GRADED CALABI YAU ALGEBRAS OF DIMENSION 3

RAF BOCKLANDT
WITH AN APPENDIX BY MICHEL VAN DEN BERGH

ABSTRACT. In this paper we prove that Graded Calabi Yau Algebras of dimerssame
isomorphic to path algebras of quivers with relations derived from a superpotential. We
show that for a given quive® and a degred, the set of good superpotentials of degree

d, i.e. those that give rise to Calabi Yau algebras is either empty or almost everything (in
the measure theoretic sense). We also give some constraints on the structure of quivers
that allow good superpotentials, and for the simplest quivers we give a complete list of the
degrees for which good superpotentials exist.

1. INTRODUCTION AND MOTIVATION

If one studies boundary conditions of tli&model in super string theory over an
dimensional Calabi Yau manifoldl, one obtains naturally the derived category of coherent
sheave’CohX [10]. This category is called a Calabi Yau category of dimension three,
i.e. the third shift in the derived category is a Serre Functor:

VA, B € D’CohX : Hompucony (4, B) 2 HoMpucony (B, A[3]),

where the isomorphisms are naturalAnand B. In general this category is too big to
study its structure directly and therefore it is interesting to look at full triangulated sub-
categories ofP*CohX that can be modeled using derived categories of module categories
of noncommutative algebras. In string theoretical papers this is often done using path al-
gebras of quivers with relations coming form a superpotentiad) is a quiver andCQ

the corresponding path algebra, then a superpotential is an element of the vector space
CQR/ICQ,CQ)]. On this space we can define for every arrowa 'derivation’ 9, that cuts

outa (for a precise definition see section 2.1). Given a superpotditiahe can construct
thevacualgebrd4]

Aw :=CQ/(0,W :a € Q1).

In the exemplary cases worked out by physicists, the derived category of finite dimensional
modules of the vacualgebra is indeed a Calabi Yau category, and hence these algebras are
called Calabi Yau Algebras.

In this note we will show that in the case of graded algebras, every graded path alge-
bra with relations that is Calabi Yau of dimensi®must be isomorphic to a vacualgebra
of some superpotential. The converse is not true but we will show that being a Calabi Yau
algebra of dimensioB corresponds to the exactness of a certain bimodule complex. There-
fore, for a given quiver and a given degreé the subset of superpotentials of degdee
that give rise to Calabi Yau vacualgebras is either empty or almost everything. Further-
more we will use Groebner basis techniques to explicitly determine the list of degree of
good superpotentials of simple quivers.

The results in this paper build further on ideas introduced by M. Van den Bergh in
[8]. Similar results on Calabi Yau algebras in different settings have been obtained by R.
Rouquier and V. Ginzberg [1].

The author is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium).
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2. PRELIMINARIES

2.1. Path Algebras with relations. As usual aquiver @ is an oriented graph. We denote
the set of vertices by, the set of arrows by, and the map, ¢ assign to each arrow
its head and tail. Aontrivial pathp is a sequence of arrows - - - a; such thatt(a;) =
h(a;+1), whereas arivial path is just a vertex. We will denote the length of a path by
|p| := k and the head and tail by(p) = h(a1), t(p) = t(ax). A path is called a cycle if
h(p) = t(p). A quiver is calledconnectedf it is not the disjoint union of two subquivers
and it isstrongly connected there is a cycle through each pair of vertices.

The path algebr&(Q is the complex vector space with as basis the patlig &nd the
multiplication of two pathg, ¢ is their concatenatiopq if ¢(p) = h(q) or else0. We can
put a gradation orC() using the length of the paths. The space spanned by all paths of
nonzero length is a graded ideal©f) and we will denote it by7.

The vector spac€Q/[CQ, CQ)] has as basis the set of cycles up to cyclic permutation
of the arrows. We can embed this space ititg by mapping a cycle onto the sum of all its
possible cyclic permutations:

0: CQ/[CQ,CQ] —>(CQIal"'anHzai“'anar“ai—l-

Another convention we will use is the inverse of arrowsp i= a; - - - a,, is a path and
an arrow, thepb™! = a4 - - - a,,_1 if b = a,, and zero otherwise. Similarly one can define
b~!p. These new defined maps can be combined to obtain a 'derivation’

8. : CQ/[CQ,CQ] — CQ : p =0 (p)a~t =a™" O (p).

From now onA will denote the quotient algebfd@/Z by a finitely generated graded
idealZ ¢ J2%. The setR C Z will be a minimal set of homogeneous generators each
sitting inside someéCQ7, i,j € Qo.

We denote the semi-simple (lefffmoduleA/A>; = CQ/J by S. S is the direct sum
of #Q, simple one-dimensional-modulesS;, each corresponding to a vertex CQ.

To each vertex we can also assign a projective modylehich is the left idealdi and
S; = P;/(P;)-,. Although it is a little sloppy we will also us8' to denote the subring
Ay =2 CQy, generated by the vertices.

2.2. Calabi Yau Categories. Let C be an abeliaC-linear category an®®C its bounded
derived category. Using the shift we can define a graded furfetef) in the sense of
A.5.2 wheres is the shift functor and thg® gives natural isomorphisms

it s(All]) = (sA)1] : & —x.

As explained in the appendix, these maps are uniquely determined by the demand of com-
patibility with the triangulated structure Gi°C.

Definition 2.1. The categoryD®C is calledCalabi Yau of dimension if there are natural
isomorphisms

va.p : Hompoe (A, B) — Hompu (B, s"A)*, (* is the complex dual)
or, in other words, the!" shift is a Serre Functor.

