THE LOCAL STRUCTURE OF GRADED REPRESENTATIONS

RAF BOCKLANDT AND STIJN SYMENS

ABSTRACT. In this article we show that the local structure of the projective representation
space of a graded algebra can locally be described by quivers with an automorphism of their
path algebra, a twisted weight. We describe the quotient spaces of these twisted weighted
quiver settings and determine which of them are smooth.

1. INTRODUCTION

Given a finitely generated algebrhover C one can look at the set ef-dimensional
representations

rep,, A := {p: A — Mat, «,(C)|p is an algebra morphisjn

This has the structure of an algebraic variety and it has an addit@nahction on it by
conjugation. One can take the algebraic quotient of this action to obtain a new varjety
that classifies all close@L,,-orbits or equivalently all isomorphism classes of semisimple
representations.

If Ais aformally smooth algebra, i.e. the kernel of the multiplication Map A — A
is a projective bimodule, therep,, A is a smooth variety and one can describe étede
local structure of the quotient map by means of quivers [6], [5].

A quiver @) is a directed graph consisting of a set of vertiGgsand a set of arrows
Q1. The maps,t : Q1 — Qo will denote the heads and the tails of the arrows. The path
algebra of a quiver is the vector space spanned by all paths(including the vertices
considered as paths of lengthequipped with concatenation as multiplication.

A dimension vectory is a map from@, to N and a coupld@, ) of a quiver and a
dimension vector is called a quiver setting. The space af-@limensional representations
is denoted byep Q.

rep,Q := @ Matah,(a,) X Qg (a) ((C>
acA
To the dimension vectar we can also assign a reductive group

GLo = ] GLa,(C).
vEQRo
An element of this groupy = (gv)v¢cq,. has a natural action aep,Q:
W= (Wa)aeA7 W9 = (gt(a)Wags_(i))aeA;
and the quotient of this action is denotedityy, Q.
Theorem 1 (Le Bruyn) If rep, A is smooth inp, wherep corresponds to a semisimple

representationS? @ --- @ 52 then there is a quiver settin@),, a,,) such that there
are étale neighborhoods making the following diagram commutative.

GL, xg¢L, rep,@ ——=rep, A

| l

isSq () — > iss,, 4
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This quiver setting is called the local quiver setting. Its vertiegs. ., s; correspond to
the simplesS, ..., S, and the number of arrows betweenands; is

dim Ext'(S;, S;).

Quiver settings provide a powerful combinatorial tool to study the quotient map locally.
One can find the smooth points of the quotient [1] and the types of singularities that can
occur iniss, @ [2].

If p is not a smooth point of the varietgp,, A the formalism of local quiver settings
breaks down. In this paper we explore the possibility to save some of the power of this
approach using twisted weighted quiver settings. The ideas presented here are an extension
of [4].

Instead of looking atep,, A which contains singularities, one can try to find a resolution
of rep,, A: a surjectiveGL,,-equivariant mag/ — rep,, A such thatV’ is a smooth variety
and the generic fiber consists of one point. In general this resolution is not an affine variety
S0 it cannot be seen as a representation space of an algebra, but in some cases this resulotion
can be obtained by a non-commutative blow-up.

If A has an ideai one can construct the graded algebra

A=Adivile....

The ring of polynomial functions over the representation spaggA has also a positive
grading and one can look at the projective space it desagileps A. If this space is smooth
one has found a resolution adp,, A.

The local structure of such a resolution does not always reduce to ordinary quivers,
but one needs some extra structure: an automorphism on the path algebra of the quiver.
A quiver setting together with such an automorphism is called a twisted weighted quiver
setting.

The main part of this paper will investigate how one can reduce the problem sketched
above to these twisted weighted quiver settings and study the finite group action, induced
by the automorphism on the quotient spasg(@.

The paper is structured as follows. In section 2 we introduce the graded representation
spacegrep,, A of a graded algebrd. In section 3 we calculate the stabilizer of a semisimple
representation, given its decomposition (theorem 2). In section 4 we define the notion of a
twisted weighted quiver setting and the corresponding finite group action on its representa-
tion space. This allows us to formulate thile local structure in terms of representation
spaces of twisted weighted quiver settings.

The next three sections focus on the geometry and combinatorics of twisted weighted
quiver settings alone. First we show that the local structure of twisted weighted quiver
settings can again be seen as twisted weighted quiver settings. These new local twisted
quiver settings can be calculated using adapted versions of the dimension vectors and the
Euler form. Secondly we modify the reduction steps defined in [1] to the twisted weighted
case. These reduction steps enable us to simplify the settings without changing the quotient.
Finally we give a classification of all twisted weighted quiver settings whose quotient space
is smooth.

In the last two sections we show that the theory developed above can be easily trans-
ferred to the theory of Cayley-Hamilton [10] algebras. We illustrate this with an example:
the quantum plane gt= —1.

