
Random Access Algorithms without Feedback using Finite Geometry

G. Peeters, R. Bocklandt and B. Van Houdt
University of Antwerp - IBBT, Middelheimlaan 1, B-2020 Antwerp, Belgium

Abstract

A new class of random access algorithms for systems
without feedback is introduced and analyzed. A finite pop-
ulation of users is assumed, where each user transmits a
packet R times within the next N time slots (and all packets
have an equal length of one slot). To improve the perfor-
mance achieved by randomly selecting these R slots, user
codes are designed such that any two users will only trans-
mit simultaneously in at most one slot.

Using finite affine and projective spaces in which points
correspond to slots and lines to user codes, we develop an
algorithm that generates a maximum set SN,R of user codes
for specific values of N and derive a closed formula for
the success probability of a single user assuming we have
|SN,R| users.

We also provide a method to select T user codes from
the set SN,R in case the user population consists of only
T ≤ |SN,R| users. For the affine spaces, this selection is
based on difference vectors, while for the projective spaces
(with an odd dimension) we introduce an algorithm to gen-
erate a spread of spreads. We further demonstrate how
large populations, with T > |SN,R|, can still benefit from
these user codes.

Closed formulas that express the success probability of a
packet are provided for both the smaller (T < |SN,R|) and
larger (T > |SN,R|) population setup. The performance
gain realized by this new class of random access algorithms
is demonstrated via a comparison with the random selection
strategy.

Random access algorithms without feedback were first
developed during the early 1980s by Massey [?]. In this
setting, a set of M users shares a time-slotted random ac-
cess channel. The idea was to assign a protocol sequence
(or code) to each user (of length N) such that, irrespective
of how these sequences were synchronized to one another,
a guaranteed throughput could be achieved, provided that
all the users make use of their protocol sequence. For in-
stance, for M = 2 users the codes were [1010] and [1100]
(in this case each packet is transmitted twice per period).
The capacity of such a channel turned out to be 1/e for M

large—even when the users are not slot synchronized—and
a protocol sequence generator that realized this throughput
was developed [?].

The problem of having only T users with data in a pop-
ulation of M was also considered [?], where it is unknown
which users are active. Again, the channel capacity was
shown to equal 1/e.

The problem addressed in this paper is of a somewhat
different nature, in the sense that we do not require that all
packets are transmitted successfully with probability one.
We allow for a loss tolerance, say of at most 1%, as delay
critical data in communication networks can typically cope
with some degree of packet loss. The no feedback scenario
applies in networks where the round-trip time of the ran-
dom access channel is so large that any feedback received
is useless, as the maximum delay tolerated by this type of
data has already expired. Typical networks that suffer such
feedback delays are satellite networks (e.g., DVB-RCS net-
works [?]).

Assume that the maximum allowed delay is denoted as
N time slots. This implies that we wish to transmit a new
packet within the next N time slots. The performance of
immediately transmitting this new packet a single time is
rather low. On can improve this scheme by transmitting the
packet R times in the next N time slots. The most natu-
ral way to do this, is by selecting these R slots at random
[?, ?]. However, as the user population is finite, one may
expect further performance gains by assigning a user code
(or pattern) to each of the users that dictates in which R
of the next N slots a transmission should occur. The de-
sign of such user codes is one of the main contributions of
this paper. Recently, it was shown that the random selection
scheme can also be improved significantly by implement-
ing an iterative Interference Cancellation (IC) approach [?].
This IC approach can potentially be used to further improve
our user code based algorithms.

The user codes are designed such that any two user codes
share at most one slot. These codes correspond to binary
constant weight codes with weight R and minimum dis-
tance 2(R − 1). A simple upper bound UN,R for the max-
imum number of such user codes is presented and for spe-
cific values of N we rely on finite geometries to generate

sets SN,R of user codes with |SN,R| = UN,R. To the best
of our knowledge, it is the first time that finite geometry is
used in the design of random access algorithms. These fi-
nite geometries will contain N points (slots) and each line
in such a geometry holds exactly R points. As any two lines
can only have a single point in common, lines naturally cor-
respond to user codes. Moreover, the number of lines in the
space matches UN,R exactly. This implies that we can gen-
erate a maximum set of user codes SN,R by developing a
(fast) algorithm that lists all the lines in the finite geometry
under consideration.

Provided that we have a population of |SN,R| users, we
present a closed formula for the success probability of a
packet. A packet is successful if any of its R transmission
attempts succeeds (meaning, none of the other users used
the same slot). Next, we address the problem if the size of
user population T is smaller than |SN,R|. Clearly, one could
simply select T user codes, however, some choices result in
a better performance than others. A selection method that
will result in a better performance for smaller populations
is presented. The idea is to partition the set SN,R such that
any two user codes in the same partition do not share any
slot. To select the T user codes, we make use of the codes
in the first partition, followed by the codes in the second
partition and so on.

