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ABSTRACT. In this article we show that the local structure of the projective representation
space of a graded algebra can locally be described by quivers with an automorphism of their
path algebra, a twisted weight. We describe the quotient spaces of these twisted weighted
quiver settings and determine which of them are smooth.

1. INTRODUCTION

Given a finitely generated algebraA over C one can look at the set ofn-dimensional
representations

repnA := {ρ : A→ Matn×n(C)|ρ is an algebra morphism}.
This has the structure of an algebraic variety and it has an additionalGLn-action on it by
conjugation. One can take the algebraic quotient of this action to obtain a new varietyissnA
that classifies all closedGLn-orbits or equivalently all isomorphism classes of semisimple
representations.

If A is a formally smooth algebra, i.e. the kernel of the multiplication mapA⊗A→ A
is a projective bimodule, thenrepnA is a smooth variety and one can describe theétale
local structure of the quotient map by means of quivers [6], [5].

A quiverQ is a directed graph consisting of a set of verticesQ0 and a set of arrows
Q1. The mapsh, t : Q1 → Q0 will denote the heads and the tails of the arrows. The path
algebra of a quiver is the vector space spanned by all paths inQ (including the vertices
considered as paths of length0) equipped with concatenation as multiplication.

A dimension vectorα is a map fromQ0 to N and a couple(Q,α) of a quiver and a
dimension vector is called a quiver setting. The space of allα-dimensional representations
is denoted byrepαQ.

repαQ :=
⊕
a∈A

Matαh(a)×αt(a)(C)

To the dimension vectorα we can also assign a reductive group

GLα :=
∏
v∈Q0

GLαv (C).

An element of this group,g = (gv)v∈Q0 , has a natural action onrepαQ:

W := (Wa)a∈A, W g := (gt(a)Wag
−1
s(a))a∈A,

and the quotient of this action is denoted byissαQ.

Theorem 1 (Le Bruyn). If repnA is smooth inp, wherep corresponds to a semisimple
representationS⊕e11 ⊕ · · · ⊕ S⊕ek

k then there is a quiver setting(Qp, αp) such that there
are étale neighborhoods making the following diagram commutative.

GLn ×GLα
repαQ //

��

repnA

��
issαQ // issnA
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This quiver setting is called the local quiver setting. Its verticess1, . . . , sk correspond to
the simplesS1, . . . , Sk and the number of arrows betweensi andsj is

dim Ext1(Si, Sj).

Quiver settings provide a powerful combinatorial tool to study the quotient map locally.
One can find the smooth points of the quotient [1] and the types of singularities that can
occur inissαQ [2].

If p is not a smooth point of the varietyrepnA the formalism of local quiver settings
breaks down. In this paper we explore the possibility to save some of the power of this
approach using twisted weighted quiver settings. The ideas presented here are an extension
of [4].

Instead of looking atrepnA which contains singularities, one can try to find a resolution
of repnA: a surjectiveGLn-equivariant mapV → repnA such thatV is a smooth variety
and the generic fiber consists of one point. In general this resolution is not an affine variety
so it cannot be seen as a representation space of an algebra, but in some cases this resulotion
can be obtained by a non-commutative blow-up.

If A has an ideali one can construct the graded algebra

Ã := A⊕ i⊕ i2 ⊕ . . . .

The ring of polynomial functions over the representation spacerepnÃ has also a positive
grading and one can look at the projective space it describesgrepnÃ. If this space is smooth
one has found a resolution ofrepnA.

The local structure of such a resolution does not always reduce to ordinary quivers,
but one needs some extra structure: an automorphism on the path algebra of the quiver.
A quiver setting together with such an automorphism is called a twisted weighted quiver
setting.

The main part of this paper will investigate how one can reduce the problem sketched
above to these twisted weighted quiver settings and study the finite group action, induced
by the automorphism on the quotient spaceissαQ.

The paper is structured as follows. In section 2 we introduce the graded representation
spacegrepnA of a graded algebraA. In section 3 we calculate the stabilizer of a semisimple
representation, given its decomposition (theorem 2). In section 4 we define the notion of a
twisted weighted quiver setting and the corresponding finite group action on its representa-
tion space. This allows us to formulate theétale local structure in terms of representation
spaces of twisted weighted quiver settings.

The next three sections focus on the geometry and combinatorics of twisted weighted
quiver settings alone. First we show that the local structure of twisted weighted quiver
settings can again be seen as twisted weighted quiver settings. These new local twisted
quiver settings can be calculated using adapted versions of the dimension vectors and the
Euler form. Secondly we modify the reduction steps defined in [1] to the twisted weighted
case. These reduction steps enable us to simplify the settings without changing the quotient.
Finally we give a classification of all twisted weighted quiver settings whose quotient space
is smooth.

In the last two sections we show that the theory developed above can be easily trans-
ferred to the theory of Cayley-Hamilton [10] algebras. We illustrate this with an example:
the quantum plane atq = −1.

2. GRADED ALGEBRAS AND REPRESENTATION SPACES

ConsiderA a positively graded algebra

A = C〈x1, . . . , xm〉/(I) = A0 ⊕A1 ⊕A2 ⊕ . . . ,

whereI is an ideal of homogeneous polynomials in the variablesxi, with the degree ofxi
being equal todi.
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The coordinate ring of the representation space,C[repn A], looks like

C[repn A] = C[Xkl
i ; i = 1, . . . ,m; k, l = 1, . . . , n]/(I ′)

which can also be seen as a graded algebra. Indeed, eachXkl
i will have degreedi and the

idealI ′ is spanned by homogeneous polynomials which originate from the homogeneous
polynomials in the idealI ofA. Therefore,C[repn A] has aC∗-action working on it defined
by

t · f = tdf f,

wheret ∈ C∗ andf ∈ C[repn A] has degreedf . This action induces aC∗-action on the
maximal ideals and thus onrepn A.

As C[repnA] is graded, we can defineproj C[repn A] and will denote this bygrepnA.

Definition 1. A representationρ : A → Mn(C) is called semistableif there exists an
f ∈ C[repn A] such that

(1) f is homogeneous and of degree> 0 (i.e., a semi-invariant for theC∗-action).
(2) f is GLn-invariant.
(3) f is non-vanishing onρ.

