ft(a)h(a)(·∂
2
baW ·)//

⊕
b∈Q1

Fh(b)t(b) (·db·) // ⊕
j∈Q0

Fjj

)∨

=
⊕
j∈Q0

F∨jj
(·db·)∨//

τ��

⊕
b∈Q1

F∨h(b)t(b)
(·∂2

baW ·)∨//

τ��

⊕
a∈Q1

F∨t(a)h(a)
(·τda·)∨ //

τ��

⊕
i∈Q0

F∨ii

τ��
=
⊕
j∈Q0

Fjj (·τdb·)//
⊕
b∈Q1

Ft(b)h(b) (·∂2
abW ·)//

⊕
a∈Q1

Fh(a)t(a) (·da·) //
⊕
i∈Q0

Fii

This complex is selfdual and the isomorphism connecting the complex with its dual is
composed of the standard identifications we used in the previous paragraph.

So the sufficient condition of selfduality is also necessary for Calabi Yau algebras of
dimension2.

Theorem 4.3. A vacualgebraAW is Calabi Yau of dimension3 if and only if the complex
CW is a projective resolution ofAW as anAW -bimodule.

This fact has a nice interpretation for the classification ofgood superpotentialsi.e. su-
perpotentials with a vacualgebra that is indeed Calabi Yau.

Corollary 4.4. For a given quiverQ and a given dimensiond, the subset ofSupdQ of good
superpotentials of degreed is either the empty set or almost everything (in the measure
theoretic sense).

Proof. The condition we must check is that the standard complex is indeed a resolution.
Because the resolution is graded we can check this separately for every degree so the sub-
space of good superpotentials is an intersection of a countable number of Zariski open sets.
If one of these sets is empty we’re in the first case and otherwise the complement of this set
is a countable union of hypersurfaces, which has measure zero for the standard measure on
Cn. �

Remark4.5. For global dimension two we can do a similar thing. Recall that ifA is Calabi
Yau of dimension two, then the set of arrows partitions in pairs(a, a∗) with opposite head
and tail.

The selfdual resolution now looks like⊕
i∈Q0

Fii

�
·τda∗·
·−τda·

�
//
⊕

(a,a∗)

Ft(a)h(a) ⊕ Ft(a∗)h(a∗)
�
·da·
·da∗·

�
//
⊕
i∈Q0

Fii m // A

This is indeed the standard resolution for preprojective algebras of non-Dynkin quivers (see
[7]).

4.3. The matrix valued Hilbert polynomial. For a graded algebraA = CQ/(R) one
can define thematrix valued Hilbert series

HA(t) := h0 + h1t+ h2t
2 + · · ·

where thehk are matrices inMat#Q0×#Q0(C) and

(hk)ij = dim iAkj (Ak is the degreek part ofA)

The matrix valued Hilbert series of a Calabi Yau algebra can be computed from its
bimodule resolution:

Theorem 4.6. If a vacualgebraAW with degW = d ≥ 3 is Calabi Yau then

HAW
(t) =

1
1−MQt+MT

Q t
d−1 − td

whereMQ is the incidence matrix ofQ. This equality must be evaluated in the ring of
formal power seriesMat#Q0×#Q0(C[[t]]).
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Proof. The Hilbert polynomial ofFkl is equal to

HFkl
(t) = HA(t)eklHA(t)

whereekl is the matrix with1 on the entryk, l and zero elsewhere. So from the exactness
of the resolutionCW and the fact thatH0(P •) = A we get

HA(t) = HFS
− t(HFCQ1

− td−2(HFCQ
op
1
− tHFS

))

= HA(t)1HA(t)− tHA(t)MQHA(t) + td−1HA(t)MT
QHA(t)− tdHA(t)1HA(t)

Note thatHA(t) is invertible becauseHA(0) = 1. Multiplying to the left and the right by
HA(t)−1 and taking the inverse we obtain the equality. �

The bimodule resolution gives us also resolutions of the left modulesS. Writing out the
dimensions of these resolutions gives the equation

1 = HA(t)− tMQHA(t) + td−1MT
QHA(t)− tdHA(t).