In affine geometries these partitions correspond to lines
with the same difference vector, as a result, the partitioning
is easy to achieve. For the finite projective geometries, such
a partitioning corresponds to generating a spread of spreads,
which is only possible if the dimension n of the space is
odd. An algorithm based on a technique developed in [] for
n = 3 is discussed. As shall become apparent further on
n = 3 covers most of the practical cases, as we are mainly
interested in R = 3 to 5 (as R = 1 and 2 are trivial) and
N below 100. A closed formula that expresses the success
probability for a population of T users, where the user codes
are selected according to the partitioning, is also presented.

In principle, the use of user codes imposes a strict bound
on the user population. For larger populations, codes can
be reused by some terminals, or those extra users can sim-
ply perform random selection. We will derive the (approxi-
mated) success probability for both possibilities, indicating
that the second option offers the best performance for large
populations (i.e., T > |SN,R|).

Finally, we also demonstrate the effectiveness of these
novel random access algorithms by comparing them with
the random selection approach for a wide range of N values
(and R between 1 and 5).

1 A user code based random access algo-
rithm

Consider a random access channel without feedback
shared by a set of users. Packets generated by a user can
withstand a maximum delay of N time slots. When two or
more packets are transmitted simultaneously, all transmis-
sions in this slot are assumed to be lost. A user can typically
cope with a small loss rate, e.g., 1%.

Instead of transmitting a packet just once, each user
transmits a packet R times within the next N time slots.
The most natural way is to select R slots out of the next
N slots in a random manner. It is well known that such
a repeated randomized transmission can significantly re-
duce the packet loss rate, compared to a single transmission
[?, ?]. Notice, a packet is only lost if all R instances were
involved in a simultaneous transmission.

Some formulas to assess the performance of this random
approach are giving in the Appendix. Typically, when an-
alyzing such a scheme, the time slots are assumed to be
grouped in sets of N slots. When a user generates a new
packet it will attempt its R transmissions in the next group
of N slots. Grouping also seems necessary when we wish
to rely on user codes. After all, when we design a set of
user codes, such that they share at most one slot, it is essen-
tial that the sequences of N slots are synchronized among
one another. For frame-based networks, with a (small) con-
tention window per frame, this approach can be naturally
applied. Consider F contention slots per frame, then N can
be chosen to equal F (or as a multiple thereof). Grouping
occurs naturally as the contention based data has to wait for
the next set of F contention slots. On the other hand, group-
ing may violate the delay constraints as packet delays up to
2N − 1 slots are now possible.

One solution to meet the packet deadline of N slots, is to
group the slots in sets of N/2 slots and to select R slots out
of the next N/2 slots. However, decreasing the transmis-
sion window by a factor two is not beneficial for the overall
success probability, therefore, we propose a solution that al-
lows us to stick with a window of N slots. Suppose that a
user code is represented by a bit vector of size n and weight
R, where bit number i is set if the user selects slot i as one
of his R slots. The idea is that when a packet is ready for
transmission at the end of the k-th time slot of a group of
N slots, it will change its original user code by moving the
first k bits of to the back of its user code. This shifted bit
vector is subsequently used for the packet transmission and
may commence in the very next slot (that is, slot k + 1). In
this way, we guarantee that any two packets still interfere
in at most one slot, even though the transmissions are no
longer synchronized to the start of a group.

Finally, as with most random access algorithms, it is as-
sumed that per user there is at most one packet ready for

transmission at any given time. Hence, packets from the
same user will never compete with each other.

2 Generating UN,R user codes

In this section we explain how to generate a maximum
set SN,R of user codes for particular values of N using a fi-
nite geometry. We start by repeating a well known argument
that states that there can be at most

UN,R =
⌊

N

R

⌊
N − 1
R− 1

⌋⌋

user codes, such that each two codes have at most one slot
in common. Let i ∈ {1, . . . , N}, then there are at most
b(N − 1)/(R − 1)c codes that make use of slot i. Also, as
each code contains R slots, we may conclude that there can
be at most UN,R user codes. It has been proven that this
upper bound can be attained in many particular cases [?, ?].

For R = 2, all the 2-element subsets of {1, . . . , N} form
a set SN,R with |SN,R| = UN,R, so we may restrict our-
selves to the case where R ≥ 3. We will show that finite
affine and projective geometries allow us to generate a set
of UN,R user codes for various choices of N and R. In
the last part of this section we also indicate how to gener-
ate user codes for N and R values that do not fit within the
finite geometry setup.

2.1 Finite affine spaces

A finite affine space AG(n, q) of dimension n ≥ 2 over
a finite field K = GF (q), with q = pk for some p prime
and k ≥ 1, consists of a set V of N = qn points having
coordinates of the form (x1, . . . , xn) with xi ∈ K, for i =
1, . . . , n. Through every two points in such a space, there
exists exactly one line and every line holds exactly R = q
points. This implies that there are exactly C = N(N −
1)/R(R − 1) = qn−1(qn − 1)/(q − 1) different lines in
AG(n, q). Further, every two lines intersect in at most one
point.