2. GRADED ALGEBRAS AND REPRESENTATION SPACES
ConsiderA a positively graded algebra

A:(C<£E1,...7£L'm>/(.[):A()@Al@AQGB...,

where! is an ideal of homogeneous polynomials in the variablesvith the degree of;
being equal tal;.
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The coordinate ring of the representation spé&tjesp,, A], looks like
Clrep,, A =C[Xi=1,...,mk,l=1,...,n]/(I')

which can also be seen as a graded algebra. Indeed )&4ahill have degreel; and the
ideal I’ is spanned by homogeneous polynomials which originate from the homogeneous
polynomials in the ideal of A. ThereforeClrep,, A] has aC*-action working on it defined
by
t-f=tYf,

wheret € C* andf € C[rep,, A] has degreé. This action induces &*-action on the
maximal ideals and thus amp,, A.

As C[rep,, 4] is graded, we can defineoj C[rep,, A] and will denote this bgrep,, A.

Definition 1. A representatiorp : A — M, (C) is called semistablaf there exists an
f € Clrep,, A] such that

(1) fis homogeneous and of degred) (i.e., a semi-invariant for th€*-action).
(2) fisGL,-invariant.
(3) f is non-vanishing om.

We writerep:® A for the set of all semistable representationsiof

Remark 1. If p : A — M, (C) sends all generators to nilpotent matrices, theiis
not a semistable representation. The converse is not true in general, but does hold if all
generators have degree bigger than zero.

With the definition ofrep;® A, we can writegrep,, A as an algebraic quotient:
grep,, A = proj C[rep,, A] =rep;® AJ/C*.

The action ofGL,, on rep,, A induces an action oL,, on grep,, A and we denote the
algebraic quotiergiss,, A = grep,, A//GL,,. This summarizes in the diagram

/c

repi® A ——= grep, A

/GLy /GLy

/C

. ss .
iss;” A ——— giss,, A

which is commutative since the action©f commutes with the action @L,,.
On the other hand, we can look at the diagram

repsf A 5 rep, A
/GLy, /GLy,

. ss .
iss;’ A C— > iss, A

and check whether the inclusionief;® A iniss,, A is well defined. We find:

Lemma 1. A GL,-orbit in reps® A is closed if and only if the correspondirid.,,-orbit in
rep,, A is closed.

Proof. This follows directly from the fact that semistability conditionGs,,-invariant. [

Lemma 2. With a¢ € giss,, A corresponds a semisimpld, € rep:® A, unique up to the
action ofGL,, x C*
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Proof. If the orbit M ¢t~ is closed, then als@ - M)®L» is a closed orbit. The only thing to
verify is that for every 1 parameter subgrougt)):ec-,

p = lim (9(2),1") - M

is not a semistable representation. Suppess semistable, then there exists #ne

C|[rep,,A] homogeneous of nonzero degree wjttp(z1), ..., p(zm)) # 0. This means
that among the;;, at least one has(z;) # 0 andd; > 0, but this contradicts the definition
of p. |

Definition 2. A semistable representatiaif; is calledgraded isomorphito a represen-
tation M if there exists & such that

My = (- M
This definition and lemma 2 gives:

Proposition 1. giss,, A classifies the (semistable) semisimplelimensional representa-
tions up to graded isomorphism.

3. STABILIZERS OF SEMISIMPLE POINTS
We have a nice characterisation faf € rep,, A to be semistable.
Notation 1. SupposéV! is a representation ofl. We write
Aute- (M) = {¢ € C* | (- M 2= M},
where the action of on M is given bypeas (z;) = (% par(z;).
Lemma 3. Let M be a semisimple representation4f ThenM is semistable if and only
if Autc- (M) is finite.

Proof. Let M be a semistable representation 4f This means there exists gh
homogeneous an@L,-invariant, such thaf # 0 on M. Suppos€ € Autc-(M), then
¢-M = M and asf is GL,,-invariant, we have?s f = f. Sincef is nonzero onV/, this
yields( to be ad;-th root of unity. Therefordutc- (M) is finite.

Let M be a semisimple representation that is not semistédHles,, 4] is a finitely
generated algebra and we dengtg”_, the (homogeneous) generators (wittthe degree
of ;). Then(-M = M ifand only if f;(M) = f;(¢- M) foralli € {1,...,k}. fi(¢-M)
can be written ag® f;(M) and asM is not semistable, for both the casés > 0 and
dy = 0, we have no restriction on thie O

As we are interested in tHtale local structure ofiss,, A, we want to apply the Luna
slice theorem [9] to the quotient map
reps® A ——sgiss, A,

and therefore we will supposep?® A to be a smooth variety.
A first problem to encounter is the structure of the stabilizer under the acti@n,0f C*
of such a semisimple representation. First, we look at the simple situation:

Lemma 4. Supposes € rep;® A is a simple representation of. TheGL,, x C*-stabilizer
of S is isomorphic to the grouf®* x 1. where the cyclic group,. has generator

(9¢,¢) € GL, x C*

where( is a primitive root of unity and
(1) gc =diag(l,..., 1,0 ¢, COT L ¢,
—— —— N AL N

mo mi Me—1
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Proof. Write Autc-(S) as< ¢ > with ( =
n.gcd (degz;))). As¢ - S = S, there exists g € GL,, unique up toC*, such that

S =(-gSg~'. SinceS = g¢Sg—° andS is simple, we know by Schur’s lemma thgtis

a scalar and we can chooge = T1,. But then,g can be seen as a group representation of
Z., where all simples are 1-dimensional and therefpiisomorphic to a diagonal matrix
gec- As (g¢)© = Ty, we have that all elements on the diagonaleatk roots of unity, which
can be permuted in the order we want. O

The proof indicates that thin,, . . ., m._1) are determined up to cyclic permutation.