This is nothing new, but as this equation corresponds to a real resolution we can derive
certain inequalities that must be met:

I1 HA(t) ≥ 0
I2 (MT

Q − t)HA(t) ≥ 0
I3 (MQ −MT

Q t
d−2 − td−1)HA(t) ≥ 0

Note that a matrix valued seriesf(t) is positive if all its entries(fk)ij are positive. These
inequalities can be useful to check whether quivers have good superpotentials of a given
degree.

5. APPLICATIONS

5.1. Groebner Bases and Superpotentials.To show that for a given quiver and a given
degree there exist good superpotentials one has to check whether one can find a superpo-
tentialW such thatCW is exact. To do this we will use the technique of Groebner bases
as outlined in [12], adapted to path algebras. SupposeQ is a quiver withn arrows and put
an order on the arrows:a1 > · · · > an. One can extend this order to the set of paths with
nonzero length using thedeglex orderingmethod:

ai1 · · · aip < aj1 · · · ajq
if and only if p < q or p = q and∃ν ≤ p : aiν < ajν ∧ ∀µ < ν : iµ = jµ. We denote the
leading monomial term (according to the deglex ordering) off ∈ CQ by lt(f). Recall that
a (not necessarily finite) set of elementsG ⊂ ICCQ is aGroebner basisif all lt(g), g ∈ G
are different and

lt(I) := (lt(f) : f ∈ I) = (lt(g) : g ∈ G)
where the equality is taken as ideals inCQ. Groebner bases are very useful in determining
the structure of an algebra. They can be used to determine the Hilbert polynomial because

HCQ/I = HCQ/ltI

and they can be used to check whether certain expressions inCQ are zero inCQ/I:

f ∈ I =⇒ lt(f) ∈ lt(I) = (lt(g) : g ∈ G)

To check whether a given set of relations is indeed a Groebner basis one can use the method
of Bergman diamonds [3]. For anyf in CQ, an elementary reduction off by g ∈ G is the
new expression

ρg(f) := f − ζagb if a, b are paths andζ ∈ C s.t.lt(f) = ζalt(g)b or f otherwise.

If G is a set of relations then a triple of monomial terms(a, b, c) is called anambiguityif
ab = lt(g1), bc = lt(g2) with g1, g2 ∈ G. An ambiguity is called resolvable if there is a
sequence of elementary reductions such that

ρ1 · · · ρm(g1c− ag2) = 0.
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Now Bergman’s diamond lemma states that if all leading terms are different and all ambi-
guities are resolvable thenG is a Groebner basis.

We will now give a useful criterion to find good superpotentials.

Lemma 5.1. Suppose every vertex inQ is the source and the target of at least two arrows
andW is a superpotential such that

• The leading terms of the relations∂aW are all different and the ambiguities are in
1 to 1 correspondence to the vertices and are of the form

ambv = (a, lt(∂aW )b−1, b) = (a, a−1lt(∂bW ), b) with alt(∂aW ) = lt(∂bW )b = lt(vWv),

• for every vertexv there is at least one arrowa, t(a) = v such that∀b ∈ Q0 :
lt(∂bW )a−1 = 0.

thenAW is Calabi Yau.

Proof. First note that the condition implies that{∂aW : a ∈ Q1} is a Groebner basis: an
ambiguity of the formambv(a, lt(∂aW )b−1, b) is resolvable because∑

h(c)=v

c∂cW =
∑
t(c)=v

∂cWc

and hence
a∂aW − ∂bWb =

∑
t(c)=v,c6=b

∂cWc−
∑

h(c)=v,c6=a

c∂cW.

Note that the leading terms of the summands in the right hand side are all different because
the lt(∂cW ) are and there is only one ambiguity corresponding tov. We can remove each
term using an elementary reduction, starting with the one with the highest leading term.
Therefore the ambiguity is resolvable.

To calculate the Hilbert series one must calculate(hk)vw, which is equal to the number
of words betweenv andw of a given lengthk not containinglt(∂aW )’s. This can be done
using recursion:

(hk)vw =
∑
u

hk−1
vu #{u← w}︸ ︷︷ ︸
add an arrow

−
∑
u

hk−d+1
vu #{w ← u}︸ ︷︷ ︸

remove those ending inlt(∂bW )

+ hk−dvw︸ ︷︷ ︸
remove double counting

.

There are no further terms needed: a word endingw can only be double counted once
because of the form and number of the ambiguities. The Hilbert series ofAW is thus

HAW
(t) =

1
1−MQt+MT

Q t
d−1 − td

.