Given these properties, we can make use of such geome-
tries to generate UN,R user codes, provided that N and R
can be written as N = Rn and R = q, for some n ≥ 2,
q = pk for p prime and k ≥ 1. Table 1 lists some of the N
values for R = 3, 4 and 5.

To generate the user codes, it suffices to list the C lines
of the affine space AG(n, q). Each line is characterized by
the R points that it holds. We can produce this list by iter-
ating over all 2-element subsets of V and determining the
coordinates of the remaining R − 2 = q − 2 points. Given
two points a = (a1, . . . , an) and b = (b1, . . . , bn), we first
compute the difference vector b−a as (b1−a1, . . . , bn−an),
where ai, bi ∈ K and bi−ai ∈ K is determined via the sub-
traction operation of the finite field K. The R = q points of

n = 2 n = 3 n = 4
R = 3 9(24) 27(117) 81(1080)
R = 4 16(20) 64(336) 256(5440)
R = 5 25(30) 125(775) 625(19500)

Table 1. Feasible N and (C) values for R = 3, 4
and 5 using affine spaces

the line through a and b are then given by {a+c∗(b−a)|c ∈
K}, where ∗ denotes the product in K. Clearly, setting
c = 0 and 1 simply reproduces the points a and b.

If we iterate this simple procedure over all 2-element
subsets of V , we would produce R(R − 1)/2 instances of
each line. However, this iteration can be adapted easily such
that every line is produced just once.

2.2 Finite projective spaces

A finite projective space PG(n, q) of dimension n ≥ 2
over a finite field K = GF (q), with q = pk for some p
prime and k ≥ 1, consists of a set V of N = (qn+1 −
1)/(q − 1) points. The projective space PG(n, q) can
be constructed from the affine space AG(n, q) by adding
points at infinity. More specifically, for each difference vec-
tor b−a we add a single point to AG(n, q) and we also add
this point to the qn−1 lines that correspond to this differ-
ence vector, such that each line now carries q + 1 points. In
this way, a total of (qn − 1)/(q − 1) points are added. We
also add lines at infinity such that these points and lines at
infinity also form a projective space PG(n − 1, q) on their
own.

Using this construction we can also add coordi-
nates to the projective plane by assigning (1, x1, . . . , xn)
to the affine point with coordinate (x1, . . . , xn) and
(0, y1, . . . , yn) to the point at infinity that corresponded to
the difference vector (y1, . . . , yn). As in the affine case,
there exists exactly one line through every two points, but
now every line holds exactly R = q + 1 points. Hence,
there are exactly C = N(N − 1)/R(R − 1) different lines
in PG(n, q). Further, every two lines also intersect in at
most one point.

Projective geometries thus allow us to generate UN,R

user codes, provided that N and R can be written as N =
(qn+1−1)/(q−1) and R = q +1, for some n ≥ 2, q = pk

for p prime and k ≥ 1. Table 2 lists some of the N values
for R = 3, 4 and 5.

As with the affine space, we can generate a maximum set
of user codes by listing all the lines in the projective space
PG(n, q). We first list all the lines in AG(n, q) and add
a 1 to the front of each affine coordinate to get the corre-
sponding projective coordinate. This gives us the q coordi-

n = 2 n = 3 n = 4
R = 3 7(7) 15(35) 31(155)
R = 4 13(13) 40(130) 121(1210)
R = 5 21(21) 85(357) 341(5797)

Table 2. Feasible N and (C) values for R = 3, 4
and 5 using projective spaces

nates of the affine points on these lines. By adding the point
(0, y1, . . . , yn) to each line, where y = (y1, . . . , yn) is its
difference vector, we end up with all the lines that contain
affine points. The lines that are not listed thus far, are all
located at infinity. As the space at infinity forms a projec-
tive space PG(n − 1, q), we simply use this procedure in
a recursive manner until n = 1 (where PG(1, q) has q + 1
points all located on a single line).

2.3 User codes for all N and R values

Even though the finite geometry approach taken in the
previous two subsections is only applicable for specific
choices of N and R, we can also use this approach to gen-
erate a set SN,R of user codes for any N and R value. How-
ever, these sets will, in general, no longer be of maximum
cardinality. To generate a set for an arbitrary N and R value,
we can start by selecting the smallest N̄ value that corre-
sponds to some space AG(n,R) such that N̄ ≥ N . Next,
we generate the user codes of this particular space. Finally,
we remove all the user codes from the set SN̄,R that make
use of one of the slots in {N + 1, . . . , N̄}. This procedure
can be also be used in the projective case, but with some
space PG(n,R − 1). Depending on the value of N , ei-
ther the affine or the projective case will produce the largest
set. Figure 1 depicts the cardinality of this largest set for
R = 3, 4 and 5. In the remainder of this paper we will only
focus on the N and R combinations that correspond to a
finite geometric space.