Starting with a graded path algebra with relatiohswe can construct the category of
finite dimensional leftA-modules:RepA. This is an abelian category so we can construct
its bounded derived categof’RepA. We will call A a graded Calabi Yau Algebra of
dimensiom: if D’RepA is a Calabi Yau category of dimensian

Although the definition is asymmetric in the sense that one only uses left modules, it is
easy to see that il is Calabi Yau, the derived category of finite dimensiaigit modules
DPRRepA is also a Calabi Yau Category. This can be proved using the complex dual as
an anti-equivalence betwed’RepA and D’RRepA: let M, N be complexes of right
modules and define

VIFCE?\?A : HoMpergepa (M, N) — HOMpoggrepa (N, s M)*
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by the equality
v (1)) = v (8" (f1)) (™ (97))-
The Calabi Yau property of the derived category can be tracked back to the original
category to give us properties that we will often use

Property 2.2. If A is Calabi Yau of dimension then
C1 The global dimension of is alson.
C2 If X,Y € RepAthen
Exth (X,Y) = Exty % (Y, X)*.
C3 The identifications above gives us a pairifgs ,- : Exts (X, Y)xExt, " (Y, X) —
C which satisfy
<fa g>§(Y = <1X’g * f>g(X = (_1)k(n_k)<1Y7 f * g>(1)/Y7
wherex denotes the standard composition of extensions.
Proof. (1) : if i > n thenExty,(M,N) = Ext""*(M,N) = 0 sogldimA < n and
Exty (A/A,, A/Ay) = Homy(A/A,, AJ/Ay) = AJ/AL # 0sogldimA > n. For(2—3)
see the appendix. O

3. GRADED CALABI YAU ALGEBRA’'S OF DIMENSIONN < 3

In this section we will give descriptions of the types of quivers and relations that appear
in graded Calabi Yau algebras of dimensin

From now on we will also assume that the quiggis connected. This is not a severe
restriction becausd is the direct sum of subalgebras defined over its connected compo-
nents. Many properties like the Calabi Yau property transfer from the algebra to its direct
summands:A; @ A, is Calabi Yau of dimension if both 4; and A, are Calabi Yau of
dimensionn. This follows from the fact that the representation category (and hence the
derived category) oft decomposes as the direct sumR#pA; andRepA,.

Theorem 3.1. If A is Calabi Yau of dimensiohthen
(1) there is a homogeneous superpotentlale CQ/[CQ, CQ] such that
A2 CQ/(OW :a € @),
(2) every arrow in@ is contained in a cycle af) .
(3) every vertex i) is the source of two arrows and the target of two arrows.
Proof. As the global dimension ol must be3, there is a projective graded resolution

i (Fr) (rb™") (-b)
GajEQo ij I @t(r):i Py —— ®t(b):i Pppy —— P, — S;.
In the diagram above thes are the relations ik and theb’s are arrows, the,. are maps
that are not further specified. Using the Calabi Yau property and comparing dimensions we
can conclude that

(1) m;; = Dim Ext*(S;, S;) = DimHom(S;, S;) = &5,

() #{r € R : h(r) = j,t(r) = i} = DimExt*(S;,S;) = DimExt'(S;,S;) =

#{a € Qi< j}.

Because of 1) we can identify eacty, with an element in Ah(r). Consider the finite
dimensional quotient algebra

M=A/(fr:r€R,A,:n> N)wherevr: N > deg f,.
The Calabi Yau property allows us to calculate the dimensia.bf:
Dim iMj = Dim Hom(P;, Mj) = Dim Ext®(S;, M) 2 Dim Hom(M j, S;) = 6,

and conclude that/ must be isomorphic to the degree zero pattiofAs (2) implies there
are only as many,. as there are arrows, we can conclude thatfthare linear and form a
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basis forA;. Hence, by linearly combining our original relations, we can assume that the
fr can be identified with the arrows. Lef be the (nonzero) relation for whicf), = a.
This relation occurs only in the resolution 8f(,,) = Sy and thereforéi(a) = t(r,)
andt(a) = h(rg).

Every arrowa is contained in a cyclear,, so if there is a path between two vertices
there is also a path in the opposite direction. This means we that be@Qaissassumed
to be connectedy) is also strongly connected. We will now prove that all thehave the
same degree.

Let a be the arrow for which, has minimal degree. First of all note that if two arrows
a, b share their heads thetkegr, = degr, because they occur in the same resolution.
Denote byr,, := r,b~! the terms that appear in the middle map of the resolution. These
terms are only nonzero if{b) = h(a). The fact that the maps in the resolutions form a
complex implies thagh(a)zi arqp is zero inA. If degr, = degargy, is minimal then
there exist scalangy,.) such that

Z argp = Z GpeTe = Z Gbe Z reqd evaluated irCQ).

h(a)=i h(c)=h(b) h(c)=h(b)  t(d)=h(b)
t(c)=h(a) t(c)=t(b)

Thedeg r. (which is the same for alt with h(c) = h(b) includingb itself) must also be
minimal. All arrows following an arrow of minimat,-degree are also minimal, so by
induction all arrows i have the same degree.

We will now prove that g,;) can be seen as a diagonal matrix. First note that

Ext'(S;,S;) = Hom( @ Pha), S;) = climi
t(a)=i
and on the other hand
EXt2(Sj7Si) = HOm( @ Ph(’r’a)7si) = Hom( @ Pt(a)ysi) o (C{l_,‘l}
#ra)=f h(a)=j

We can compose the spaces in two different ways:
Ext'(S;, 5;) x Ext®(S;, 8;) — Ext*(S,5;) = C: (€4) * () = Y _ balla

and
Extz(sjvsi) X Eth (Siv SJ) - EXtB(Sia Sl) =C: (7717) * (Ea) = Zgabfanb
a,b
We only work out the last composition since the other one is similar. We extend the

sequencérn;, ) to a sequence running over all arrows by adding zeros. We push out (dotted
lines) the map, forward along the resolution to obtain an exact sequéfice - - - — St

.c Te -d
PJ e @h(c):j Pt(c) 2 @t(d):j Ph(d) PJ SJ
S; S Dia)=; Pray Gét(d):j P OF; S;.
g (—7e rea),h(c)=7) (—0ca,d),c:t(d)=7) J