Using the exactness of the first 2 terms ofCW we can calculate the Hilbert series of the
kernel of the third map

HAW
(t)− ktHAW

(t)2 + ktd−1HAW
(t)2 = tdHAW

(t)2.

This is the same as the Hilbert series of the last term so if we can prove that the last map is
an injection we are done. There is indeed no element

∑
j fj ⊗ gj ∈ AW ⊗S AW such that

∀i ≥ k :
∑
j

fjb⊗ gj − fj ⊗ bgj = 0.

The deglex ordering onCQ can be transferred to and ordering on the monomials ofCQ⊗S
CQ:

v1 ⊗ v2 > w1 ⊗ w2 ⇐⇒ v1 > w1 or v1 = w1 andv2 > w2.

This ordering is compatible with the multiplicative structure onCQ⊗S CQ. Letf1⊗g1 be
the highest order term, then the highest order term of

∑
j fjb⊗ gj − fj ⊗ bgj is f1b⊗ g1.

Thereforef1 /∈ (lt(∂aW ) : a ∈ Q1) but f1b ∈ (lt(∂aW ) : a ∈ Q0) for everyb ∈ Q0.
This would imply that for everyb with h(b) = t(f1) there is ac ∈ Q1 such thatf1b ends
in lt(∂cW ), contradicting the second condition onW . �
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The conditions imposed on the superpotential are very strict and there are far more good
superpotential that do not meet these conditions. In general the ideal generated by a good
superpotential will not have a finite Groebner basis. However for many quivers and degrees
we will be able to find superpotentials that satisfy the demands of the lemma.

5.2. The one vertex situation. First note that ifQ has only one vertex and one loop, then
none of the vacualgebras can be Calabi Yau of dimension3 because these algebras are finite
dimensional and henceHA(t) cannot be the inverse of the polynomial1− t+ td−1 − td.

So, in this section, letQ be a quiver with one vertex andk ≥ 2 loops and letSupd ⊂
CQ/[CQ,CQ] be the subspace of all superpotentials of degreedwith d ≥ 3. We will show
that the space of good superpotentials is non-empty if and only if(k, d) 6= (2, 3).

If (k, d) = (2, 3) then there are no good superpotentials because the inequality(I2)
does not hold:

(2− t) 1
1− 2t+ 2t2 − td

= 2 + 3t+ 2t2 − t3 + 2t4 + · · · 6≥ 0.

For every other couple(k, d) we can find at least one good superpotential.

Lemma 5.2. TakeCQ ∼= C〈X1, . . . , Xn〉 andX1 > X2 > · · · > Xn, then the following
superpotentials are good:

(1) W = X1X2X3 +X1X3X2 +
∑
j>3X1X

2
j + [CQ,CQ],

(2) W =
∑
k≥l>1X

d−2
1 XlXk + [CQ,CQ].

Proof. We calculate the leading terms of the relations

(1) lt(∂X1W ) = X2X3, lt(∂X2W ) = X1X3, lt(∂X3W )X1X2, lt(∂Xk
W )X1Xk, . . .

(2) lt(∂X1W ) = Xd−3
1 X2

2 , lt(∂X2W ) = Xd−1
1 X2, . . . , lt(∂Xk

W ) = Xd−1
1 Xk.

The only ambiguity we can construct is

(1) (X1, X2, X3) between∂X1W and∂X2W ,
(2) (X1, X

d−3
1 X2, X2) between∂X1W and∂X2W .

We also see that none of the leading terms ends inX1. �

Remark5.3. In the cases where(k, d) equals(2, 4) or (3, 3) one can obtain a complete
classification of the good superpotentials because then we are in the case of Artin-Shelter
regular algebras [2].

5.3. Special Quivers. The simplest quivers with more than one vertex that can have good
potentials are

Q1 := ��������
a1,a2

!)��������
a3,a4

ai Q2 := �������� b3
%%

b1 << ��������
b4

ee b2bb

Theorem 5.4.
• CQ1/[CQ1,CQ1]d contains good superpotentials if and only ifd ≥ 4 and d is

even.
• CQ1/[CQ2,CQ2]d contains good superpotentials if and only ifd ≥ 4.

Proof. For both quiversd must be bigger than or equal to4 because otherwise the inequal-
itiesI1− I3 are not satisfied. ForQ1, d must be even because every cycle has even length.