Definition 3. SupposeS has a stabilizer as in lemma 4, we say ti$ahasperiode and
matrix type(mg, ..., Me—1).

Let S be a semisimple (semistable) representation Witt:- (S) = p. =< ¢ >, then
for each simple componesst, one can compute

k; =min {k € ZT\ {0} | (¥ - S; = S;}.

In order to haveS = (S, the components;, ¢S;,¢%S;,...,¢*~1S; have to occur an
equal number of times in the semisimple decompositiofi.dflence,S can be written as

p
S — @(S@ﬁl ®(CS)%% @ .. (Qki—lsi)@@

=1

The isomorphism¢®: - S; = S; can be expressed with the terminology of definition 3.
SupposeS; has periode; and matrix type(m37...,mgi,1), with the generator of:.,
denoted by;. Becaus&®: = ¢! with I; = e;k; /e, this yields

Si = ¢Figl Si(ga )™

with g¢. = g¢, the diagonal matrix (1) of lemma 4. We will use the notation

gi :=diag(l,...,1,(,..., ¢, .., com e
—— —— ~—_—

i i
me. 1

For the matrixg; then holds thay
We are now ready to determlne the stablllzeSof

Theorem 2. LetS be ann-dimensional semisimple representation witltc- (S) =< ¢ >
and decomposition

D
S = @Si@ﬁi @ (Csi)eéﬁqz ... (Cki_lsi)@m

i=1
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with k;, g; and~y,; as defined before, then tijecomponent of the stabilizer is isomorphic to

kiiBi ]
9i ® ’Uﬁ,
,,,,,,,,,,,,,,,,,,,,,, O
9: @,
0 ,,,,,,,,,,,,
GLo - | KkiviBBi S
O ,,,,,,,,,,,,
9i @ ’U@
g @ Ts; 0
kl kp
. /_H /_/% . . . .
witha = (61,..., 061,02, --,8p=1,0p, - - -, Bp) @and the embedding @, in GL,, is given
by the block diagonal matrix
_GLﬁl ((C ® /U’Yl) i
GLﬂl (C ® /ﬂW’l )
GLg, (C®1,,)
L Glg, (C®T,,).
Proof. The theorem follows directly from the right choice of basis $grand(.S;. Choose
the base change betwegnand(S; be exactly determined hy;. ]

We are now one step away from tkéale local description of: the introduction of
twisted weighed quiver settings

4. TWISTED WEIGHTED QUIVERS AND THE ETALE LOCAL STRUCTURE OFgiss,, A

In the introduction we sketched how one can use representations of quivers to describe
the local structure os,, A (theorem 1). In this section we will prove an analogous result
for the description of the local structure gfs,, A, whereA is a graded algebra. Before we
can do this we introduce the useful conceptvaitsandweights

Consider the path algebf&? of a quiverQ. We now provide every path i@Q with
degree the length of the path. This makég in a graded algebra. We distinguish 2
important types of graded automorphisms (i.e., algebra morphisms that send homogeneous
elements to homogeneous elements of the same degr€é):of

(1) Atwist¢ is a couple of invertible mapg, : Qo — Qo and¢; : Q1 — @1 such
that
e VaeQi: ¢o(h(a)) = hi¢1(a)) andeo(t(a)) = t(¢1(a))
eVkeN: ¢hla)=a < h(é¥(a)) = h(a) andt(¢¥(a)) = t(a).
Every twist induces an automorphism@f), which we also call &wist
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(2) A weightis a mapQ; — C* and this gives an automorphism @t) by mapping
every vertex on itself and every arrawon w(a)a. This automorphism will also
be called a weight.

We can see twists and weights as basic building blocks of graded automorphi€Q<wbf
finite order:

Theorem 3. Every graded automorphism &fQ of finite order can be conjugated to the
product of a weight and a twist. Moreover, this weight and twist commute.

Proof. Suppos&? hasp vertices and supposge a graded automorphism @fQ of finite
order. Denote by/;; the vector space spanned by all paths fticmj, that is,

‘/;‘j = (eiCer)l.

The action ofy then sends &, to aV},; and we can find a partition & := {V;; |4,j €
{1,...p}} corresponding to the orbits of this action. Choose a set of representatives for the
orbits of this action. For each of these representatigg8(Q)¢; )1, we can find the smallest

k such that)*(e;CQe; )1 = (e;CQe;)1. Choose now a basis &f; that diagonalizes this
action ofy* on Vi; to a matrixA;; and letB;; be a diagonal matrix such tthfj = Ay
(remark thatB;; has roots of unity on its diagonal). Every other splgec S can be seen
asy™V;; for some representative. Choose a basi¥jinsuch that the mag' on Vij is

given by the matrixBﬁj. But then we have chosen a basis (61Q); for which ¢ maps

every basis elementto a multiplew, of another basis elemegta) (with w, one of the
elements on the diagonal of the correspondihig):

P(a) = w, - §(a).