We writerepssn A for the set of all semistable representations ofA.

Remark 1. If ρ : A → Mn(C) sends all generators to nilpotent matrices, thenρ is
not a semistable representation. The converse is not true in general, but does hold if all
generators have degree bigger than zero.

With the definition ofrepssn A, we can writegrepn A as an algebraic quotient:

grepn A = proj C[repn A] = repssn A//C∗.
The action ofGLn on repn A induces an action ofGLn on grepn A and we denote the
algebraic quotientgissn A = grepn A//GLn. This summarizes in the diagram

repssn A
//C∗ // //

//GLn

����

grepn A

//GLn

����

issssn A
//C∗ // // gissn A

which is commutative since the action ofC∗ commutes with the action ofGLn.
On the other hand, we can look at the diagram

repssn A � � //

//GLn

����

repn A

//GLn

����

issssn A � � // issn A

and check whether the inclusion ofissssn A in issn A is well defined. We find:

Lemma 1. A GLn-orbit in repssn A is closed if and only if the correspondingGLn-orbit in
repnA is closed.

Proof. This follows directly from the fact that semistability condition isGLn-invariant. �

Lemma 2. With aξ ∈ gissn A corresponds a semisimpleMξ ∈ repssn A, unique up to the
action ofGLn × C∗
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Proof. If the orbitMGLn is closed, then also(t ·M)GLn is a closed orbit. The only thing to
verify is that for every 1 parameter subgroup(g(t))t∈C∗ ,

ρ := lim
t→0

(g(t), tn) ·M

is not a semistable representation. Supposeρ is semistable, then there exists anf ∈
C[repnA] homogeneous of nonzero degree withf(ρ(x1), . . . , ρ(xm)) 6= 0. This means
that among thexi, at least one hasρ(xi) 6= 0 anddi > 0, but this contradicts the definition
of ρ. �

Definition 2. A semistable representationM1 is calledgraded isomorphicto a represen-
tationM2 if there exists aζ such that

M2
∼= ζ ·M1

This definition and lemma 2 gives:

Proposition 1. gissnA classifies the (semistable) semisimplen-dimensional representa-
tions up to graded isomorphism.

3. STABILIZERS OF SEMISIMPLE POINTS

We have a nice characterisation forM ∈ repn A to be semistable.

Notation 1. SupposeM is a representation ofA. We write

AutC∗(M) = {ζ ∈ C∗ | ζ ·M ∼= M},

where the action ofζ onM is given byρζM (xi) = ζdiρM (xi).

Lemma 3. LetM be a semisimple representation ofA. ThenM is semistable if and only
if AutC∗(M) is finite.

Proof. ⇒ Let M be a semistable representation ofA. This means there exists anf
homogeneous andGLn-invariant, such thatf 6= 0 onM . Supposeζ ∈ AutC∗(M), then
ζ ·M ∼= M and asf is GLn-invariant, we haveζdf f = f . Sincef is nonzero onM , this
yieldsζ to be adf -th root of unity. ThereforeAutC∗(M) is finite.

⇐ LetM be a semisimple representation that is not semistable.C[issnA] is a finitely
generated algebra and we denote(fi)ki=1 the (homogeneous) generators (withdi the degree
of fi). Then,ζ ·M ∼= M if and only if fi(M) = fi(ζ ·M) for all i ∈ {1, . . . , k}. fi(ζ ·M)
can be written asζdifi(M) and asM is not semistable, for both the casesdk > 0 and
dk = 0, we have no restriction on theζ. �

As we are interested in théetale local structure ofgissn A, we want to apply the Luna
slice theorem [9] to the quotient map

repssn A // // gissn A ,

and therefore we will supposerepssn A to be a smooth variety.
A first problem to encounter is the structure of the stabilizer under the action ofGLn×C∗

of such a semisimple representation. First, we look at the simple situation:

Lemma 4. SupposeS ∈ repssn A is a simple representation ofA. TheGLn ×C∗-stabilizer
of S is isomorphic to the groupC∗ × µe where the cyclic groupµe has generator

(gζ , ζ) ∈ GLn × C∗

whereζ is a primitive root of unity and

(1) gζ = diag(1, . . . , 1︸ ︷︷ ︸
m0

, ζ, . . . , ζ︸ ︷︷ ︸
m1

, . . . , ζe−1, . . . , ζe−1︸ ︷︷ ︸
me−1

).
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Proof. Write AutC∗(S) as< ζ > with ζ = e
2πi

e for a certaine (with e a divisor of
n.gcd (deg(xi))). As ζ · S ∼= S, there exists ag ∈ GLn, unique up toC∗, such that
S = ζ · gSg−1. SinceS = geSg−e andS is simple, we know by Schur’s lemma thatge is
a scalar and we can choosege = rr

n. But then,g can be seen as a group representation of
Ze, where all simples are 1-dimensional and thereforeg is isomorphic to a diagonal matrix
gζ . As (gζ)e = rr

n, we have that all elements on the diagonal aree-th roots of unity, which
can be permuted in the order we want. �

The proof indicates that the(m0, . . . ,me−1) are determined up to cyclic permutation.

Definition 3. SupposeS has a stabilizer as in lemma 4, we say thatS hasperiode and
matrix type(m0, . . . ,me−1).

Let S be a semisimple (semistable) representation withAutC∗(S) = µe =< ζ >, then
for each simple componentSi, one can compute

ki = min
{
k ∈ Z+ \ {0} | ζk · Si ∼= Si

}
.

In order to haveS ∼= ζS, the componentsSi, ζSi, ζ2Si, . . . , ζ
ki−1Si have to occur an

equal number of times in the semisimple decomposition ofS. Hence,S can be written as

S =
p⊕
i=1

(
S⊕βi

i ⊕ (ζSi)⊕βi ⊕ . . .⊕ (ζki−1Si)⊕βi

)

The isomorphismζki · Si ∼= Si can be expressed with the terminology of definition 3.
SupposeSi has periodei and matrix type(mi

0, . . . ,m
i
ei−1), with the generator ofµei

denoted byζi. Becauseζki = ζlii with li = eiki/e, this yields

Si ∼= ζkigliSi
Si(gliSi

)−1

with gSi
= gζi

the diagonal matrix (1) of lemma 4. We will use the notation

gi := diag(1, . . . , 1︸ ︷︷ ︸
mi

0

, ζ, . . . , ζ︸ ︷︷ ︸
mi

1

, . . . , ζei−1, . . . , ζei−1︸ ︷︷ ︸
mi

ei−1

)

For the matrixgi then holds thatgki
i = gliSi

.
We are now ready to determine the stabilizer ofS.