Assume the ordersa1 > a2 > a3 > a4, b1 > b2 > b3 > b4 and define the following
superpotentials

Q1 : a1a3(a2a4)
d
2−1 + a3a1(a4a2)

d
2−1 + [CQ,CQ]

Q2 : bd−2
1 b3b4 + bd−2

2 b4b3 + [CQ,CQ]

The leading terms of the relations are

Q1 : a3(a2a4)
d
2−1, a3a1a4(a2a4)

d
2−2, a1(a4a2)

d
2−1, a1a3a2(a4a2)

d
2−2,

Q2 : bd−3
1 b3b4, b

d−3
2 b4b3, b

d−2
2 b4, b

d−2
1 b3
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For each of the quivers there are two ambiguities (one for each vertex)

Q1 : (a1, a3a2(a4a2)
d
2−2, a4), (a3, a1a4(a2a4)

d
2−2, a2)

Q2 : (b1, bd−3
1 b3, b4), (b2, bd−3

2 b4, b3)

Finally none of the relations end ina1, a3 andb1, b2. �

The method described above can be extended to lots of other quivers and degrees, espe-
cially quivers of the form

Q~p �������� p1 +3��������
p2

�#
??

??
?

??
??

?

��������
pk

;C�����
����� ��������

p3{� ��
��

�
��

��
�

��������pk−1

[c?????
????? ��������···ks

The number of arrows between consecutive vertices can differ (but is≥ 2).

Theorem 5.5. LetQ be a quiver of the form above withk ≥ 2 vertices and letpi ≥ 2 be
the number of arrows between theith and thei+ 1th vertex. Ifd = `k with ` ≥ 2 thenQ
has good superpotentials of dimensiond.

Proof. For every vertexv ∈ Q0, we will denote the consecutive vertex byv + 1, so∀a ∈
Q1 : h(a) = t(a)+1. Fix an order on the arrows ofQ and letai, bi the highest and second
highest arrow arriving in the vertexi.

Define the superpotential

W :=
∑
i∈Q0

aiai−1bi−2 · · · bi−`k+1

+
∑

c6=ai,bi

cah(c)−1bh(c)−2 · · · bh(c)−k+1(cbh(c)−1bh(c)−2 · · · bh(c)−k+1)`−1 + [CQ,CQ]

The leading terms of the relations now look like

lt(∂ai
W ) = ai−1bi−2 · · · bi−`k+1

lt(∂biW ) = ai−1ai−2bi−3 · · · bi−`k+1

lt(∂cW ) = ah(c)−1bh(c)−2 · · · bh(c)−k+1(cbh(c)−1bh(c)−2 · · · bh(c)−k+1)`−1

It is easy to check that all ambiguities are of the form(ai, ai−1bi−2 · · · bi−`k+2, bi−`k+1)
and none of the relations ends in someai. �

Remark5.6. If ` = 1 the situation is more complicated because the solutions of the in-
equalities I1-I3 are not easy to determine. It is not the case that if they are satisfied forQ~p
that they are also satisfied for a quiverQ~p′ with (p′1, · · · , p′k) ≥ (p1, · · · , pk). F.i. a quiver
with arrows~p = (2, 2, 2, 2) has good superpotentials but one with~p = (6, 2, 2, 2) has not.

The method of finding these very special superpotentials does not always work. As a
counterexample consider the quiver

�������� ))

��

��������ii

tt��������
44TT .

One can check that there are no superpotentials of dimension4 satisfying the conditions
from 5.1 although Groebner basis computations in GAP [9](up to a certain degree because
the full Groebner basis could be infinite) seem to indicate that a generic superpotential is
indeed good.

The general picture that arises from computations is that as soon as conditions I1-I3 are
met by the Hilbert series then there do exist good superpotentials, but we have no proof for
this statement.
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APPENDIX A. THE SIGNS OFSERRE DUALITY

BY M ICHEL VAN DEN BERGH

A.1. Introduction. In this self-contained appendix we determine the exact signs which
occur in Serre duality (see for example Proposition A.5.2 for the Calabi-Yau case). Al-
though the answer is the obvious, the verification turned out to be slightly more tricky than
foreseen.