We use this sequence to pull back (dotted arrows) the (©igp

Py — > Di(a)=i Dra) o D:(a)=i Pr) ——— P
Shegbcbone (0,5, raredl) (0.5, Tanés) 0.6) €.
v REN Y BN ' e
_ Si Di(ay=; Priay D)= Pra)OP; >g.
Si ((*ﬁc»rcd)’Jh(C):j) ((*&mé)»cit(d):j) S
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where

m = (O, Z arabfbdil) = (O; Z gbcr(ze€§bd71) = (07 Z gbcTcdgb) = (Z gbcnc€b7 0)
ab be be

bce

Because of the Calabi Yau property there exist traces :TExt3(Sj, S;) — C. As these
Ext-spaces are one-dimensional we can represent these traces byscaPaoperty A.5.2
can be rewritten as

Trs; ((€a) * (m)) = Trs, ((m) * (€a))

;Y Ealla = i Y Gavbalh-
a a,b

As this holds for arbitrary¢, ) and(n,) we can conclude that

Now we construct the element
Z ah(a)arabba
a,beQq

Which is a sum of cycles. It is also a homogeneous element that is invariant under cyclic
permutation:

Qh(b
E Op(a)Tab@b = g Qg (p)Tabab = g Qy(v) " ((b)) bryqga = E ap(p)bTba -
a,b a,b a,b t a,b

This implies that we can identify it witty (1) whereW e CQ/[CQ, CQ)] such thatr,
is a scalar multiple o, .

To prove the last condition on the structure of the quiver, assume first thdhe tail of
a unique arrow: and let theb; be the vertices whose headtis). Asr, = >, b;rs,, and
rq 7 0in CQ, there must be at least ong, # 0in CQ and because of its degree it is also
nonzero inA. Now y,, sits inside the kernel aP,(,) 4 Py(q) because), W = 1y, 4a.
This would imply that the resolution fd#}, ) is not exact. Using right modules instead of
left one proves that every vertex is also the tail of at least two arrows. |

For reasons of completeness we also include the descriptions of Calabi Yau algebras of
smaller dimension because the techniques to do this are similar.

The zero-dimensional case is trivial and consists of the semi-simple algebrasi.e. quivers
without arrows. The one-dimensional case consists a direct su@skdf(disjunct unions
of one-vertex-one-loop quivers). This is a consequence of prog&tty#{i — j} =
Dim Ext' (S;, S;)=Dim Hom(S;, S;) = &i;.

Theorem 3.2. If A is Calabi Yau of dimensiof then A is the preprojective algebra of a
non-Dynkin quiver (for a definition of a preprojective algebra E&¢.

Proof. As the global dimension ot = CQ/Z is now2, the projective graded resolutions
look like

Doy Py & Di(a)=i Pra) —= P, —= S,
From the Calabi Yau property C2, we deduce that
#{r € RIh(r) = i,t(r) = j} = DimExt?(S;, ;) € DimHom(S;, S;) = 6,

i.e. for every vertex there is a unique relation and vice versa.

Now, similarly to the three dimensional case, we consider the finite dimensional quotient
algebraM = A/(ra™' :r € R,a € Q1, A, : n > N) wherevr : N > degr. The Calabi
Yau property allows us to calculate the dimension/afj:

DimiMj = Dim Hom(P;, M) = Dim Ext?(S;, M) 2 Dim Hom()Mj, S;) = 6
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and conclude that/ must be isomorphic to the degree zero partiofThis implies that the
ra~! are all linear and spad,. For everya there is also at most onesuch thatra™=! is
nonzero: the uniquewith ¢(r) = ¢(a). If we group the relations together = . r
then there exists an invertible complex matyiy such that

Ra~ ' = Zgabb.
a,b

We can use thig to explicitly calculate the pairing (the calculation is analogous to the
thee-dimensional case).

Eth (S’i’ SJ) X Eth (Sj’ Sl) - EXtQ(S’ia SL)(&@) * (nb) = Z.@Lb&z”b-
ab

PropertyC3 now implies thatg,; is antisymmetric and non-degenerate so using a base
transformation on the arrows we can gyt in its standard symplectic form. The fact that
gap 7 0 = h(a) = t(b) At(a) = h(b) indicates that this base transformation only
mixes arrows with identical head and tail. In this new basis the arrows can be partitioned
in couples(a, a*) with g, = 1 andg,, = 0 if b # a*. The relationR assumes the form

of the standard preprojective relations:

E aa* —a*a
a

wherea runs over the unstarred half of the arrows. AlSocannot be the double of a
Dynkin quiver becausd must have global dimensid) see [7]. |

4, SELFDUAL RESOLUTIONS

In this section we use the notion of selfdual resolutions to give a criterium to check
whether a vacualgebray is indeed Calabi Yau.

4.1. Projective A-modules. Let A be a finitely generated graded algebra that is the quo-
tient of a path algebr&@ and letS = Aj.
For every finite dimensiona-bimoduleT” we can define a projectivé-bimodule

Fr =AsT ®g A.

We denote the full subcategory bfodA — A containing these projective modules7as
The basic objects of this category are of the fdrn:= Fg;g,;5 = Ai®jAwithi, j € Qo.

The bimodule homomorphisms betweBpn € P and a bimodulé/ € ModA — A can
be identified with

HomA_A(FT, M) >~ T g@SM.
The tensor product in this formula tensors over both the left and the $igidtion. The
identification can be expressed explicitly as
0@m:b @st@gby Y 0(it))byimgb
= 1.G€Qo

A special role is played b¥sss = A ® A. We will denote this space hy. On this vector
space we can define two commutidgbimodule structures

Fouter:(a1(b1 ® bz)az) = a1by ® baas,
Finner :(a1(b1 ® ba)az) = biaz ® aybs.
If we use no subscript, we automatically assume the outer structure. These structures are
both isomorphic as bimodules to the free bimodule of rank one and the isomorphism be-
tween them is given by the twist
Tt Fouter = Finner : (bl & b2) = (b2 ® bl)-

The existence of these two commuting structures implies that fordahimodule A/
the object Hom _ 4 (M, Fouer) is again anA-bimodule using the inner structure. This
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bimodule will be denoted by/V. Maps can also be dualized in the standard way to turn
—V into a functor:

VfeHomy 4(M,N):Vme M :Yv e NV : fY(v)(m) := v(f(m)).