3 Performance in a UN,R user population

3.1 Analysis

In this section we demonstrate that, using the highly
symmetric structure of the spaces AG(n, q) and PG(n, q),
we can quite easily establish an expression for the suc-
cess probability of an arbitrary packet. To do so, we as-
sume that we have a user population of C = UN,R =
N(N − 1)/R(R− 1) users and each user is assigned a sin-
gle user code that is used to transmit a packet. We will
address the problem of having a population with fewer (or

 0

 200

 400

 600

 800

 1000

 1200

 10 20 30 40 50 60 70 80 90 100

S
iz

e
of

 s
et

 o
f u

se
r

co
de

s
|S

N
,R

|

Slots (N)

R=3
R=4
R=5

Figure 1. Largest sets for R = 3, 4 and 5, and
all values of N between 10 and 100, found by
the elimination procedure.

more) than C users in Section 4 (or Section 6). For the per-
formance analysis we assume that users wait until the start
of the next group of N slots. The same assumption was
made when analyzing the algorithm that selects R slots in a
random manner. Furthermore, for the user code based algo-
rithm, we will show by simulation that the results obtained
from the grouping scenario nearly coincide with those using
the shifted bit vectors discussed at the end of Section 1.

For the analysis of our user code based algorithm, it is
important to notice that any point that is part of some line `
in either AG(n, q) or PG(n, q) will also be part of exactly
S = (N −R)/(R− 1) other lines, because any two points
characterize a line and all lines hold R points. Further, every
line intersects ` in at most one point, making the sets of lines
passing through different points on ` disjoint.

Assume U ≤ C users each transmit R times according
to their user code and we have a total population of C users.
Further let us tag the R transmission attempts by a partic-
ular user. To know the probability that the tagged user is
successful, it suffices to compute the probability that at least
one point on a particular line ` is not intersected by one of
the other U − 1 lines. The probability that a specific set of i
points on ` is not intersected by any of the other U − 1 lines
equals (

(C−1)−iS
U−1

)
(
C−1
U−1

) ,

because there are C lines in total (including line `) and

iS of them intersect with `. To get the success probabil-
ity psuc(U) of a tagged user, we can use the inclusion-
exclusion principle such that we do not count too many suc-
cesses, as follows:

psuc(U) =
min(R,b(C−U)/Sc)∑

i=1

(−1)i+1

(
R

i

)(
(C−1)−iS

U−1

)
(
C−1
U−1

) .

We further assume that each user generates packets accord-
ing to a Poisson process with rate λ. If multiple packets are
generated by a single user in a length N interval, they are
combined into one message that is transmitted R times in
the next interval. Thus, with probability p = 1 − e−λN , a
user will participate in a length N interval. The total load
on the contention channel therefore matches ρ = pC/N .
Hence, the overall success probability under Poisson ar-
rivals matches

psuc =
C∑

U=1

U

ρN

(
C

U

)
pU (1− p)C−Upsuc(U), (1)

where the U
ρN deals with the fact that a tagged user is more

likely to be part of a larger group of users.

3.2 Numerical Results

Figures 3, 4 and 5 illustrate the error probability for ar-
rivals following a Poisson process, as defined in previous
section, for the cases where R = 3, 4 and 5 respectively.
We see that the use of user codes reduces the error prob-
ability significantly compared to random selection, where
the reduction becomes more pronounced as the population
size and the load diminishes. Also notice that, given a fixed
load ρ, increased user populations cause more packet losses
for the user code based algorithm, as opposed to the random
selection that seems to benefit from more users.

A comparison with a time driven simulation is provided.
As the closed formulas are exact for the grouped setup, there
was a perfect agreement with the simulated grouped sce-
nario. Figures 3 to 5 also depict the simulated scenario
without grouping, where we use the shifted bit vector ap-
proach for the user codes. A remarkable observation can
be made with respect to the grouping mechanism. For the
random selection, grouping (or synchronization) has a neg-
ative influence on the packet loss. This is in contrast with
many other random access schemes (e.g., slotted vs. unslot-
ted ALOHA), because here a packet is saved if one of its R
instances survives transmission, whereas in a classic setting
losing a part of the transmission corrupts the entire trans-
mission attempt. This synchronization penalty is however
not observed for the user code based results. So it seems
that our user codes do not suffer a grouping penalty, which
is very useful for frame-based networks.

We must remark that to match the arrival pattern of the
theoretical grouped analysis and the simulated case without
grouping, a minor modification to the Poisson process is re-
quired, as Figure 2 illustrates. This modification is needed
as multiple arrivals that occur in the same group where
merged into one arrival in the grouping setup. Hence, in or-
der to consider exactly the same arrivals in both scenarios,
some arrivals are ignored, while others are slightly shifted
to avoid contention between two packet of the same user.
We refer to Section 7.3 for more details.