Theorem 2. LetS be ann-dimensional semisimple representation withAutC∗(S) =< ζ >
and decomposition

S =
p⊕
i=1

S⊕βi

i ⊕ (ζSi)⊕βi ⊕ . . .⊕ (ζki−1Si)⊕βi
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with ki, gi andγi as defined before, then theζ-component of the stabilizer is isomorphic to

GLα ·



...

...

...

︷ ︸︸ ︷kiγiβi



kiγiβi

gi ⊗ rr
βi

gi ⊗ rr
βi

gi ⊗ rr
βi

gi ⊗ rr
βi

0

0

0

0



, ζ



withα = (

k1︷ ︸︸ ︷
β1, . . . , β1, β2, . . . , βp−1,

kp︷ ︸︸ ︷
βp, . . . , βp) and the embedding ofGLα in GLn is given

by the block diagonal matrix

GLβ1(C⊗
rr

γ1)
. . .

GLβ1(C⊗
rr

γ1)
. . .

GLβp(C⊗ rr
γp)

. . .
GLβp(C⊗ rr

γp)


Proof. The theorem follows directly from the right choice of basis forSi andζSi. Choose
the base change betweenSi andζSi be exactly determined bygi. �

We are now one step away from theétale local description ofS: the introduction of
twisted weighed quiver settings.

4. TWISTED WEIGHTED QUIVERS AND THE ÉTALE LOCAL STRUCTURE OFgissnA

In the introduction we sketched how one can use representations of quivers to describe
the local structure ofissnA (theorem 1). In this section we will prove an analogous result
for the description of the local structure ofgissnA, whereA is a graded algebra. Before we
can do this we introduce the useful concept oftwistsandweights.

Consider the path algebraCQ of a quiverQ. We now provide every path inCQ with
degree the length of the path. This makesCQ in a graded algebra. We distinguish 2
important types of graded automorphisms (i.e., algebra morphisms that send homogeneous
elements to homogeneous elements of the same degree) ofCQ:

(1) A twist φ is a couple of invertible mapsφ0 : Q0 → Q0 andφ1 : Q1 → Q1 such
that
• ∀a ∈ Q1 : φ0(h(a)) = h(φ1(a)) andφ0(t(a)) = t(φ1(a))
• ∀k ∈ N : φk1(a) = a ⇔ h(φk1(a)) = h(a) andt(φk1(a)) = t(a).

Every twist induces an automorphism ofCQ, which we also call atwist.
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(2) A weight is a mapQ1 → C∗ and this gives an automorphism ofCQ by mapping
every vertex on itself and every arrowa onw(a)a. This automorphism will also
be called a weight.

We can see twists and weights as basic building blocks of graded automorphisms ofCQ of
finite order:

Theorem 3. Every graded automorphism ofCQ of finite order can be conjugated to the
product of a weight and a twist. Moreover, this weight and twist commute.

Proof. SupposeQ hasp vertices and supposeψ a graded automorphism ofCQ of finite
order. Denote byVij the vector space spanned by all paths fromi to j, that is,

Vij = (eiCQej)1.

The action ofψ then sends aVij to aVkl and we can find a partition ofS := {Vij | i, j ∈
{1, . . . p}} corresponding to the orbits of this action. Choose a set of representatives for the
orbits of this action. For each of these representatives(eiCQej)1, we can find the smallest
k such thatψk(eiCQej)1 = (eiCQej)1. Choose now a basis ofVij that diagonalizes this
action ofψk onVij to a matrixAij and letBij be a diagonal matrix such thatBkij = Aij
(remark thatBij has roots of unity on its diagonal). Every other spaceVkl ∈ S can be seen
asψmVij for some representative. Choose a basis inVkl such that the mapψl on Vij is
given by the matrixBlij . But then we have chosen a basis for(CQ)1 for which ψ maps
every basis elementa to a multiplewa of another basis elementφ(a) (with wa one of the
elements on the diagonal of the correspondingBij):

ψ(a) = wa · φ(a).

So up to conjugation,ψ can be seen as the product of the weightw : a 7→ waa and the
twistφ (φ is a twist since theAij are diagonalized). This construction shows thatw(a) and
w(φ(a)) coincide, and thereforeφ andw commute. �

Remark 2. From the construction of the proof we can conclude thatw(a) is ane-th root
of unity if the order of the automorphism is given bye.

Remark 3. Another consequence of the construction of the proof is that all arrows lying
in the same orbit underφ have the same weight. However these weights are not uniquely
determined, but depend on the choice ofBij .

From now on we suppose that the automorphism ofCQ is in a twisted weighted form
ψ = wφ and lete be the order ofwφ.

Definition 4. With the previous notation, we callψ = wφ a twisted weight.

w andφ define an action ofµe on CQ and we want to look at this action as an action
on repαQ for a quiver setting(Q,α). (Q,α) is said to becompatible with this actionif
αφ0(v) = αv for all verticesv. This implies thatrepαQ also has a corresponding action
of µe on it. The action ofµe does not commute withGLα asφ can interchange vertices.
We do have thatGLψα = GLα, so to describe the total action we must take the semidirect
productGLα oψ µe, where the multiplication is defined by

(g1,m1).(g2,m2) = (g1wm2φm2(g2),m1m2)

with m1 andm2 integer representatives ofµe.
We will call the linear spacerepαQwith thisGLαoφµe-action atwisted weighted quiver

representation space. BecauseGLα o µe is a semidirect product of two reductive groups
we can take the quotient by first taking the quotient of theGLα-action and then the quotient
by the groupµe. We denote this quotient bygissψαQ:

C[gissψα Q] = C[issα Q]µe .
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The precise action of(g, i) ∈ GLα oψ µe on the representation(ρa)a∈Q1 ∈ repα Q is
given by

(g, i) · (ρa)a∈Q1 =
(
(ζwφi(a))i gφi(t(a))ρφi(a)g

−1
φi(h(a))

)
a∈Q1

.

and by the previous we can write

gisswφα Q = repαQ//(GLα owφ µk).