For the standard projective bimodules we have the following natural identities
L] F%/ - HOmA_A(FT, F) = (T* é@SF‘)mnerg A ®S j—h’< ®S A - F’T*7
e Homy A (Fp,M)=T*@ M~ Fr. @ M = Fy @ M.
S-S A-A A-A

We can also write out the duality for the morphisms:

(0 ®a; Rst®saz)’ =t®as Vs 0 Vg a;
S-S S-S

These formulas imply that there is a natural equivalence between

(—® —)*and(—Y ® —*) : P x RepA — A — ModC

A-A A-A

and between-"V|p andP — ModA — A. These functors and identities can be transferred
to complexes if we assume that

(M*)" = (MZ;,

—(d¥ 1)) and(P*)Y = (PY;, —(dZ; 1))
Keeping all this in mind we can propose the following definition:

Definition 4.1. A projective resolutionP* of left A-bimodules is selfdual with shift if
and only if there exists a commutative diagram

Pn Pn—l e Pl P()
\Lan \Lan—l lal \Lao
—ay —dy —dY
Ry —%-py —%.... - py, U py

for which thec«; are isomorphisms ofi-bimodules. In short hand we can wrife® =~
(P*)"[n].

Theorem 4.2. If an algebraA has a selfdual resolution of lengthwith entries inP then
Ais Calabi Yau of dimension.

Proof. Let M* andN*® be two complexes iRepA. Standard homological algebra allows
us to identify naturally

HOMpigepa (M*, N*®) = HOMpipioqa—a (A, N* @ (M*)*)
= HoMpomoda—a (P, N® @ (M*)")
=~ H°RHOMpipoda—a(P*, N* @ (M*®)")
= HPHOMRyjoqa—a(P*, N® @ (M*®))

So if we can prove that there is a natural equivalence between
HOM{pmoqa—a (P, N® @ (M*)*) and HoMkyoga— 4 (P, M* @ (N°®)*[n])

we are done.
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Now using the fact that the resolution is composed of projectivésuve can make the
following identifications

(HOMipoga—a (P, N® @ (M*)%))"
o~ ((P-)V /@AN. ® (Mo)*)*

o (Po)\/\/ gA(N. ® (MO)*)*

o~ (Po) ® M* ® (No)*

A-A

2

IR

(P*)"[n] © M*® (N*)*
= (P*)" © M*® (N*)"[n]
= HomMpbuppoqa—a (P*, M* @ (N*)*[n])
which are natural in thé/® anN°. O

For an explicit write-out of the corresponding pairing between B4 (P*, N*®
(M*)*) and HoMcmoda— 4 (P®, M® ® (N*)*[n]) we first need some notation: for simplic-
ity we will work with elements that are pure tensors:

f c HomICModA—A(P.,N. ® (M.)*) . fij — d)ij P@A‘uij c PiV ® NI ® Mj*

A-A

ge HomlCModAfA(P:M. ® (N')*[n]) . gij _ ,Yij S?Amij e Pi\/ E?AMj ® (Nn—i+j)*.

With these expressions fgrandg we can track back the pairing in the previous identifica-
tions:
(frg)mene =Y Tru o ga, L, (" )mm .
9
4.2. Superpotentials and Selfduality. In the case of a graded algeba= CQ/Z, T C
J? one can construct its minimal resolution using standard presentatiah® /@ 1.
These objects, introduced in [6], consist of quintuglEésV, r, [, A),, where
(1) U,V c I™ areS-bimodule complements such that

I"=UJI"+I1"JandJI"nIi"gy=ve Ji"Jg,

2) r,l:I" - ARs U ®g A are aCQ — S and aS — CQ-bimodule section of the
CQ-bimodule morphism

e: ARsURsA—T":1Qs5u®s1— u.
and use these to define a map
d:AQsV®sA—AQsU®sA:1®5v®s 1 1(v) —r(v)

(B) A:7I" - ARsV ®g A is aCQ-bimodule derivation (i.e. &-bimodule morphism
satisfyingA(azb) = A(az)b + alA(zb) — aA(z)b) such thatdA = [ — r and
VUEVSA(U):1®SU®S 1.

Although the mapl is a morphism a&€@-bimodules it can also be considered as a mor-
phism of A-modulesd : Fyy — Fy because th€(Q-action factors overd. The same
can be done witke provided we factor oufZ™*! in the targeties : Fy — Z"/Z"
To turn A into a A-bimodule morphism we have to do two things: look at the subspace
Intl c I (this turns the derivation law into a morphism law) and mod But? (this
turns the domain into a-bimodule):
In+1 n+2

cA:mHFV:x—i—I — A(z).

These maps can be packed together in sequencés-off bimodules

In+1

c d e
0 *A> Faznazng *A> F zn A "
Tntz SoTng

TS ZnFT
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In [6] it is proved that these sequences are exact and they can be spliced together to get a
projective bimodule resolution @ /Z* = A. This resolution is not minimal but it can be
made minimal if one cuts out the excess summands that occur at the splicing boundaries.
These terms are of the form

In+1 In+1 +jInj
P T ————— A=A _ A C Fgzrnzn
Il JIng ®s ®s TInT ®s A C L0 T
We will now apply this to the case of Calabi Yau algebras of dimensidks we already
know from section 3.1 the ideal is generated by

aaI/Vaa € Ql

whereW € CQ/[CQ,CQ)] is a superpotential and as the global dimensioh vge only
need to look at the standard presentations:ifer 0, 1.
The case: = 0 has the same form for every algebra
o Up=5,Vy=C
e lp:a—a®gt(a)®s1
ro:a— 1R®g h(a) ®s a,
e A:ay---ap — Z1§jgka1”'ajfl ®g a; ®s i1 ak).
Forn = 1 we do not need to bother about thg because it does not affect the minimal
resolution:
¢ I=C{oW,a€e@Q1}ITIT+1ITJ, U =C{o.,W,a € Q1} =CQ".
For V; we chose a complement that contains the subsféce> W,i € Qo }.
o 1 : 20, Wy—2®g0,Wsyify ¢,
r1: 20, Wy~ Q@5 0, W Qs yif x ¢ T.
Because thé O W are not contained ifi? they are not cut out by restricting to the minimal
resolution. Moreover, because