So up to conjugationy can be seen as the product of the weight a — w,a and the
twist ¢ (¢ is a twist since thel,; are diagonalized). This construction shows thé&t) and
w(¢(a)) coincide, and thereforg andw commute. O

Remark 2. From the construction of the proof we can conclude thét) is ane-th root
of unity if the order of the automorphism is givendyy

Remark 3. Another consequence of the construction of the proof is that all arrows lying
in the same orbit undep have the same weight. However these weights are not uniquely
determined, but depend on the choice3pf.

From now on we suppose that the automorphisifC@fis in a twisted weighted form
1) = w¢ and lete be the order ofve.

Definition 4. With the previous notation, we call = w¢ a twisted weight

w and¢ define an action ofi. on CQ and we want to look at this action as an action
onrep, @ for a quiver settingd @, «). (Q, «) is said to becompatible with this actionf
Qg (v) = Qv for all verticesv. This implies thatep, @ also has a corresponding action
of . on it. The action ofu. does not commute witGL,, as¢ can interchange vertices.
We do have thaGLi = GL,, so to describe the total action we must take the semidirect
productGL, >y s, where the multiplication is defined by

(91,m1).(92, m2) = (1w @™ (ga), m1ma)

with m; andms integer representatives pf.

We will call the linear spaceep,, @ with thisGL,, x4 1..-action awisted weighted quiver
representation spaceBecauseGL, x . is a semidirect product of two reductive groups
we can take the quotient by first taking the quotient of@lhg -action and then the quotient
by the groupu.. We denote this quotient kyiss’ Q:

Clgiss? Q] = Clissq Q.
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The precise action dfy, ) € GL, x4 pe ONn the representatiofp,)qcq, € rep, Q iS
given by
(9:7) - (Pa)acq, = ((<w¢i(a))igqﬁi(t(a))pqﬁi(a)g;il(h(a)))
and by the previous we can write
giss”?Q = rep,Q//(GLo X wg k)

We can use these twisted weighted quiver settings to describe the local structure of
giss,, A:

a€Q1

Theorem 4. For a smooth semisimple poiftf € rep’® A, we denote the normal space
Tarrep,, A/Tar ((GL, x C*) - M) by Njs. There exists a twisted weighted quiver setting
(Q, a, ¥) such that

Stab ps = GLy Xy pte aNd Ny & C = rep,, Q.

Proof. From section 3 we know that a semisimple representation always can be written as

P
M= S & ((S)% @...eChts)®s
i=1
and theorem 2 gives us the exact behaviour of the stabilizer, which is isomorHig to,,
tte- The normal spac&/ with respect to thé&L,,-orbit of M is given byExt(M, M) and
can be identified byep,, @ for a certain quiver) and dimension vectax (see [5]). AsM
is semistable, we know that the extra actiorCsfis never trivial and that

Tar(GLy, - M) & C 2 Thy((GLy, % pre) - M)

and this yieldsV = C & Ny,.

Q is constructed in such a way th@t); = Ext(@j S;, EBj S;) (where the direct sum
varies overall simple components) and we get that the path algélgpais given by the
tensor algebra

CQ = Ter | PExt(S:, S))

4,3

with & = le k; the number of vertices @. The action of the element
0 9 @Mz, - 0
p . .
0 0 . :
D| _ ¢
i=1 : g @7,
9i ®@ T, 0 e 0
then determines a quiver automorphigtrasy (Ext(S;, S;)) = Ext(¢:S;, ¥.S;). O

Definition 5. We call(Q, «, v) from the previous theoremtaisted weighted local quiver
settingof ¢ and will denote it by Q¢, cve, ¢ ).

If we now apply the Luna slice theorem [9], we arrive at

Theorem 5. Let& be an element gfiss,, A, such that)/, is smooth irrep;* A. Then, for
all t € C, there is a neighborhood @€, t) € giss,, A x C, which isétale isomorphic to a
neighborhood 0 € giss’¢ Qc.

To draw twisted weighted quiver settings we will use the following conventions.

(1) The dimension vector will be written inside the vertices.

(2) Theweightw associatesv, € p. to each arrows and weights will be denoted
by their power of¢ (i.e., integers front) to e — 1) and will be depicted in a small
square on the arrow they correspond with. Weight 0 will not be depicted.
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(3) The action of theawist ¢ permutes the vertices and the permutation will be indi-
cated by dotted arrows. The waypermutes the arrows is fully determined by the
permutation of the vertices, as arrows in the safvarbit always have the same
weight.