Figure 2. Illustration of the arrival process
of a single user, as used by the simulation.
Poisson arrivals 3 and 5 are not considered
in the simulation, since they are both the sec-
ond arrival within the same group. Although
arrival 2 occurs shortly after the first one, it is
used, but assumed to arrive exactly N slots
after the first one. Thus, both simulations
consider the same arrivals as used in the the-
oretical analysis.

Figure 3. Performance results in a UN,R user
population. In this case R = 3, which results
in N = 27, C = 117 using affine spaces, and
in N = 15, C = 35 using projective spaces.

Figure 4. Performance results in a UN,R user
population. In this case R = 4, which results
in N = 64, C = 336 using affine spaces, and
in N = 40, C = 130 using projective spaces.

4 Selecting T of the UN,R user codes

In this section we consider a population of T < UN,R

users and address the problem of selecting T user codes
from the set of UN,R. We could select T codes at random,
however, if we are unlucky in our choice, the performance
might reduce, even though we have fewer users. To remedy
this problem, we propose a method that orders the UN,R

users codes such that a population of T users will make
use of the first T user codes. Although, one easily shows
that this choice does not maximize psuc for many T values,
we will demonstrate that it significantly improves the av-
erage performance of a random selection of T codes. The

Figure 5. Performance results in a UN,R user
population. In this case R = 5, which results
in N = 125, C = 775 using affine spaces, and
in N = 85, C = 357 using projective spaces.

advantage of this approach is also that we can simply add
new users (and their codes) at runtime without the need to
change the user codes of the existing population, which is
in general not the case for an optimal selection procedure.
Finally, this order also allows us to establish a closed ex-
pression for the success probability psuc.

Our design goal is to partition the set of all lines SN,R in
AG(n, q) and PG(n, q) such that none of the lines part of
the same partition intersect. Further, within every partition,
we also demand that every point lies on some line. We start
with AG(n, q).

4.1 Finite affine spaces

In the affine case, it is not hard to devise such a parti-
tioning by making use of difference vectors. In AG(n, q)
there are C = qn−1(qn − 1)/(q − 1) lines and to each of
the (qn − 1)/(q − 1) difference vectors correspond exactly
L = N/R = qn−1 lines. By definition, lines with the same
difference vector cannot intersect, so by associating a parti-
tion to each difference vector, we end up with the required
partitioning of SN,R.

To get a total ordering of SN,R, we list the lines partition
by partition. From the results presented in Section 5 one
deduces that the order of the partitions is irrelevant. The or-
der of the lines within a partition does have a minor impact
on the performance (when T is not a multiple of L), but is
chosen at random.

4.2 Finite projective spaces

5 Performance in a T < UN,R user popula-
tion

5.1 Analysis

In this section we derive a new expression for psuc taking
into account that we have only T < UN,R = C users. To
obtain an elegant closed expression, we restrict ourselves to
the case where T is a multiple of L, the number of lines
in a single partition. For other values of T , we can get a
useful approximation by considering the closest multiple of
L. Suppose T = kL, for 1 ≤ k < C/L. Due to the
design of the selection algorithm, each point in our space is
intersected by exactly k lines. Thus, if we tag a user, each

point on its line ` will intersect with exactly k − 1 other
lines. Also, a set of lines going through one point of ` will
be disjoint with a set going through any other point on `.
Hence, analogue to Section 3.1, where S is now replaced
by k − 1 and C by T , we find

psuc(U) =
min(R,b(T−U)/(k−1)c)∑

i=1

(−1)i+1

(
R

i

)(
(T−1)−i(k−1)

U−1

)
(

T−1
U−1

) .

For k = 1, this expression reduces to psuc(U) = 1. Next,
we can use formula (1) to determine the success probability
under Poisson arrivals.

5.2 Numerical Results

Figure 6 illustrates the loss probability for the case where
R = 4, for other scenarios we refer to Section 7.3. We first
observe that the loss rate reduces as the population size di-
minishes, where the loss rate drops to zero when the number
of users T = L. Furthermore, the gain obtained by having
a size T < C user population is much more pronounced for
the code based algorithm, when compared to the random se-
lection. Finally, we also note that the grouping or synchro-
nization penalty of the random selection algorithm remains
absent for the user code based scheme for all T < C.

Figure 6. Performance results in a T ≤ UN,R

user population, with ρ = 0.1 and R = 4. Note
that for N = 64, C = 336 and for N = 40, C =
130.

6 Dealing with more than UN,R users

Eventhough the designed user codes are mostly effec-
tive when the user population T is bounded by UN,R, we
will demonstrate that these codes still have their merits even
when T exceeds UN,R. We discuss two simple possibilities
for supporting larger populations that show how to exploit
the UN,R user codes.

A first approach is to reuse existing codes for the addi-
tional users. Hence, code i is used by the set of users with
ids {kUN,R + i|k ≥ 0}. The main disadvantage of this ap-
proach is that as soon as two users with the same code be-
come active, they will eliminate all of the R transmissions
of one another. Code reuse therefore seems mostly useful
when T is only marginally larger than UN,R.