A®g

Ext? (S, S) = Homg(———

cY
>~ Homy(S, S)*

= Homg (C{i,i € Qo},S)*
= Homg(C{i © W,i € Qo},S)"
We have that the third term in the minimal resolution mustbe, = Fcfinw,icqo} =

20V,

Fg. Putting everything together we get

) d- 4
Fepiow,ieQoy —— Fe{o,wiacq.) — Feg, —— Fs 0

with maps
1(l®sa®sl)=a®stla)®s1l—1®s h(a) ®sa
52(1 Rg 0, W Qg 1) = A(aaW)
53(10sWosl) =Y a®s0.W®s1— 1850,V ®sa
a€Q1
A more explicit write-out of the compleg'y;, whose0'” homology is equal to4, in
terms of the basic projectivg;; looks like
Cw : EG?? Fu (rda-) @ Ft(a)h(a) @ Fh ®)tb) L (-db-) @ Fy m LNy
1€Qo
where the differential ifa := a ® t(a) — h(a) ® a and the second derivatives dg W =
AJ,W. More explicitly, if c is a cycle then

Of,c = Z 1 ® pa.

p1,p2:0ap1bp2=0c

Ty by (v)
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Note that because W is invariant under cyclic permutatio2, W = 792, W

\Y
(@ F“ Tda) @ Ft( Yh(a (8baW) @ Fh(b)t(b) (+db-) @ )

1€Q0 JE€Qo
=D FV db EB Fh(b)t(b)( W) @ f(a)h(a )’ @D F
JEQo ZGQO
A A VT A
= @ Fj; L) EB Ft(b Jh(p) (P ) @ Fh(a (@ (4 P Fy
JEQo 1€Q0

This complex is selfdual and the isomorphism connecting the complex with its dual is
composed of the standard identifications we used in the previous paragraph.

So the sufficient condition of selfduality is also necessary for Calabi Yau algebras of
dimensior2.

Theorem 4.3. A vacualgebradyy is Calabi Yau of dimensiodiif and only if the complex
Cyw is a projective resolution afiy;, as anAy -bimodule.

This fact has a nice interpretation for the classificatiog@dd superpotentialse. su-
perpotentials with a vacualgebra that is indeed Calabi Yau.

Corollary 4.4. For a given quiver and a given dimensiod, the subset Bup,;(Q) of good
superpotentials of degre¢is either the empty set or almost everything (in the measure
theoretic sense).

Proof. The condition we must check is that the standard complex is indeed a resolution.
Because the resolution is graded we can check this separately for every degree so the sub-
space of good superpotentials is an intersection of a countable number of Zariski open sets.
If one of these sets is empty we're in the first case and otherwise the complement of this set
is a countable union of hypersurfaces, which has measure zero for the standard measure on
Ccn. O

Remarkd.5. For global dimension two we can do a similar thing. Recall thatii§ Calabi
Yau of dimension two, then the set of arrows patrtitions in pairs*) with opposite head
and tail.

The selfdual resolution now looks like

-rda™- -da-
@ Fii ('_Tda' >; @ Ft(a)h(a) @ Ft(a*)h(a*) (~da*-); @ Fii m = A
1€Qo (a7a*) 1€Qo
This is indeed the standard resolution for preprojective algebras of non-Dynkin quivers (see
[7D).

4.3. The matrix valued Hilbert polynomial. For a graded algebrd = CQ/(R) one
can define thenatrix valued Hilbert series

Ha(t) := ho + hat + hot® + - -
where theh, are matrices iMat 4, x #q, (C) and
(hi)i; = dimiAyj (A is the degreé part of A)

The matrix valued Hilbert series of a Calabi Yau algebra can be computed from its
bimodule resolution:

Theorem 4.6. If a vacualgebraAy, with deg W = d > 3 is Calabi Yau then

1
Haw(®) =12 Mot + Mgtd=1 — ¢d

where Mg is the incidence matrix of). This equality must be evaluated in the ring of
formal power seriedlat 4, x#qQ, (C[t]).
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Proof. The Hilbert polynomial ofF; is equal to
Hp,, (t) = Ha(t)en Ha(t)

whereey; is the matrix withl on the entryk, [ and zero elsewhere. So from the exactness
of the resolutiorCy and the fact that,(P*) = A we get

Ha(t) = Hpy — t(Hrog, — " (Hr, 0, — tHr))
= Hao()LHA(t) — tHA(t)MoHA(t) + t* " Ha(t) MY HA(t) — t*H(t)1H ()

Note thatH 4 (t) is invertible becausé&l 4 (0) = 1. Multiplying to the left and the right by
H 4(t)~! and taking the inverse we obtain the equality. O

The bimodule resolution gives us also resolutions of the left modiil&griting out the
dimensions of these resolutions gives the equation

1= Ha(t) — tMqHA(t) + t* " MEHA(t) — t*Ha(t).

This is nothing new, but as this equation corresponds to a real resolution we can derive
certain inequalities that must be met:

11 Ha(t) >0

12 (M& —t)Ha(t) >0

13 (Mg — M&t4™2 — "1 Ha(t) > 0
Note that a matrix valued serig§t) is positive if all its entrieg fi),; are positive. These
inequalities can be useful to check whether quivers have good superpotentials of a given
degree.