5. LOCAL SETTINGS FOR TWISTED WEIGHTED QUIVER SETTING

Like in the case of quivers, twisted weighted quivers are closed wdkrslicing. This
means that if we have a twisted weighted setting and we look dtthe local structure of
gissiﬁ @ around a poing, then this can described by a neighborhood oﬁlr@gissﬁg Qe
of a new weighted twisted quiver setting.

We illustrate this with an example:

Example
Let us look at the weighted quiver setting

A ‘j@ B with the action ofu,

(A and B are4 x 4-matrices) and we want to look in a neighborhood of a semisimple
representatiop, with two componentg; @ (p;

(el o [e(ln

The stabilizer then can be given by the generator

0 0 X O

0 0 0 A

0 ig 0 O

and in that casg can be written in the following basis:

01 0 0 0 1 0 0
1 0 0 O -1 0 O 0
A=lg 00 —1| @ B=1¢g o o -1
0 01 O 0O 0 -1 0

If we calculate the normal spacdé (based on the orthogonal complement of the tangent
space to the orbit in the total tangent space), we can Wriite 18 variables in the following
way:

c1 01 f1 ay e —0y —fo —ay
01 —02+03 1 as f2 03 ¢ a2 —h
€1 —by k1 —o1| | —e2 b1 ) g2
by e2 o01—02+03 ki by —e1 o3 ko

The action of the stabilizer as in (2) then result in the following twisted weighted local
quiver;

with weights ingy.
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The local twisted weighted quiver setting that occur in a given twisted weighted quiver
setting can be calculated using the theorysofmorphism invariant representatians

Following [3], we define an isomorphism invariant representation (ii-representation) of
a twisted weighted quiver setting as a representafi@uch thatS“? = S. Leto be an
automorphism of' corresponding to that isomorphism:

ps(a)o = ops(we(a)).
Note thato is not uniquely defined but for two choices, o2 we have tha’ma;1 S
Autc@S. This enables us to choosesuch that it has the same ordenag.
If k& is the order ofw¢ then we can use to define & -action onS. This o makesS
into a representation of the smash product

CQ#ZLk,
and the category dEQ#Z,-representations is equivalent to the category of couples of an

ii-representation of) and ac.
We will also need a straightforward adaptation of a result from [3] and [11]:

Theorem 6. The algebraCQ+#Z,. is Morita equivalent to the path algebra of a new quiver
Q. This new quiver is constructed in the following way:
o For everyg-orbit of vertices? C Q there arek/[v?| vertices inQ, parametrized
by the characters d§tab v. Denote these vertices by, x € Stabv".
e For everyg-orbit of arrowsa® C @, there are|Stab s(a)||Stab ¢(a)|/|Stab a|
arrows inQ, parametrized by couples:, x2) € Stab i(a)" x Stabt(a)” such
thatXl |Stab a = w(a) |Stab aX2 ‘Stab a-
If & is the dimension vector of @Q-representation then the correspondifig)+#7Z;, rep-

resentation is
=Y

X EStab vV
Moreover as & -representation its character is determined by

X(a):= Y a(dy) > X

9 €Q PELLY ,plstab v =X
Remark 4. This new quiver is identical to the one quiver defined by L. Le Bruyn]in

Now suppose that' andT are two simple ii-representations @, w¢) and leto and
7 be two automorphisms that make= (S,0) andT = (T, 7) into CQ#Z;, represen-
tations. We denote the dimension vectorsSahndT' by o and 3 and the corresponding
Q-dimension vectors by and.

We can now define three operations on these dimension vectors. To decrease the notation
load we will denote the semisimple subalgebraCd) generated by the vertices 6y
instead of(CQ)o.

(1) Thedual dimension vecto&" is the dimension vector of the dual representation
SY = Home; (S, CI):
&’ (vy) = a(vy—1).
(2) Theflow dimension vectoiy) shifts all dimensions along the arrows:
@)= Y alsa)).
aEQl,h(a):vX
Itis easy to check that this is also the dimension vector ofthg Z, -representation

S®cr (CQ)1 (where(CQ), i§ theCI#7Z,-bimodule spanned by the arrowsgh
(3) Theconvolution product = 3 is the dimension of the tensor produtc; T

axBy) = D> @(vy)Bvp-1y).

@eStab vV
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Lemma 5. The character oExtcq (S, T) as aZ,-representation is
1657 — X(a¥ % 3 —|a") x B),
wherel is the trivial character.
Proof. We have the following exact sequence
0 — Homeg(S,T) — SY @cr T — S @cr (CQ)1 ®@cr T — Exteg(S,T) — 0,

which also an exact sequenceZf-representations. Using the definitions of the operations
on the dimension vectors and the fact tiatrepresentations are semisimple one obtains
the formula above. |

Note that fork = 1 one obtains the usual formula involving the Euler form because then
X reduces then to taking the length = 3 «,, of the vector and reduces to the product
inCI.

Lemma 6. If S = (S, 0) is aCQ+#Z-representation with setting), @) andq € N then
(S,09) is aCQH#Z k -representation. The corresponding new setting will be denoted

ged(k,q)

by (Q4,&?). This new setting can be derived frdi), &) as follows: Split every vertex
Uy € Qinl = ged(|v?|,q) verticesdya g, ..., Uya,0, then identify vertices labeled with
the same characterd, s ; = 0,4 ; iff x{ = x3. For the dimension vectai? we obtain the

formula
a%(vya) = S alvy).