We can use these twisted weighted quiver settings to describe the local structure of
gissn A:

Theorem 4. For a smooth semisimple pointM ∈ repssn A, we denote the normal space
TM repnA/TM ((GLn × C∗) ·M) byNM . There exists a twisted weighted quiver setting
(Q,α, ψ) such that

Stab M ∼= GLα oψ µe andNM ⊕ C ∼= repα Q.

Proof. From section 3 we know that a semisimple representation always can be written as

M =
p⊕
i=1

S⊕βi

i ⊕ (ζSi)⊕βi ⊕ . . .⊕ (ζki−1Si)⊕βi

and theorem 2 gives us the exact behaviour of the stabilizer, which is isomorphic toGLαoψ

µe. The normal spaceN with respect to theGLn-orbit of M is given byExt(M,M) and
can be identified byrepα Q for a certain quiverQ and dimension vectorα (see [5]). AsM
is semistable, we know that the extra action ofC∗ is never trivial and that

TM (GLn ·M)⊕ C ∼= TM ((GLn o µe) ·M)

and this yieldsN ∼= C⊕NM .
Q is constructed in such a way thatCQ1 = Ext(

⊕
j Sj ,

⊕
j Sj) (where the direct sum

varies overall simple components) and we get that the path algebraCQ is given by the
tensor algebra

CQ = TCk

⊕
i,j

Ext(Si, Sj)


with k =

∑p
i=1 ki the number of vertices ofQ. The action of the element

p⊕
i=1


0 gi ⊗ rr

βi
· · · 0

0 0
...

...
...

... gi ⊗ rr
βi

gi ⊗ rr
βi

0 · · · 0

 , ζ


then determines a quiver automorphismψ, asψ(Ext(Si, Sj)) = Ext(ψSi, ψSj). �

Definition 5. We call(Q,α, ψ) from the previous theorem atwisted weighted local quiver
settingof ξ and will denote it by(Qξ, αξ, ψξ).

If we now apply the Luna slice theorem [9], we arrive at

Theorem 5. Let ξ be an element ofgissn A, such thatMξ is smooth inrepssn A. Then, for
all t ∈ C, there is a neighborhood of(ξ, t) ∈ gissn A × C, which isétale isomorphic to a
neighborhood of0 ∈ gissψξ

αξ
Qξ.

To draw twisted weighted quiver settings we will use the following conventions.

(1) The dimension vector will be written inside the vertices.
(2) Theweightw associateswa ∈ µe to each arrowa and weights will be denoted

by their power ofζ (i.e., integers from0 to e − 1) and will be depicted in a small
square on the arrow they correspond with. Weight 0 will not be depicted.
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(3) The action of thetwist φ permutes the vertices and the permutation will be indi-
cated by dotted arrows. The wayφ permutes the arrows is fully determined by the
permutation of the vertices, as arrows in the sameφ-orbit always have the same
weight.

5. LOCAL SETTINGS FOR TWISTED WEIGHTED QUIVER SETTING

Like in the case of quivers, twisted weighted quivers are closed underétale slicing. This
means that if we have a twisted weighted setting and we look at theétale local structure of
gissψα Q around a pointξ, then this can described by a neighborhood of the0 ∈ gissψξ

αξ
Qξ

of a new weighted twisted quiver setting.
We illustrate this with an example:

Example
Let us look at the weighted quiver setting

��������41A
##

1 Bcc with the action ofµ4

(A andB are4 × 4-matrices) and we want to look in a neighborhood of a semisimple
representationρ, with two componentsρ1 ⊕ ζρ1

��������21
##

1cc ⊕ ��������21
##

1cc

The stabilizer then can be given by the generator

(2)




0 0 λ 0
0 0 0 iλ
µ 0 0 0
0 iµ 0 0

 , ζ


and in that caseρ can be written in the following basis:

A =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 and B =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0


If we calculate the normal spaceN (based on the orthogonal complement of the tangent
space to the orbit in the total tangent space), we can writeN in 18 variables in the following
way: 

c1 δ1 f1 a1

δ1 − δ2 + δ3 c1 a2 f2
e1 −b1 k1 −σ1

b2 e2 σ1 − σ2 + σ3 k1

 ,

c2 −δ2 −f2 −a1

δ3 c2 a2 −f1
−e2 b1 k2 σ2

b2 −e1 σ3 k2


The action of the stabilizer as in (2) then result in the following twisted weighted local
quiver:

��������1

δ1,δ2,δ3
"��

1c1

<<

1
c2

NN

1
e1

**

1
e2

&&

b1

!!

b2

��oo // ��������1

σ1,σ2,σ3

���

1 k1

bb

1
k2

PP
1
f1

jj

1
f2

ff

a1

aa

a2

]] with weights inµ4.
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The local twisted weighted quiver setting that occur in a given twisted weighted quiver
setting can be calculated using the theory ofisomorphism invariant representations.

Following [3], we define an isomorphism invariant representation (ii-representation) of
a twisted weighted quiver setting as a representationS such thatSwφ ∼= S. Let σ be an
automorphism ofS corresponding to that isomorphism:

ρS(a)σ = σρS(wφ(a)).

Note thatσ is not uniquely defined but for two choicesσ1, σ2 we have thatσ1σ
−1
2 ∈

AutCQS. This enables us to chooseσ such that it has the same order aswφ.
If k is the order ofwφ then we can useσ to define aZk-action onS. Thisσ makesS

into a representation of the smash product

CQ#Zk,
and the category ofCQ#Zk-representations is equivalent to the category of couples of an
ii-representation ofQ and aσ.

We will also need a straightforward adaptation of a result from [3] and [11]:

Theorem 6. The algebraCQ#Zk is Morita equivalent to the path algebra of a new quiver
Q̃. This new quiver is constructed in the following way:

• For everyφ-orbit of verticesvφ ⊂ Q0 there arek/|vφ| vertices inQ̃0 parametrized
by the characters ofStab v. Denote these vertices bỹvχ, χ ∈ Stab v∨.