5. APPLICATIONS

5.1. Groebner Bases and SuperpotentialsTo show that for a given quiver and a given
degree there exist good superpotentials one has to check whether one can find a superpo-
tential W such thatCyy is exact. To do this we will use the technique of Groebner bases

as outlined in [12], adapted to path algebras. Supgpea quiver withn arrows and put

an order on the arrowsi; > --- > a,. One can extend this order to the set of paths with
nonzero length using thieglex orderingnethod:

ail...aip <ajl ...ajq

ifandonlyifp < gorp=gandiv <p:a;, <a; AVu <v:i, = j,. We denote the
leading monomial term (according to the deglex ordering) ef CQ by It(f). Recall that
a (not necessarily finite) set of elemetitsz 7 < CQ is aGroebner basi# all It(g),g € G
are different and

t(Z) = (It(f): feT)=(ltlg) : g € G)
where the equality is taken as idealgd. Groebner bases are very useful in determining
the structure of an algebra. They can be used to determine the Hilbert polynomial because

Heg/z = Hegpiz
and they can be used to check whether certain expressi@hg are zero inCQ/Z:
fezZ = It(f) e t(Z) = (lt(g) : g € G)

To check whether a given set of relations is indeed a Groebner basis one can use the method
of Bergman diamonds [3]. For anfyin CQ, an elementary reduction gfby g € G is the
new expression

pg(f) = f —Cagbif a,bare paths and € C s.tlt(f) = (alt(g)b or f otherwise

If G is a set of relations then a triple of monomial ter(asb, ¢) is called anambiguityif
ab = It(g1),be = It(g2) with g1, g2 € G. An ambiguity is called resolvable if there is a
sequence of elementary reductions such that

p1--- pm(gic — agz) = 0.
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Now Bergman’s diamond lemma states that if all leading terms are different and all ambi-
guities are resolvable the® is a Groebner basis.
We will now give a useful criterion to find good superpotentials.

Lemma 5.1. Suppose every vertex pis the source and the target of at least two arrows
andW is a superpotential such that

e The leading terms of the relatiods W are all different and the ambiguities are in
1 to 1 correspondence to the vertices and are of the form

amb, = (a, It(0,W)b~1,b) = (a,a™ 1t(9,W), b) with alt(0, W) = It(9,W)b = It(vWv),

o for every vertex there is at least one arrow, ¢(a) = v such thatvb € Qy :
It(BbW)a_l =0.
then Ay is Calabi Yau.

Proof. First note that the condition implies thé®, W : a € Q1} is a Groebner basis: an
ambiguity of the formamb,, (a, It(0,W)b~1,b) is resolvable because

Z cO,W = Z o.We

h(c)=v t(c)=v

and hence
adyW —0,Whb= > 9 We— > W
t(c)=v,c#b h(c)=v,c#a

Note that the leading terms of the summands in the right hand side are all different because
thelt(0.W) are and there is only one ambiguity corresponding.téVe can remove each
term using an elementary reduction, starting with the one with the highest leading term.
Therefore the ambiguity is resolvable.

To calculate the Hilbert series one must calcul@tg),.,, which is equal to the number
of words betweem andw of a given lengthk not containingt(9,W)’s. This can be done
using recursion:

(h)ow = D b {u — wh =Y hb g {w —up+ R
“ v

u .
remove double counting

add an arrow remove those ending in(d, W)

There are no further terms needed: a word endingan only be double counted once
because of the form and number of the ambiguities. The Hilbert seri¢gaf thus
_ 1
1 — Mgt + M&td=1 — ¢
Using the exactness of the first 2 terms(gf, we can calculate the Hilbert series of the
kernel of the third map

Hay, (1) — ktHay, (6)% + kt9 ™ Ha,, () = t4H,, (1)2.

This is the same as the Hilbert series of the last term so if we can prove that the last map is
an injection we are done. There is indeed no eIenEap]fj ®g; € Aw ®g Aw such that

Vi>k:Y fib@g;— f; @bg; =0.
J
The deglex ordering 08(Q can be transferred to and ordering on the monomial3@® s

CQ:

Hay, (t)

V1 @ Ug > wy ®wy <= w1 > wy Orvy = wy andvy > ws.
This ordering is compatible with the multiplicative structure@® ®s CQ. Let f; ® g1 be
the highest order term, then the highest order terfpoff;b ® g; — f; @ bg; is fib ® g1.
Thereforef; ¢ (It(0,W) : a € Q1) but f1b € (It(0, W) : a € Qo) for everyb € Q.
This would imply that for every with h(b) = ¢(f1) there is ac € @, such thatf;b ends
in 1t(9.W), contradicting the second condition &if. O
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The conditions imposed on the superpotential are very strict and there are far more good
superpotential that do not meet these conditions. In general the ideal generated by a good
superpotential will not have a finite Groebner basis. However for many quivers and degrees
we will be able to find superpotentials that satisfy the demands of the lemma.

5.2. The one vertex situation. First note that if has only one vertex and one loop, then
none of the vacualgebras can be Calabi Yau of dimergsimtause these algebras are finite
dimensional and hendé 4 (t) cannot be the inverse of the polynomiak ¢ + ¢4~ — ¢4,

So, in this section, lef) be a quiver with one vertex arid > 2 loops and leGup, C
CQ/|CQ,CQ)] be the subspace of all superpotentials of degneéh d > 3. We will show
that the space of good superpotentials is non-empty if and ofiky if) # (2, 3).

If (k,d) = (2,3) then there are no good superpotentials because the ineqUuality
does not hold:

1
(2-1) S =2+3t+27 — 2+ 2+ 0.

1—2t+2t2 -t
For every other couplé:, d) we can find at least one good superpotential.

Lemma 5.2. TakeCQ = C(Xq,...,X,) andX; > X5 > --- > X, then the following
superpotentials are good:
1) W=X1XoX5+ X1 X3 X0+ ;.3 XlX} +[CQ,CQ],
2 W =30 X{ 2 X0 X, 4 [CQ, CQI.
Proof. We calculate the leading terms of the relations
(1) |t(aX1 W) = X7 X3, |t(8X2W) = X1 X3, |t((9X3W)X1X2, |t(8XkW)X1Xk, ce
() t(0x, W) = XE3X2 1t(0x,W) = X1 Xy, ..., It(0x, W) = X1 X,
The only ambiguity we can construct is
(1) (X3, X2, X3) betweermy, W anddx, W,
(2) (X1, X93X,, X,) betweerdy, W anddx, W.
We also see that none of the leading terms ends;in O

Remark5.3. In the cases wherg:, d) equals(2,4) or (3,3) one can obtain a complete
classification of the good superpotentials because then we are in the case of Artin-Shelter
regular algebras [2].