@€EStab ,,p1=x19
Proof. Straightforward. |

Now if S is a semisimple ii-representation @, w¢) we can decomposg as follows
(S1 @ wpSi @ -+ & (wp)"' T1S)T B @ (S, BwpSy © - @ (we) TS,

whereS; is a simple ii-representation of the twisted weighted qui@@rwe¢*:). Choose
correspondingr; to make theS; into CQ#k;Z-representations and lé; be the corre-
sponding dimension vector for the quiv@F:. Note thatweS; has dimension vectafd,
whereg acts on the vertices @p*: by Uy = (PV)y.

Theorem 7. The local twisted quiver setting 6fis a quiverQ, with one vertex!' for each
simple (w¢)*S; in the decomposition of. The local twist twists the vertices according
to w¢. The number of arrows between the vertiggsand s% correspond to the dimension
of Extcg(SY, Sjv). TheZg-weights of the arrows correspond to lifts in(k;, k;)Zy-
weights of the character cﬁxtCQ(Sf,S;’) viewed as dem(ki, kj)Zr = Zjiem(k; k;)"
representation:
S0l — X (oHa;" * ¢ a; — |¢"a”) * ¢¥ay)
Proof. This is a direct consequence of the previous lemmas. O

6. ADJUSTED REDUCTION STEPS

The first thing we can ask about the quotient spae’ Q is for which twisted weighted
settings this quotient space is smooth. In the case of ordinary quivers this has been done
in [1]. The first author introduces theBereduction steps, that reduce the complexity of
the quiver while keeping the quotient space invariant. The quotient space of a strongly
connected quiver setting (this means that between every two vertices there is a path in both
directions) is smooth if and only if after applying all possible reductions, the quiver setting
is one of the three below: )
© © (o)

We will adjust these reduction steps in such a way that the quotient space is invariant under
the GL,, x pe-action. As in [1], we will call a quiver that can not be simplified using such
moves, is callededuced We will first state the reduction steps and after that we indicate
how they alter the weights.
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(1) Vertex removal. If Zle ij < o orzlj=1 u; < o, We delete the vertex.

Q17 o @

(3) Loop removal. Uncouple the only loop or marked loops on a vertex with dimen-
sionm > 2 which has a neighborhood as shown in one of the pictures below.

-
- _
o/@ TN

-
. ]
FE e

Because the twist is an automorphism of the quiver setting, the reducibility conditions
commute with the twist: if a vertex of a loop is reducible for a quiver setting, then its image
under the twist is also reducible.

For the reduction stepﬁ;’ andﬁz this means that we can perform the reductions of all
these loops simultaneously and obtain a new quiver setting with the same twisted weight
extended in the obvious way to the new vertices and arrowsRFdhem — 1 new arrows
have weightav, + wy, ...w, + (m — 1)w,, wheref is the loop and: the unique arrow
leaving or arriving.

For reduction stefRy, we must take care. If there are no arrows between vertices in the
¢-orbit of the reducible vertex, then we can again reduce all the vertices simultaneously.
The new weights are the sums of the weights of couples of the original arrows.

If there are arrows between two of the vertices in the saroebit, then the reducibility
condition on the vertices implies that these arrows are the only arrows that arrive in or leave
these vertices. S@ is extended Dynkin of typel,, and we can reduce all vertices except
one, to obtain a one vertex quiver with as weight a multiple of the original weight.

Theorem 8. If (Q, «) is a quiver setting with twisted weighitand (Qr, ar) is a reduced
setting obtained froni@, «), then there is a reduced twisted weight such that

gissg Q= gissﬁ}’j Qr

From now on, we only consider reduced settings.

7. REDUCED SETTINGS FOR WHICHgiss, () IS SMOOTH

Becauseep @ is a linearGL,, x p.-representation the quotient is a cone, so its worst
singularity is situated in the origin. This has the following easy to check consequences:

. gissﬁQ is smooth iff the minimal number of graded generator@@gfnssi’Q] equals
the dimension ogiss? Q.

o If giss”Q is smooth thergiss@,/jQ’ is smooth for all subquiverQ’ that are closed
under the twist, and their reductions.

o If giss¥Q is smooth themgiss!,“ Q. is smooth for all local quiver setting€) ., or,)
and their reductions.
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These consequences can be used to give a complete classification of all twisted weighted
quiver settings with a smooth quotient space. The trick is to rule out all other settings by
looking at local quivers or subquivers and their reductions which are already known to
contain singularities. In order to do that we first need to investigate some simple cases.