A second, better alternative is to assign codes to the first
UN,R users and to let the remaining T − UN,R perform a
random selection. The main disadvantage of such an ap-
proach is that some unfairness between coded and random

can be expected. We will comment more on this unfairness
issue in Section 7.3.

We finally note that it might be best to deal with popula-
tions of size T > UN,R by designing a different, larger set
of user codes, where we allow two codes to share more than
one slot. We plan to address this possibility in some future
work.

7 Performance in a T > UN,R user popula-
tion

7.1 Analysis of code reuse

Consider a population of T > UN,R = C users, where
user j uses code j mod UN,R. Now each code is used by at
least α = bT/Cc users, while some codes are used as many
as α+1 times. The probability that a given user uses a code
which is used α times, is given by:

pm =
α ((α + 1)C − T)

T
.

This allows us to establish the success probability, given U
users are active in an interval of N slots, where we will
distinguish between the case where the tagged user code is
used α or α + 1 times. For simplicity, we assume that T is
of the form T = kL, meaning we distribute the C codes α
times among the first αC users and the remaining kL−αC
users are giving the codes in the first k−αC/L partitions as
explained in Section 5. By noticing that each point lines on
exactly k lines (of which are identical due to the reuse) and
by applying similar arguments as before, one establishes

p(d)
suc(U) = pm

min(R,b 1+T−U−α
k−α c)∑

i=1

(−1)i+1

(
R

i

)(
(T−α)−i(k−α)

U−1

)
(

T−1
U−1

)

+(1− pm)
min(R,bT−U−α

k−1−α c)∑

i=1

(−1)i+1

(
R

i

)(
(T−1−α)−i(k−1−α)

U−1

)
(

T−1
U−1

) .

7.2 Analysis of user codes combined with
random selection

Consider the same population of T > UN,R = C
users, where C users make use of a code, whereas the re-
maining T − C users transmit at random. Assume that
U = U (c) +U (r) users are active in an interval of length N .
With probability

p(U (c), U (r)) =

(
C

U(c)

)(
T−C
U(r)

)
(

T
U(c)+U(r)

) ,

U (c) of them have a user code and U (r) do not. Given that
U (c) users have a code and assuming the tagged user has

a code, we find that the probability that the tagged user is
successful is given by

p(c)
suc(U

(c), U (r)) =

m∑

i=1

(−1)i+1

(
R

i

)((C−1)−iS
U(c)−1

)
(

C−1
U(c)−1

)
((

N−i
R

)
(
N
R

)
)U(r)

,

where m = min(R,N −R, b(C − U (c))/Sc).
Deriving a closed expression for the success probability

for remaining U (r) users that transmit in a random man-
ner is more problematic as a random selection can intersect
with user codes in a multitude of manners. However, for a
tagged user without a code, it turns out that we can make an
excellent approximation by assuming that all U − 1 other
users (including the U (c) that have a code) appear to chose
their slots randomly. Hence, from the perspective of a ran-
dom user, it seems that everyone is transmitting at random.
Numerical evidence of the close resemblence between the
actual simulated success probability and this approximation
is given in Section 7.3. Given this approximation, the result-
ing success probability of an arbitrary active user becomes:

p(c)
suc(U) =

min(U,C)∑

U(c)=U−U(r)=0

(p(U (c), U (r))
U

·

(U (c)p(c)
suc(U

(c), U (r)) + U (p)p(r)
suc(U)

)
,

with p
(r)
suc(U) the success probability for U users perform-

ing a random selection, as defined in the Appendix. To
obtain the success probabilities p

(c)
suc and p

(d)
suc for Poisson

arrivals, we refer to Equation (1).

7.3 Numerical results

Figures 7, 8 and 9 show the results for various user pop-
ulations. We compare both the reuse of user codes and the
combination of user codes with random selection against
completely random selection for a load of 10 percent. As
expected, the combination of user codes with random se-
lection ourperforms the other two setups for all scenarios,
while the reuse of codes becomes inferior to a standard ran-
dom selection when the population becomes large enough.

The simulation results for the grouped scenario were
matched perfectly by the closed formulas for the random
selection and reused codes. For the combined setup, we
see that the approximation formula suggested for the ran-
dom users turns out to be very effective. In Section 3.2 we
noticed that there is a grouping penalty associated with the
random selection, while the user code scheme did not expe-
rience such a penalty for T ≤ UN,R. When the population
T becomes larger than UN,R, this penalty reappears for both
the reuse scenario and the combined scheme. Intuitively, we

can expect a gain when two users sharing the same code be-
come desynchronized, meaning the shifted bit vectors will
prevail.