5.3. Special Quivers. The simplest quivers with more than one vertex that can have good
potentials are

ai,a2 b3

Q=P Q2 = (o300 e
as,aq ba
Theorem 5.4.
e CQ1/[CQ1,CQ1]q contains good superpotentials if and onlydif> 4 andd is
even.
e CQ1/[CQ2, CQ2]4 contains good superpotentials if and onlylif> 4.

Proof. For both quivers! must be bigger than or equal4decause otherwise the inequal-
ities I1 — I3 are not satisfied. Fap,, d must be even because every cycle has even length.

Assume the orderg, > as > az > ay4, by > by > bg > by and define the following
superpotentials

Q1 : alag(a2a4)%_1 + asa; (a4a2)%_1 + [CQ, CQ]
Q- : bf72b3b4 + b§172b4b3 +[CQ,CQ]
The leading terms of the relations are

d d d
£-2 41 g2

d_
Ql : (13((120,4)(2 1, a3ala4(a2a4) 5 al(a4a2) y ala3a2(a402) y

Qo : b9 3bsby, b 3babs, bI2by, b 2bs
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For each of the quivers there are two ambiguities (one for each vertex)
Q1 : (al,a302(a4a2)%727a4), (a3,a1a4(a2a4)%’2,a2)
Q2 1 (b1, b7 b3, by), (b2, b9 by, b)

Finally none of the relations end in , a3 andby, bs. O

The method described above can be extended to lots of other quivers and degrees, espe-
cially quivers of the form

The number of arrows between consecutive vertices can differ (Butjs

Theorem 5.5. Let Q be a quiver of the form above with> 2 vertices and lep; > 2 be
the number of arrows between tié and thei + 1" vertex. Ifd = ¢k with ¢ > 2 thenQ
has good superpotentials of dimensifn

Proof. For every vertex € Qq, we will denote the consecutive vertex by 1, soVa €
Q1 : h(a) = t(a)+ 1. Fix an order on the arrows 6J and leta;, b; the highest and second
highest arrow arriving in the vertex

Define the superpotential

W= Z a;a;i—1bi—g -+ bi_pp41
1€Qo
-1
+ Z can(e)—1bnie)—2 " On(e)—k+1(COn(e)—1bn(e)—2 - bu(e)—k+1)"  +[CQ, CQ)]
c#a;,b;
The leading terms of the relations now look like
1t(0a, W) = ai—1bi—2 - bi—grt1
[t(0p, W) = a;i—1ai—2bi—3 -+ - bi_pry1

It(OeW) = an(e)—1bn(e)—2 "+ bn(e) k1 (Cbn(e)—1bn(e)—2 * * br(ey—rt1) "

It is easy to check that all ambiguities are of the fam, a;—1b;—2 - - - bi—sg+2, bi—sk+1)
and none of the relations ends in some O

Remark5.6. If ¢ = 1 the situation is more complicated because the solutions of the in-
equalities 11-13 are not easy to determine. It is not the case that if they are satisfgg for
that they are also satisfied for a quivgg with (p/,--- ,p}.) > (p1,--- ,px). Fi. aquiver
with arrowsp = (2, 2, 2, 2) has good superpotentials but one witk= (6, 2, 2, 2) has not.

The method of finding these very special superpotentials does not always work. As a
counterexample consider the quiver

NV

One can check that there are no superpotentials of dimerdssatisfying the conditions
from 5.1 although Groebner basis computations in GAP [9](up to a certain degree because
the full Groebner basis could be infinite) seem to indicate that a generic superpotential is
indeed good.

The general picture that arises from computations is that as soon as conditions 11-13 are
met by the Hilbert series then there do exist good superpotentials, but we have no proof for
this statement.
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APPENDIXA. THE SIGNS OFSERRE DUALITY
BY MICHEL VAN DEN BERGH

A.1l. Introduction. In this self-contained appendix we determine the exact signs which
occur in Serre duality (see for example Proposition A.5.2 for the Calabi-Yau case). Al-
though the answer is the obvious, the verification turned out to be slightly more tricky than
foreseen.

We thank Bernhard Keller for pointing out Example A.3.2 (see [11] and [14] for further
information) and suggesting that, likewise, the correct signs in Serre duality should be
determined by the requirement that the Serre functor be exact.

A.2. Graded categories.

Definition A.2.1. A graded (pre-additive) category is a p@éir, S) whereC is a pre-additive
category ands is an automorphism af.

RemarkA.2.2. It is customary to only requiré to be an autoequivalence. The stronger
condition thatS is an automorphism is usually satisfied in practice and up to an appropriate
notion of equivalence we may always reduce to this case.

In a graded categorfC, S) we may define thgraded Hom-setbetween objects by
Homg: (A, B) = Home (A, S°B)
and
Honf (4, B) = @5 Homg:(4, B)
There is an obvious graded composition l
— %=t HOm(B, C) x Homg, (4, B) — Hom" (4,0) « (9. /) =: 5(9)
We denote b9 the category equipped with graded Hom-sets.

A graded functorbetween graded categorigs, S), (D, T') is an additive functol/ :
C — D together with a natural isomorphispY : U o S — T o U. By a slight abuse of
notation we will write the composition

UoS' - TolUoS ' —. ... 5T oU
as(nY).
Associated tdU, nV) there is a functot/9" : C9" — D9 given by
1) U%(fi) = (n") o U(f:)
for f; € Homi:(A, B). Itis clear that the formation df-)9" is compatible with composi-
tions.