• For everyφ-orbit of arrowsaφ ⊂ Q1 there are|Stab s(a)||Stab t(a)|/|Stab a|
arrows inQ̃1 parametrized by couples(χ1, χ2) ∈ Stab h(a)∨ × Stab t(a)∨ such
thatχ1|Stab a = w(a)|Stab aχ2|Stab a.

If α̃ is the dimension vector of aCQ̃-representation then the correspondingCQ#Zk rep-
resentation is

αv =
∑

χ∈Stab v∨

α̃vχ

Moreover as aZk-representation its character is determined by

X(α̃) :=
∑
ṽχ∈Q̃

α̃(ṽχ)
∑

ϕ∈Zk
∨,ϕ|Stab v=χ

χ.

Remark 4. This new quiver is identical to the one quiver defined by L. Le Bruyn in[7].

Now suppose thatS andT are two simple ii-representations of(Q,wφ) and letσ and
τ be two automorphisms that makēS = (S, σ) and T̄ = (T, τ) into CQ#Zk represen-
tations. We denote the dimension vectors ofS andT by α andβ and the corresponding
Q̃-dimension vectors bỹα andβ̃.

We can now define three operations on these dimension vectors. To decrease the notation
load we will denote the semisimple subalgebra ofCQ generated by the vertices byCI
instead of(CQ)0.

(1) Thedual dimension vector̃α∨ is the dimension vector of the dual representation
S̄∨ = HomCI(S̄,CI):

α̃∨(vχ) := α̃(vχ−1).

(2) Theflow dimension vector|α̃〉 shifts all dimensions along the arrows:

|α̃〉(vχ) =
∑

a∈Q̃1,h(a)=vχ

α̃(s(a)).

It is easy to check that this is also the dimension vector of theCI#Zk-representation
S̄⊗CI (CQ)1 (where(CQ)1 is theCI#Zk-bimodule spanned by the arrows inQ.

(3) Theconvolution product̃α ? β̃ is the dimension of the tensor productS̄ ⊗CI T̄ :

α̃ ? β̃(vχ) :=
∑

ϕ∈Stab v∨

α̃(vϕ)β̃(vϕ−1χ).
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Lemma 5. The character ofExtCQ(S, T ) as aZk-representation is

1δST −X(α̃∨ ? β̃ − |α̃∨〉 ? β),

where1 is the trivial character.

Proof. We have the following exact sequence

0 → HomCQ(S, T ) → S∨ ⊗CI T → S∨ ⊗CI (CQ)1 ⊗CI T → ExtCQ(S, T ) → 0,

which also an exact sequence ofZk-representations. Using the definitions of the operations
on the dimension vectors and the fact thatZk-representations are semisimple one obtains
the formula above. �

Note that fork = 1 one obtains the usual formula involving the Euler form because then
X reduces then to taking the length|α| =

∑
v αv of the vector and? reduces to the product

in CI.

Lemma 6. If S̄ = (S, σ) is a CQ#Zk-representation with setting(Q̃, α̃) andq ∈ N then
(S, σq) is a CQ#Z k

gcd(k,q)
-representation. The corresponding new setting will be denoted

by (Q̃q, α̃q). This new setting can be derived from(Q̃, α̃) as follows: Split every vertex
ṽχ ∈ Q̃ in ` = gcd(|vφ|, q) verticesṽχq,0, . . . , ṽχq,`, then identify vertices labeled with
the same character:̃vχq

1,i
= ṽχq

2,i
iff χq1 = χq2. For the dimension vector̃αq we obtain the

formula
α̃q(vχq,i) =

∑
ϕ∈Stab v,ϕq=χq

α̃(vϕ).

Proof. Straightforward. �

Now if S is a semisimple ii-representation of(Q,wφ) we can decomposeS as follows

(S1 ⊕ wφS1 ⊕ · · · ⊕ (wφ)k1−1S1)⊕e1 ⊕ · · · ⊕ (Sp ⊕ wφSp ⊕ · · · ⊕ (wφ)kp−1Sp)⊕ep

whereSi is a simple ii-representation of the twisted weighted quiver(Q,wφki). Choose
correspondingσi to make theSi into CQ#kiZk-representations and let̃αi be the corre-
sponding dimension vector for the quiverQ̃ki . Note thatwφSi has dimension vectorφα̃i,
whereφ acts on the vertices of̃Qki by vχ 7→ (φv)χ.

Theorem 7. The local twisted quiver setting ofS is a quiverQL with one vertexsµi for each
simple(wφ)µSi in the decomposition ofS. The local twist twists the vertices according
towφ. The number of arrows between the verticessµi andsνj correspond to the dimension
of ExtCQ(Sµi , Sjν). TheZk-weights of the arrows correspond to lifts oflcm(ki, kj)Zk-
weights of the character ofExtCQ(Sµi , S

ν
j ) viewed as alcm(ki, kj)Zk = Zk/lcm(ki,kj)-

representation:
δijδµν1−X(φµα̃i

∨ ? φν α̃j − |φµα̃i∨〉 ? φναj)
Proof. This is a direct consequence of the previous lemmas. �

6. ADJUSTED REDUCTION STEPS

The first thing we can ask about the quotient spacegissψα Q is for which twisted weighted
settings this quotient space is smooth. In the case of ordinary quivers this has been done
in [1]. The first author introduces there3 reduction steps, that reduce the complexity of
the quiver while keeping the quotient space invariant. The quotient space of a strongly
connected quiver setting (this means that between every two vertices there is a path in both
directions) is smooth if and only if after applying all possible reductions, the quiver setting
is one of the three below: ��������k ��������k

�� ��������2;; cc.

We will adjust these reduction steps in such a way that the quotient space is invariant under
theGLα o µe-action. As in [1], we will call a quiver that can not be simplified using such
moves, is calledreduced. We will first state the reduction steps and after that we indicate
how they alter the weights.
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(1) Vertex removal. If
∑k
j=1 ij ≤ αv or

∑l
j=1 uj ≤ αv we delete the vertexv.