The formula for p
(c)
suc(U), combined with the numerical

results, also suggests that the combination of user codes
with random selection offers a higher success probability
to users with a user code; the loss probability of the remain-
ing users corresponds to the standard random selection sce-
nario. This clearly introduces some unfairness. However,
the alternative of using no user codes only offers a disad-
vantage to the coded users and no advantages for the ran-
dom users, so there is no harm in introducing codes in part
of the population.

Figure 7. Performance results in a T > UN,R

user population, with ρ = 0.1 for R = 3. The
results are for N = 15, C = 35 and N = 27,
C = 117 respectively.

Figure 8. Performance results in a T > UN,R

user population, with ρ = 0.1 for R = 4. The
results are for N = 40, C = 130 and N = 64,
C = 336 respectively.

Figure 9. Performance results in a T > UN,R

user population, with ρ = 0.1 for R = 5. The
results are forN = 85, C = 357 and N = 125,
C = 775 respectively.

Appendix

A Performance of Random Selection

This section indicates how to assess the success proba-
bility p

(r)
suc of the random selection algorithm for a popula-

tion of C users. Slots are grouped into sets of N slots and
a user who generates k ≥ 1 packets in a set of N slots, will
transmit R instances of a single packet (that contains the
combined information of the k packets) by selecting R of
the N time slots within the next group of N slots.

Assume that U users attempt to transmit their packet dur-
ing an interval of N time slots. The probability that a spe-
cific set of i slots, selected by a tagged user, remains unused

by the remaining U − 1 users equals
((

N−i
R

)
(
N
R

)
)U−1

.

Using an inclusion-exclusion argument, we obtain an ex-
pression for p

(r)
suc(U), the probability that a tagged user is

successful given that U − 1 other users where active

p(r)
suc(U) =

min(R,N−R)∑

i=1

(−1)i+1

(
R

i

) ((
N−i

R

)
(
N
R

)
)U−1

.

By replacing psuc(U) with p
(r)
suc(U) in Equation (1), we ob-

tain the success probability p
(r)
suc for the random selection

algorithm under Poisson arrivals.

B Packings in Projective Spaces

Theoretical Background First we review some basic facts
about finite fields. Every finite field has a generator for the
multiplication, i.e. there exists an α ∈ GF (qn) such that
every nonzero element can be expressed as a power of α. If
m|n we can embed GF (qm) in GF (qn) as the set contain-

ing the zero and all powers of α
qn−1
qm−1 . We can view GF (qn)

as vector space over GF (qm) and this vector space has a
basis consisting of the elements α0, . . . , α

n
m−1. So taking

m = 1 we can express every nonzero element of GF (qn) in
two ways: as a power of the generator or as a GF (q)-linear
combination of the first n powers of the generator. The first
representation ideal to compute products while the second
is used to compute sums.

The points in the projective space PG(n, q) can be
seen as elements in GF (qn+1) by mapping (x0, . . . xn)
to x0 + x1α + . . . xnαn. These elements are determined
up to multiplication with a nonzero element of GF (q). If
ξ ∈ GF (qn+1) we will denote the corresponding element
of PG(n, q) by [ξ]. Using the exponential representation we
can see that every point is of the form [αk] and two powers
k1, k2 give the same point if k1 = k2 mod qn+1−1

q−1 .
A set of lines S in the projective space PG(n, q) is called

a spread if every point in PG(n, q) is contained in exactly
one line of S . The existence of speads implies that n must
be odd because the number of points in PG(n, q) must di-
vide the number of points on a line.

#S =
#PG(n, q)

q + 1
=

qn+1 − 1
q2 − 1

If n is odd one can always construct a spread using finite
fields. We briefly describe this construction as outlined in
[?]. For every 0 ≤ i < qn+1−1

q2−1 we define the line

`i = {[αi+ν qn+1−1
q2−1]|0 ≤ ν < q + 1}

It can be checked that this is indeed a line and `i ∩ `j = ∅
if i 6= j. So S = {`i|0 ≤ i ≤ qn+1−1

q2−1 } is a spread and it is
called the standard spread.

Example. If q = 2 and n = 3 we have to work over
GF (24). As generator we will use the α that satisfies α4 =
α + 1. This generates the following spread

`0 = {[1], [α5], [α10]} = {[1], [α + α2], [1 + α + α2]}
= {(1, 0, 0, 0), (0, 1, 1, 0), (1, 1, 1, 0)}

`1 = {[α], [α6], [α11]} = {[1], [α2 + α3], [α + α2 + α3]}
= {(0, 1, 0, 0), (0, 0, 1, 1), (0, 1, 1, 1)}
· · ·

which has 5 lines with 3 points covering all 15 points of the
projective space.

A set of spreads P of the projective space PG(n, q) is
called a packing if every line in PG(n, q) is contained in ex-
actly one spread of P . The existence of packings is proven
if n = 3 and for this case we will give the construction of a
packing.

If q = 2 one can consider the following automorphism
of PG(3, 2)

φ : (x0, . . . , x3) → A · (x0, . . . , x3) with A =
(

1 0 0 0
0 0 0 1
0 1 0 0
0 1 1 0

)
.