A.3. Triangulated categories. We will assume that triangulated categories have a strictly
invertible shift functor. Up to equivalence we may always reduce to this case.

Definition A.3.1. An exact functol/ : S — 7 between triangulated categories is a graded
functor (U, nY) : (S, [1]) — (7,[1]) such that for any distinguished triangle

AL BL ot oap
the following triangle

7UO
vA Youp Y ue 22t (A

is distinguished.

Example A.3.2. Let s : A — A be the functor which coincides witfi] on objects and
maps but for whichy?, : s(A[1]) — (sA)[1] is given by—id 4[5). Then(s,7®) is an exact
endofunctor ond. Note in contrast thdt ] itself, while being a graded endofunctornist
exact.
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A.4. Serre functors. Let k be a field and assume thats a Hom-finitek-linear category.

Definition A.4.1. C satisfiesSerre dualityif there is an auto-equivalenceé : ¢ — C
together with isomorphisms

(2) Hom: (A4, B) — Home(B, FA)*
natural inA, B. Such anF' is called aSerre functoifor C.
Putting B = A in (2) yields a canonical element
Try : Home (A, FA) — k

corresponding to the identity in HQmA, A). It is easy to see that k— o —) defines a
non-degenerate pairing

Home(B, FA) x Hom¢(A, B) — k

and that the map (2) is given by —: Tra(— o f). In addition we have the following
fundamental identity [13]

3) Tra(go f) =Trp(Ffog)

Now assume thafC, S) is graded and assume thahas a Serre functaf’. We may
makeF" into a graded functor as follows: we have to give maps

nh : (FoS)(A) — (SoF)(A)

natural in A. Using non-degeneracy of the trace pairing we define these maps via the
requirement

(4) Tra(S™ (ko f)) = ~Trsa(f)
foranyf: SA — (FoS)(A).

RemarkA.4.2. The minus sign in this formula is an arbitrary choice in the graded context,
but it is forced in the triangulated context. See the proof of Theorem A.4.4 below.

Proposition A.4.3. (Graded Serre duality) Fof; € Hont:(A, B), g_; € Homg"(B, FA)
we have

Tra(g—i* fi) = (=1)'Trp(F* fix g_;)

Proof. We have

Trp(FOfixg_i) =Trp(S™H(F& f;) o g—s) (by (A.2))
=Trp(S™((n")p o F(fi) 0 S'g-4)) (by (1)
(=)' Traip(F(fi) 0 8°g-s) (by (4))
= (=1)'Tra(S'g—i o fi) (by (3))
= (=1)'Tra(g—i = fi) (by (A2)) O

Assume now thatd is a Hom-finitek-linear triangulated category with a Serre functor
F.

Theorem A.4.4. [5] F is an exact functor when equipped with the graded structure ob-
tained from(4) (with S = [1]).

Proof. This is proved by Bondal and Kapranov in [5]. We give a somewhat more direct
proof which makes the signs evident.

We start with a distinguished triangle.

AL B ol oap
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We have to construct a mapsuch that the following diagram is a morphism of distin-
guished triangles

nith

FA—Ls pp 0 po P A)Y
|
FA—>FB——>X — (FA)[1]
whereX is the cone oft'f.
In equations:
(5) myoFhod =8
(6) doa=Fg

For anyz : A — X[—1] we deduce from (5)
(nh o Fhod)[-1]ox = fB[-1]ox
Using (4) this is equivalent to
Trap(Fhodox[l]) = =Tra(B[—1] o x)
which using (3) can be further rewritten as
(7 Tre(dox[l] o h) = =Tra(B[—1] o x)
Using the non-degeneracy of the trace pairing we see that (5) is equivalent to the validity
of (7) forallz : A — X[—1]. Similarly (6) is equivalent to
Tre(doaoy) =Tre(Fgoy) =Trg(yog)

forally: C — FB.
Summarizing: we have to finélsuch that the following equations

Tro(soa{t]oh) = —Tra(Bl-1] 02)
Tre(doaoy) =Tre(yog)

hold for allz € Homy (A, X[—1]) andy € Homu(C, F B).

We may view the equations (8) as fixing the value of the functiends —) on two sub
vector spaces of Hop(C, X). Since Tg is non-degenerate such a system can be solved
provided we give the same value on the intersection. Thus we have to show

aoy=z[l]JohthenTizg(yog) = —Tra(B[—1] o x)

(8)

To prove this assume o y = z[1] o h and consider the following commutative diagram

() FA—L pp—2 s x — 2 (FA)
A A
v JT me ol
B> O~ All] — > B[l]

wherey exists because of the axioms of triangulated categories.
We compute
TrB(y e} g) = TrB(Ff o 1/))
=Tra(yo f)
= —Tra(B[-1]ox)

In the third line we have used the commutativity of the rightmost square in (9). O
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A.5. The Calabi-Yau case.

Definition A.5.1. A triangulated category with Serre functBris Calabi-Yau of dimension
nif F = s™ as graded functors, whesds as in Example A.3.2.

Proposition A.5.2. Assume thatl is Calabi-Yau of dimension. Then forf; € Homl, (A, B),
gn—i € Hom7"(B, A) we have

(10) Tra(gn—i * fi) = (=1 "I Trp(f; * gn—:)

Proof. We viewg,,_; as an element of Hof;ﬁ(A F B) by using the naive identification on
objects(F' B)[—i] = B[n][—i] = B|n — i]. To avoid confusion we put_; = g,,_;.
Graded Serre duality now reads as

Tra(hei* fi) = (=1)'Trp((s9)" (f:) * h—s)
Writing out everything explicitly we get
Tra(h—ifi] o f;) = (=1)'Tra(((n*)x o filn])[=i] o h—s)
= (=1)'Tre((*) ¥ [=i] o filn — ] 0 h—y)
Now composing with(n*)4![—4] is just multiplying by(—)"*. Thus we obtain
Tra(h_q[i] o fi) = (=1)" ™ Trg(filn —i] o h_;)

which translates into (10). |
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