'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv
b1

ccGGGG
bk

;;wwww

'&%$ !"#i1

a1 ;;wwww · · · '&%$ !"#il

al
ccGGGG

 R̃v
V−→


'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

::uuuuuuuuuu · · · '&%$ !"#il

clk

OO

cl1

ddIIIIIIIIII

 .
(2) loop removal. Uncouple the loops on a vertex with dimension1.

��������1

k

��

 R̃v
l−→


��������1 ��������1

k

��

 .
(3) Loop removal. Uncouple the only loop or marked loops on a vertex with dimen-

sionm ≥ 2 which has a neighborhood as shown in one of the pictures below.

[ '&%$ !"#m

�� ))SSSSSSSS
��

��������1

=={{{{ '&%$ !"#u1 · · · /.-,()*+uk

]
R̃v

L−→

[ '&%$ !"#m

�� ))SSSSSSSS '&%$ !"#m
��

��������1

m 9A{{{ {{{ '&%$ !"#u1 · · · /.-,()*+uk

]
,

[ '&%$ !"#m

}}{{
{{
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSS

]
R̃v

L−→

[ '&%$ !"#m
m

y� {{{{{{
'&%$ !"#m
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSS

]
.

Because the twist is an automorphism of the quiver setting, the reducibility conditions
commute with the twist: if a vertex of a loop is reducible for a quiver setting, then its image
under the twist is also reducible.

For the reduction steps̃Rv
l andR̃v

L this means that we can perform the reductions of all
these loops simultaneously and obtain a new quiver setting with the same twisted weight
extended in the obvious way to the new vertices and arrows. ForR̃v

L them− 1 new arrows
have weightswa + w`, . . . wa + (m − 1)w`, where` is the loop anda the unique arrow
leaving or arriving.

For reduction step̃Rv
V we must take care. If there are no arrows between vertices in the

φ-orbit of the reducible vertexv, then we can again reduce all the vertices simultaneously.
The new weights are the sums of the weights of couples of the original arrows.

If there are arrows between two of the vertices in the sameφ-orbit, then the reducibility
condition on the vertices implies that these arrows are the only arrows that arrive in or leave
these vertices. SoQ is extended Dynkin of typẽAn and we can reduce all vertices except
one, to obtain a one vertex quiver with as weight a multiple of the original weight.

Theorem 8. If (Q,α) is a quiver setting with twisted weightψ and(QR, αR) is a reduced
setting obtained from(Q,α), then there is a reduced twisted weightψR such that

gissψαQ = gissψR
αR
QR

From now on, we only consider reduced settings.

7. REDUCED SETTINGS FOR WHICHgissαQ IS SMOOTH

BecauserepαQ is a linearGLα o µe-representation the quotient is a cone, so its worst
singularity is situated in the origin. This has the following easy to check consequences:

• gissψαQ is smooth iff the minimal number of graded generators ofC[gissψαQ] equals
the dimension ofgissψαQ.

• If gissψαQ is smooth thengissψαQ
′ is smooth for all subquiversQ′ that are closed

under the twist, and their reductions.
• If gissψαQ is smooth thengissψL

αL
QL is smooth for all local quiver settings(QL, αL)

and their reductions.
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These consequences can be used to give a complete classification of all twisted weighted
quiver settings with a smooth quotient space. The trick is to rule out all other settings by
looking at local quivers or subquivers and their reductions which are already known to
contain singularities. In order to do that we first need to investigate some simple cases.

Lemma 7. Suppose thatC[X1, . . . , Xk] has a faithful action ofµe on it and the weight of
Xi iswi. ThenC[X1, . . . , Xk]µe is a polynomial ring if and only if for every prime power
pm|e at most one of the weights is not trivial modulopk.

Proof. As the ring of invariants has the same dimension, it is smooth if and only if it is
generated by the functionsXe/ gcd(e,wi)

i .
First lete = pm for some prime and suppose thatw1 andw2 are non-trivial. Up to an

isomorphism ofµe we can assume thatw1 = 1. ThereforeXpm−w2
1 X2 must be a generator

and the ring of invariants cannot be regular. The reverse implication is trivial.
The casee = pn1

1 . . . pnt
t follows from the Chinese remainder theorem. �

Lemma 8. For

Q := ��������1

w1
((

w2

  oo // ��������1

w1

hh

w2

``

the only weights(w1, w2) that makegissψαQ smooth, are the trivial weights (i.e.2w1, 2w2 =
0 mod e).

Proof. The ring of polynomial functionsC[issαQ] is a free module of rank 2 over the
polynomial ring

R = C[X11, X22, X12 +X21]

The twisted weight gives an action ofµe on this ring with weights2w1, 2w2, w1 + w2. If
one of the weightsw1, w2 is non-trivial then the ringRµe is not polynomial because of
lemma 7. As the generators ofRµe form a subset of those ofC[gissψαQ] the latter cannot
be smooth either.

The twisted quiver setting

��������1

a1

''

a2

  oo // ��������1

b1

gg

b2

`` with the action ofµ2 =< ζ >,

whereζ switches the 2 vertices and mapsai to bi is smooth. The twist mapsXij = aibj
(i.e., the generators ofC[issα Q]) toXji and this means thatC[gissψα Q] is given by

C[issα Q]µe = C[X11, X22, X12 +X21, X12X21]

and asX12X21 = X11X22, we obtain thatgissψα Q is justA3. �

In order to use the technique of local quivers we also need a lemma concerning the
dimension vectors of simples:

Lemma 9. If (Q,α) is a strongly connected reduced quiver setting andv is the vertex
with highest dimension then bothissαQ and issα−εvQ contain simple representations. (εv
assigns1 to v and0 to the other vertices)

Proof. This is a straightforward combination of the definition of reducedness in [1] and the
characterization of dimension vectors of simple quiver representations in [8]. �
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Let us now investigate the structure of the quotient spacegissψαQ. Because this quotient
factors throughissαQ, we can delete all arrows that are not contained in any cycle.

First we assume that(Q,α) is strongly connected.

Theorem 9. If a strongly connected reduced twisted weighted quiver setting is smooth then
either the untwisted unweighted setting is smooth or it is equal to

Θ := ��������1
''""oo // ��������1gg bb

with trivial weights.