Lemma 7. Suppose that[ X, ..., Xx] has a faithful action of.. on it and the weight of
X, isw;. ThenC[Xy,..., Xx]" is a polynomial ring if and only if for every prime power
p™|e at most one of the weights is not trivial moduyft

Proof. As the ring of invariants has the same dimension, it is smooth if and only if it is
generated by the function’éf/ god(ews)

First lete = p™ for some prime and suppose that andws are non-trivial. Up to an
isomorphism of.. we can assume that; = 1. ThereforeXfm’w?Xg must be a generator
and the ring of invariants cannot be regular. The reverse implication is trivial.

The case = p7' ... p;" follows from the Chinese remainder theorem. O

Lemma 8. For

the only weight$w, , w,) that makegiss¥ Q smooth, are the trivial weights (i.€w;, 2w, =
0 mod e).

Proof. The ring of polynomial function€[iss, Q)] is a free module of rank 2 over the
polynomial ring
R = C[X11, X22, X12 + Xo1]

The twisted weight gives an action pf on this ring with weightQuw;, 2ws, wy + ws. If
one of the weightsv;, ws is non-trivial then the ringk#< is not polynomial because of
lemma 7. As the generators &< form a subset of those @|giss¥ Q] the latter cannot
be smooth either.

The twisted quiver setting

w1 With the action ofuy =< ¢ >,

b2

where( switches the 2 vertices and magsto b; is smooth. The twist map&;; = a;b;
(i.e., the generators @@(iss, @]) to X;; and this means thm[gissﬁ Q] is given by

Clissa Q" = C[X11, X22, X12 + Xo1, X12X01]
and asX 2 Xo; = X11 X2, We obtain thagiss’ @ is justA?. O
In order to use the technique of local quivers we also need a lemma concerning the
dimension vectors of simples:

Lemma 9. If (Q,«) is a strongly connected reduced quiver setting and the vertex
with highest dimension then bo#s,, @ andiss,_., @ contain simple representations:, (
assignsl to v and0 to the other vertices)

Proof. This is a straightforward combination of the definition of reducedness in [1] and the
characterization of dimension vectors of simple quiver representations in [8]. O



14 RAF BOCKLANDT AND STIJN SYMENS

Let us now investigate the structure of the quotient sp#s# Q. Because this quotient
factors throughiss, @, we can delete all arrows that are not contained in any cycle.
First we assume th&t), «) is strongly connected.

Theorem 9. If a strongly connected reduced twisted weighted quiver setting is smooth then
either the untwisted unweighted setting is smooth or it is equal to

=0

with trivial weights.

Proof. If the setting is only weighted and not twisted, then the setting can only be smooth
if the unweighted setting is smooth: if the primitive cyeles a generator fo€[iss,, @] and
its weight is ak'" root of one, ther* must be a generator f@I[gissﬁQ]. The number of
generators of [giss’ Q] is at least as big as that 6fiss, Q). If Cliss, Q] is not smooth and
Clgiss Q] has the same dimension, the latter cannot be smooth either.

Now suppos€Q), «, w, ¢) has a nontrivial twist.

If o =1, we discern two cases

e All cycles run through all the vertices ¢f. In that case) looks like

wherep is the number of vertices ang > 2 the number of arrows between
consecutive vertices. The order@Mmust be a divisor opf.

The number of generators fiss1 Q)] is ¢*. The twist permutes these genera-
tors and for every orbit we have at least one generat@l‘[gi&sf@]: the sum of
the elements in the orbit raised to the appropriate power in order to let the weight
vanish. Because the dimensiongids? Q) is p(¢ — 1) + 1, it can only be smooth if
the number of orbits is smaller thant+ 1. However the number of orbits is bigger
than(¢? — ¢)/p + q because an orbit has at mastlements and there are at least
q fixed cycles. This condition implies that= 2,3 andq = 2. If p = 3 we can
find more generators: take an orbit of ordesum the three products of 2 factors'
and raise it to the appropriate power.

From lemma 8 we know that the only possibility for= 2 is © := ©3 5 with
trivial weights.

e There is a cycle that runs not through all the verticeg§)ofThis means that there is
a strongly connected full subquiver not containing all vertices Qgtbe maximal
in the subset of all such subquivers. Consider the local qdecoming from the
representation that assigns ones to the arrowyinand zeros to the other arrows.
The number of vertices of this quiver is smaller than the original quiver and the
local twist fixes the vertex coming frod ;.

If this vertex can be reduced then it has exactly one arrow arriving and one
arrow leaving. These two arrows must connect the vertex to two different vertices
otherwiseQ ; was not maximal. This means that the twist fixes these vertices as
well and after the reduction no other vertex can be reduced anymore.

Soin all cases the local quivé);, reduces to a reduced quiver with less vertices
and at least one vertex that is fixed by the local twist. Therefore it canrotarel
we can use induction on the vertices.

Finally, suppose that?, «) is reduced andr # 1. Letv be a vertex with the highest
dimension and consider the decompositiGh o — ¢,) @ (Q, €,). Lemma 9 implies that
there exist indeed simple quivers with dimension vector ¢, and that the number of
arrows between the two vertices in the local quiver is bigger than one. The local quiver is
thus untwisted and reduced (up to loops). d
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If (Q,«) is not strongly connected then we can assume that there is at most one com-
ponent that is smooth because we can change the smooth parts to a quiver with one vertex
and a number of loops equal to the dimension of the smooth parts. The action of the auto-
morphism on the smooth part can be diagonalized to give weights on the loops.