If we start with the standard spread from the example and
apply the automorphism to all the points we get a new
spread Sφ. As the matrix A has order 7, we get 7 differ-
ent spreads: S,Sφ,Sφ2

, . . . ,Sφ6
. One can check that these

7 spreads form a packing. Note that this construction de-
pends highly on the form of A and it cannot be generalized
to other q.

If q > 2 we will use a construction by Beutelspracher
[?] that is a little more involved. Let β be the generator
of GF (q2) so every element in this field can be written as
x + yβ with x, y ∈ GF (q). We embed PG(3, q) inside
PG(3, q2) using the map

(x0, . . . , x3) → (x0 + 0β, . . . , x3 + 0β)

A line ` in PG(3, q) will induce a line ˜̀ in PG(3, q2),
which contains apart from the points in ` an extra q2 − q
points.

Take a line ` ⊂ PG(3, q) and chose 2 points p0, p1 ∈ ˜̀
and a third point p2 ∈ PG(3, q2) \ ˜̀We can define the sub-
set π0 := {λ0p0+λ1p1+λ2p2|λi ∈ GF (q)} ⊂ PG(3, q2).
This subset is called a Baer subplane and it is a set of
q2 + q + 1 points sitting inside a plane in PG(3, q2). We
chose p0, p1, p2 is such a way that π0 has no points in com-
mon with PG(3, q). It is not difficult to show that such a
point can always be found.

There are q2+q+1 lines in PG(3, q2) that connect pairs
of points of the Baer subplane. We will denote them by gi

with 0 ≤ i ≤ q2 + q and we suppose that g0 = ˜̀
0. Every

line gi is the union of 2 sets of points: g0
i := gi ∩ π0 and

g1
i := gi \ π0. For both sets we define a set of lines in

PG(3, q):

G0
i := {` ⊂ PG(3, q) : ˜̀∩ g0

i 6= ∅}
G1

i := {` ⊂ PG(3, q) : ˜̀∩ g1
i 6= ∅}.

To state the final result we have to introduce extra notation.
If L is a set of lines in PG(3, q) then L> is defined as the
set of all lines that intersect all lines in L.

L> := {` ⊂ PG(3, q)|∀l ∈ L : ` ∩ l 6= ∅}.

Theorem[?] For each 1 ≤ i ≤ q2 + q the set

Si := G0
i
> ∩ G1

i

is a spread. The set of remaining lines S0 := {` ⊂
PG(3, q)|` 6∈ ∪1≤i≤q2+qSi} is also a spread and together
they form a packing.
Remark. Because of the special form of the G0

i , one can
show that G0

i
> = {l1, l2, l3}> for any subset of G0

i that has
3 elements. This simplifies the calculation of G0

i
> a lot.

B.1 The Algorithm

In this subsection we transform the theorem to an algo-
rithm that constructs the packing. We suppose that there ex-
ist subroutines that perform the addition and multiplication
in GF (q) and GF (q2). Points in PG(n, q2) are represented
as arrays of n + 1 elements of GF (q2). We need a function
STD that brings such a point in its standard form i.e. mul-
tiplies it with a scalar such that the first nonzero element
equals 1. Also let PG(n, q) be a function that generates a list
of the points in PG(n, q).

1. Find the p0, . . . , p2 for a good Baer Subplane:
Define p0 := [1, α, 0, 0] and p2 := [0, 0, 1, α]. Vary
i from 2 to q2 − 1 and let p1 := [1, αi, 0, 0]. Check
for every j from 1 to q2 − 1 whether the elements of
STD(p0 + αj ∗ p1) are not in GF (q). If this holds for
all j we fix p1.

2. Construct the points and lines of the Baer Sub-
plane:
The points are STD(b[0] ∗ p0 + b[1] ∗ p1 + b[2] ∗ p2),
where we vary b in the list PG(2, q). Put these points
in the list BPOINTS. Make a list BLINES containing the
lines in PG(3, q2) between pairs of points in BPOINTS
except the line between p0 and p1.

3. Construct the G’s:
Make a list LINES containing the lines in PG(3, q).

Vary i in LINES and j in BLINES. Look at the inter-
section between i and j. If it is nonempty we break
the j-loop. We add i to the list G0[j] if the unique el-
ement of the intersection sits in BPOINTS If it does not
sit in BPOINTS, we add it to the list G1[j].

4. Construct the G0
i
>:

Vary i from 1 to Length(BLINES), vary x in G0[i][1]
and y in G0[i][2]. Let L be the line in PG(3, q) be-
tween x and y. If L intersects G0[i][3], we add L to
G1[i].

5. Construct the final spread:
The G1[i] are all disjoint spreads. To construct the final
spread we select all lines that are not contained in some
G1[i].

The algorithm generates the packing quite fast, but we did
not optimize its efficiency in order to keep the connection
with the theorem clear.