Proof. If the setting is only weighted and not twisted, then the setting can only be smooth
if the unweighted setting is smooth: if the primitive cyclec is a generator forC[issαQ] and
its weight is akth root of one, thenck must be a generator forC[gissψαQ]. The number of
generators ofC[gissψαQ] is at least as big as that ofC[issαQ]. If C[issαQ] is not smooth and
C[gissψαQ] has the same dimension, the latter cannot be smooth either.

Now suppose(Q,α,w, φ) has a nontrivial twist.
If α = 1, we discern two cases

• All cycles run through all the vertices ofQ. In that caseQ looks like

Θp,q =

��������1 +3 ��������1

�#
??

?
??

?

��������1

;C��� ��� ��������1

{� ��
���
���������1

[c???
??? ��������1ks

wherep is the number of vertices andq ≥ 2 the number of arrows between2
consecutive vertices. The order ofφ must be a divisor ofp.

The number of generators ofC[iss1Q] is qp. The twist permutes these genera-
tors and for every orbit we have at least one generator ofC[gissψ1Q]: the sum of
the elements in the orbit raised to the appropriate power in order to let the weight
vanish. Because the dimension ofgissψ1Q is p(q − 1) + 1, it can only be smooth if
the number of orbits is smaller thanp+ 1. However the number of orbits is bigger
than(qp − q)/p+ q because an orbit has at mostp elements and there are at least
q fixed cycles. This condition implies thatp = 2, 3 andq = 2. If p = 3 we can
find more generators: take an orbit of order3, sum the three products of 2 factors‘
and raise it to the appropriate power.

From lemma 8 we know that the only possibility forp = 2 is Θ := Θ2,2 with
trivial weights.

• There is a cycle that runs not through all the vertices ofQ. This means that there is
a strongly connected full subquiver not containing all vertices. LetQM be maximal
in the subset of all such subquivers. Consider the local quiverQL coming from the
representation that assigns ones to the arrows inQM and zeros to the other arrows.
The number of vertices of this quiver is smaller than the original quiver and the
local twist fixes the vertex coming fromQM .

If this vertex can be reduced then it has exactly one arrow arriving and one
arrow leaving. These two arrows must connect the vertex to two different vertices
otherwiseQM was not maximal. This means that the twist fixes these vertices as
well and after the reduction no other vertex can be reduced anymore.

So in all cases the local quiverQL reduces to a reduced quiver with less vertices
and at least one vertex that is fixed by the local twist. Therefore it cannot beΘ and
we can use induction on the vertices.

Finally, suppose that(Q,α) is reduced andα 6= 1. Let v be a vertex with the highest
dimension and consider the decomposition(Q,α − εv) ⊕ (Q, εv). Lemma 9 implies that
there exist indeed simple quivers with dimension vectorα − εv and that the number of
arrows between the two vertices in the local quiver is bigger than one. The local quiver is
thus untwisted and reduced (up to loops). �
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If (Q,α) is not strongly connected then we can assume that there is at most one com-
ponent that is smooth because we can change the smooth parts to a quiver with one vertex
and a number of loops equal to the dimension of the smooth parts. The action of the auto-
morphism on the smooth part can be diagonalized to give weights on the loops.

If (Q,α) contains two or more componentsQ1t· · ·tQs , then we will prove thatgissψαQ
cannot be smooth, unless the twisted weight acts trivially on allissαQi except one. By the
previous paragraph, we can take a componentQi such that one of the other components is
not smooth. If the finite action on this componentissαQi is not trivial, then there exists a
representation not fixed bywφ. BecauseQi is reduced,issαQi contains simples (lemma 9)
and we can choose a simple with trivial stabilizer. Look at the local quiver corresponding
to the direct sum of this simple with the trivial simples of the other components. This
setting(QL, αL) is untwisted and it contains the same components as the original quiver
exceptQi. Because one of the components is not smooth,gissψL

αL
QL = issαL

QL is also not
smooth.

8. GRADED CAYLEY-HAMILTON ALGEBRAS

Let us switch to the setting whereA is a graded Cayley-Hamilton algebra and where we
are interested in the trace preserving properties of this algebras. Recall from [10] that an
nth Cayley-Hamilton algebra is a finitely generated algebraA equipped with a trace, that
is aZ(A)-linear maptr : A→ Z(A), such that for alla, b in A

• tr(ab) = tr(ba),
• tr(1) = n,
• χn,a(a) = 0,

whereχn,a(X) is thenth Cayley-Hamilton identity expressed in the traces of powers of
a. The matrix algebraMatn×n(C) with the natural trace is the simplest example of such a
Cayley-Hamilton algebra.

Analogous to the previous situation we define the representation varieties:

Definition 6. LetA ∈ CHn be a graded Cayley-Hamilton order. Then we define

(1) trepssn A for the set of semistable trace preserving representations.
(2) gtrepn A = proj C[trepn A] = trepssn A//C∗.
(3) gtissn A = gtrepn A//GLn.

Again, gtissn A classifies the isoclasses of trace preserving (semistable) semisimple
representations up to graded isomorphism.

Similar to the observation that thetissn A can be seen asspec Z(A), we have that
gtissn A exactly coincide withproj Z(A).

The only extra feature we encounter here, is that the local structure of a Cayley-Hamilton
algebra is described by marked quivers. These are quivers of which some of the loops are
marked. Marked loops are represented by traceless matrices. If we introduce weights and
twists this situation may lead to loops`1, . . . , `s on different vertices in the same orbit of
the twist. As these loops originate from a bigger trace 0 representation, this means that the
sum of the traces of̀1, . . . , `s is 0. This situation can be undone by adding to the (twisted
weighted) local quiver setting an extra vertexv with dimension 1 ands− 1 loops onv and
marking the loops̀1, . . . , `s.

9. NON-COMMUTATIVE BLOW-UP OF THE QUANTUM PLANE

In the commutative case, a blow-up̃A2 of A2 in the origin can be seen as the variety
V(xY − yX) ⊂ A2 × P1, with x andy the affine coordinates andX andY the projective
coordinates. The coordinate ring ofA2 is given byC[x, y] and we can extend this ring to
the graded algebra

R = C[x, y]⊕ (x, y)t⊕ (x, y)2t2 ⊕ . . . � � // C[x, y][t].