We thank Bernhard Keller for pointing out Example A.3.2 (see [11] and [14] for further
information) and suggesting that, likewise, the correct signs in Serre duality should be
determined by the requirement that the Serre functor be exact.

A.2. Graded categories.

Definition A.2.1. A graded (pre-additive) category is a pair(C, S) whereC is a pre-additive
category andS is an automorphism ofC.

RemarkA.2.2. It is customary to only requireS to be an autoequivalence. The stronger
condition thatS is an automorphism is usually satisfied in practice and up to an appropriate
notion of equivalence we may always reduce to this case.

In a graded category(C, S) we may define thegraded Hom-setsbetween objects by

HomiC(A,B) = HomC(A,SiB)

and
Homgr

C (A,B) =
⊕
i

HomiC(A,B)

There is an obvious graded composition

− ∗ − : HomjC(B,C)× HomiC(A,B)→ Homi+jC (A,C) : (g, f) 7→: Si(g)f

We denote byCgr the categoryC equipped with graded Hom-sets.

A graded functorbetween graded categories(C, S), (D, T ) is an additive functorU :
C → D together with a natural isomorphismηU : U ◦ S → T ◦ U . By a slight abuse of
notation we will write the composition

U ◦ Si → T ◦ U ◦ Si−1 → · · · → T i ◦ U
as(ηU )i.

Associated to(U, ηU ) there is a functorUgr : Cgr→ Dgr given by

(1) Ugr(fi) = (ηU )iB ◦ U(fi)

for fi ∈ HomiC(A,B). It is clear that the formation of(−)gr is compatible with composi-
tions.

A.3. Triangulated categories. We will assume that triangulated categories have a strictly
invertible shift functor. Up to equivalence we may always reduce to this case.

Definition A.3.1. An exact functorU : S → T between triangulated categories is a graded
functor(U, ηU ) : (S, [1])→ (T , [1]) such that for any distinguished triangle

A
f−→ B

g−→ C
h−→ A[1]

the following triangle

UA
Uf−−→ UB

Ug−−→ UC
ηU

A◦Uh−−−−→ (UA)[1]

is distinguished.

Example A.3.2. Let s : A → A be the functor which coincides with[1] on objects and
maps but for whichηsA : s(A[1]) → (sA)[1] is given by− idA[2]. Then(s, ηs) is an exact
endofunctor onA. Note in contrast that[1] itself, while being a graded endofunctor, isnot
exact.
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A.4. Serre functors. Let k be a field and assume thatC is a Hom-finitek-linear category.

Definition A.4.1. C satisfiesSerre dualityif there is an auto-equivalenceF : C → C
together with isomorphisms

(2) HomC(A,B)→ HomC(B,FA)∗

natural inA,B. Such anF is called aSerre functorfor C.

PuttingB = A in (2) yields a canonical element

TrA : HomC(A,FA)→ k

corresponding to the identity in HomC(A,A). It is easy to see that TrA(− ◦ −) defines a
non-degenerate pairing

HomC(B,FA)× HomC(A,B)→ k

and that the map (2) is given byf 7→: TrA(− ◦ f). In addition we have the following
fundamental identity [13]

(3) TrA(g ◦ f) = TrB(Ff ◦ g)

Now assume that(C, S) is graded and assume thatC has a Serre functorF . We may
makeF into a graded functor as follows: we have to give maps

ηFA : (F ◦ S)(A)→ (S ◦ F )(A)

natural inA. Using non-degeneracy of the trace pairing we define these maps via the
requirement

(4) TrA(S−1(ηFA ◦ f)) = −TrSA(f)

for anyf : SA→ (F ◦ S)(A).

RemarkA.4.2. The minus sign in this formula is an arbitrary choice in the graded context,
but it is forced in the triangulated context. See the proof of Theorem A.4.4 below.

Proposition A.4.3. (Graded Serre duality) Forfi ∈ HomiC(A,B), g−i ∈ Hom−iC (B,FA)
we have

TrA(g−i ∗ fi) = (−1)iTrB(F grfi ∗ g−i)

Proof. We have

TrB(F grfi ∗ g−i) = TrB(S−i(F grfi) ◦ g−i) (by (A.2))

= TrB(S−i((ηF )iB ◦ F (fi) ◦ Sig−i)) (by (1))

= (−1)iTrSiB(F (fi) ◦ Sig−i) (by (4))

= (−1)iTrA(Sig−i ◦ fi) (by (3))

= (−1)iTrA(g−i ∗ fi) (by (A.2)) �

Assume now thatA is a Hom-finitek-linear triangulated category with a Serre functor
F .