16 RAF BOCKLANDT AND STIJN SYMENS

R is generated by two elementsx, y of degree zero and two elementsX = xt, Y = yt
of degree one, obeying the homogeneous relationxY − yX. We see that̃A2 = proj R

and that the projection morphism̃A2 // // A2 is given by the inclusion (in degree zero)
C[x, y] � � // R.

We will try to make a non-commutative equivalent of this by looking at a similar con-
struction, but now starting with the quantum planeCq[u, v] at q = −1 instead of the affine
plane. With

B = Cq[u, v] = C〈u, v〉/(uv + vu)
and centerZ(B) = C[u2, v2], we can associate the graded algebra

A = B ⊕ (u, v)t⊕ (u, v)2t2 ⊕ . . . � � // Cq[u, v][t].
This algebra can be seen as the non-commutative blow-up in(0, 0) of the ringB. A is
generated by two elementsu andv of degree zero and two elementsU = ut andV = vt
satisfying a number of relations and withu2, v2,U2 andV 2 central homogeneous elements.

Let us now concentrate on the closed orbits over the point(0, 0). For those, eitherU2 or
V 2 must be invertible and we consider the case whereU2 is invertible.

If we take the graded localization atU2, we obtain

A′ = AgU2 = C−1[u,w][U,U−1]

wherew = V U−1. This means we want to look at the positively graded ring

A′ =
C〈u,w,U〉

(uw + wu,wU + Uw, uU − Uu)
with the degree ofu andw equal to zero and the degree ofU equal to 1. We need to check
whethertrep2 A

′ is smooth in the closed orbits lying over(0, 0) ∈ A2. Representatives of
these orbits are of one of the following types:

(1) simple type:ρs sending(u,w,U) to([
0 0
0 0

]
,

[
a 0
0 −a

]
,

[
0 1
b 0

])
(2) semisimple type:ρss sending(u,w,U) to([

0 0
0 0

]
,

[
0 0
0 0

]
,

[
a 0
0 −a

])
with a, b ∈ C∗. trep2 A

′ is of dimension 6, so we need to verify that the tangent space to
trep2 A

′ is of dimension 6 in the indicated points. In order to compute the tangent space,
we work inM2(C[ε]) and consider

us = ρs(u) + ε

[
αus βus
γus −αus

]
, ws = ρs(w) + ε

[
αws βws
γws −αws

]
,

Us = ρs(U) + ε

[
αUs βUs
γUs −αUs

]
.

The conditions on(us, ws, Us) are the defining relations ofA′:

usws + wsus = wsUs + Usws = usUs − Usus = 0

and withε2 = 0, this leads to

αus = 0, γus = bβus , αUs =
γws + bβws

2a
,

and with 3 linear relations, this yields a 6-dimensional tangent space. A similar construction
(and notation) lead for the semisimple points to

βuss = γuss = αwss = 0.

which again leads to a six dimensional subspace and the smoothness oftrep2 A
′ is verified.

We wonder how the (twisted weighted) local quiver in these orbits look like. The stabi-
lizer subgroups ofGL2 × C∗ are the following:
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• in simple pointsx the stabilizerGx looks likeC∗ × µ2 where the generator ofµ2

is given by ([
1 0
0 −1

]
,−1

)
• in semisimple pointsx the stabilizerGx looks like (C∗ × C∗) o µ2 where the

component of−1 ∈ µ2 is embedded by([
0 δ
η 0

]
,−1

)
.

Proposition 2. The (weighted) local quivers are as follows:

(1) In simple points they look like

��������11
##
cc with action ofµ2.

(2) In semisimple points they look like

��������1
**oo // ��������1jj ��������1 1

{{
with the action ofµ2.

Proof. In a simple pointx, the action of the stabilizerC∗ × µ2 on a tangent vector is given
by [

1 0
0 −1

]
·
([

0 βus
bβus 0

] [
αws βws
γws −αws

]
−

[
αUs βUs
γUs −αUs

])
·
[
1 0
0 −1

]
.

The action on the individual coefficients can therefore be expressed by

βus 7→ −βus , αws 7→ αws ,

βws 7→ −βws , γws 7→ −γws , βUs 7→ βUs , γUs 7→ γUs .(3)

We now need to calculate the submodule corresponding to the tangent space of the orbit of
x. This can be done by calculating

(4) (1 + εtdeg)
(

rr
2 + ε

[
x1 x2

x3 x4

])
Z

(
rr
2 − ε

[
x1 x2

x3 x4

])
with Z = ρs(u), ρs(w), ρs(U) andε2 = 0. This result in the space([

0 0
0 0

]
,

[
0 −2ax2

2ax3 0

]
,

[
bx2 − x3 t+ x1 − x4

b(t+ x4 − x1) x3 − bx2

])
,

which under the action ofGx has the mapping

x2 7→ −x2, x3 7→ −x3, t 7→ t, (x1 − x4) 7→ (x1 − x4)

and by identifying variables, we can remove line (3), to arrive at the desired twisted
weighted local quiver setting.

In semisimple points, the action of(C∗ × C∗) o µ2 on a tangent vector is given by[
0 δ
η 0

]
·
([
αuss 0
0 −αuss

] [
0 βwss
γwss 0

]
−

[
αUss βUss
γUss −αUss

])
·
[

0 δ−1

η−1 0

]
which leads to

αuss 7→ −αuss, βwss 7→ δγwssη
−1, γwss 7→ ηβwssδ

−1,

αUss 7→ αUss, βUss 7→ −δγUssη−1, γUss 7→ −ηβUssδ−1.(5)

If we do the calculation of (4), we have the space([
0 0
0 0

]
,

[
0 0
0 0

]
,

[
at −2ax2

2ax3 −at

])
,

and the action ofGx yields

t 7→ t, x2 7→ −δx3η
−1, −ηx3δ

−1.
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This makes us delete the variables of (5) and the remaining variables with the action on
them can be encoded in the twisted weighted local quiver setting

��������1
**oo // ��������1jj ��������1 1

{{

with the action ofµ2. �
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