Theorem A.4.4. [5] F is an exact functor when equipped with the graded structure ob-
tained from(4) (with S = [1]).

Proof. This is proved by Bondal and Kapranov in [5]. We give a somewhat more direct
proof which makes the signs evident.

We start with a distinguished triangle.

A
f−→ B

g−→ C
h−→ A[1]
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We have to construct a mapδ such that the following diagram is a morphism of distin-
guished triangles

FA
Ff // FB

Fg // FC
ηF

A◦Fh// (FA)[1]

FA
Ff

// FB α
// X

δ

OO

β
// (FA)[1]

whereX is the cone ofFf .
In equations:

ηFA ◦ Fh ◦ δ = β(5)

δ ◦ α = Fg(6)

For anyx : A→ X[−1] we deduce from (5)

(ηFA ◦ Fh ◦ δ)[−1] ◦ x = β[−1] ◦ x

Using (4) this is equivalent to

TrA[1](Fh ◦ δ ◦ x[1]) = −TrA(β[−1] ◦ x)

which using (3) can be further rewritten as

(7) TrC(δ ◦ x[1] ◦ h) = −TrA(β[−1] ◦ x)

Using the non-degeneracy of the trace pairing we see that (5) is equivalent to the validity
of (7) for all x : A→ X[−1]. Similarly (6) is equivalent to

TrC(δ ◦ α ◦ y) = TrC(Fg ◦ y) = TrB(y ◦ g)

for all y : C → FB.
Summarizing: we have to findδ such that the following equations

TrC(δ ◦ x[1] ◦ h) = −TrA(β[−1] ◦ x)
TrC(δ ◦ α ◦ y) = TrB(y ◦ g)

(8)

hold for allx ∈ HomA(A,X[−1]) andy ∈ HomA(C,FB).
We may view the equations (8) as fixing the value of the function TrC(δ ◦−) on two sub

vector spaces of HomA(C,X). Since TrC is non-degenerate such a system can be solved
provided we give the same value on the intersection. Thus we have to show

α ◦ y = x[1] ◦ h then TrB(y ◦ g) = −TrA(β[−1] ◦ x)

To prove this assumeα ◦ y = x[1] ◦ h and consider the following commutative diagram

(9) FA
Ff // FB

α // X
β // (FA)[1]

B

ψ

OO

g
// C

y

OO

h
// A[1]

x[1]

OO

−f [1]
// B[1]

ψ[1]

OO

whereψ exists because of the axioms of triangulated categories.

We compute

TrB(y ◦ g) = TrB(Ff ◦ ψ)

= TrA(ψ ◦ f)

= −TrA(β[−1] ◦ x)

In the third line we have used the commutativity of the rightmost square in (9). �
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A.5. The Calabi-Yau case.

Definition A.5.1. A triangulated category with Serre functorF is Calabi-Yau of dimension
n if F ∼= sn as graded functors, wheres is as in Example A.3.2.

Proposition A.5.2. Assume thatA is Calabi-Yau of dimensionn. Then forfi ∈ HomiA(A,B),
gn−i ∈ Homn−iA (B,A) we have

(10) TrA(gn−i ∗ fi) = (−1)i(n−i)TrB(fi ∗ gn−i)

Proof. We viewgn−i as an element of Hom−iA (A,FB) by using the naive identification on
objects(FB)[−i] = B[n][−i] = B[n− i]. To avoid confusion we puth−i = gn−i.

Graded Serre duality now reads as

TrA(h−i ∗ fi) = (−1)iTrB((sgr)n(fi) ∗ h−i)
Writing out everything explicitly we get

TrA(h−i[i] ◦ fi) = (−1)iTrB
((

(ηs)niA ◦ fi[n]
)
[−i] ◦ h−i

)
= (−1)iTrB

(
(ηs)niA [−i] ◦ fi[n− i] ◦ h−i

)
Now composing with(ηs)niA [−i] is just multiplying by(−)ni. Thus we obtain

TrA(h−i[i] ◦ fi) = (−1)i+niTrB(fi[n− i] ◦ h−i)
which translates into (10). �
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