If (Q, ) contains two or more componeri@sL- - -LIQ, , then we will prove thagiss?. Q
cannot be smooth, unless the twisted weight acts trivially oissall); except one. By the
previous paragraph, we can take a compoxgrguch that one of the other components is
not smooth. If the finite action on this componésst,@; is not trivial, then there exists a
representation not fixed hy¢. Becausé); is reducediss,Q; contains simples (lemma 9)
and we can choose a simple with trivial stabilizer. Look at the local quiver corresponding
to the direct sum of this simple with the trivial simples of the other components. This
setting(Qr, ) is untwisted and it contains the same components as the original quiver
excepty);. Because one of the components is not sm®$b§:§ Q1 = issq, Q1 is also not
smooth.

8. GRADED CAYLEY-HAMILTON ALGEBRAS

Let us switch to the setting wherkis a graded Cayley-Hamilton algebra and where we
are interested in the trace preserving properties of this algebras. Recall from [10] that an
nth Cayley-Hamilton algebra is a finitely generated algeiraquipped with a trace, that
isaZ(A)-linear maptr : A — Z(A), such that for all, b in A

e tr(ab) = tr(ba),
o tr(l) =n,
4 Xn,a(a) = 07
wherey,, .(X) is then'" Cayley-Hamilton identity expressed in the traces of powers of
a. The matrix algebrdat,, ., (C) with the natural trace is the simplest example of such a
Cayley-Hamilton algebra.
Analogous to the previous situation we define the representation varieties:

Definition 6. Let A € CH,, be a graded Cayley-Hamilton order. Then we define

(1) treps® A for the set of semistable trace preserving representations.
(2) gtrep,, A = proj C[trep,, A] = trepi® AJC*.
(3) gtiss,, A = gtrep,, A//GL,,.

Again, gtiss,, A classifies the isoclasses of trace preserving (semistable) semisimple
representations up to graded isomorphism.

Similar to the observation that théss,, A can be seen aspec Z(A4), we have that
gtiss,, A exactly coincide wittproj Z(A).

The only extra feature we encounter here, is that the local structure of a Cayley-Hamilton
algebra is described by marked quivers. These are quivers of which some of the loops are
marked. Marked loops are represented by traceless matrices. If we introduce weights and
twists this situation may lead to loogs, . . . , £, on different vertices in the same orbit of
the twist. As these loops originate from a bigger trace O representation, this means that the
sum of the traces dofy, . . ., £, is 0. This situation can be undone by adding to the (twisted
weighted) local quiver setting an extra vertewith dimension 1 and — 1 loops onv and
marking the loopg, ..., 4.

9. NON-COMMUTATIVE BLOW-UP OF THE QUANTUM PLANE

In the commutative case, a blow-dg of A2 in the origin can be seen as the variety
V(zY —yX) C A% x P!, with z andy the affine coordinates an®l andY” the projective
coordinates. The coordinate ring &f is given byC|z, 3] and we can extend this ring to
the graded algebra

R=Clz,y] ® (z, )t ® (z,y)** ... ——~ Clz,y][t].
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R is generated by two elementsy of degree zero and two elemems = «t, Y = yt

of degree one, obeying the homogeneous relatibn- yX. We see that\? = proj R
and that the projection morphisi® ——= A2 is given by the inclusion (in degree zero)
Clz,y] —— R.

We will try to make a non-commutative equivalent of this by looking at a similar con-
struction, but now starting with the quantum plagu, v] atg = —1 instead of the affine
plane. With

B = Cyu,v] = Clu, v)/(uv + vu)
and centelZ (B) = C[u?,v?], we can associate the graded algebra

A=B® (u,v)t® (u,v)* 2 @ ... 5 Cylu,v][t].

This algebra can be seen as the non-commutative blow-¢@, i) of the ringB. A is
generated by two elementsandwv of degree zero and two elemerifs= ut andV = vt
satisfying a number of relations and with, v2, U? andV? central homogeneous elements.

Let us now concentrate on the closed orbits over the goirt). For those, eithel’? or
V2 must be invertible and we consider the case wiigtés invertible.

If we take the graded localization &, we obtain

A= AY, =C_q[u,wl[UUY
wherew = VUL, This means we want to look at the positively graded ring
A = (C<u, w, U>
(vw +wu, wU + Uw,ulU — Uu)

with the degree ofi andw equal to zero and the degreeldfequal to 1. We need to check
whethertrep, A’ is smooth in the closed orbits lying ovér, 0) € A%, Representatives of
these orbits are of one of the following types:

(1) simple type;p, sending(u, w,U) to

(tRIRERR )

(2) semisimple typep,, sending(u, w,U) to

(b ol b o5 %)

with a,b € C*. trep, A’ is of dimension 6, so we need to verify that the tangent space to

trep, A’ is of dimension 6 in the indicated points. In order to compute the tangent space,

we work in M, (Cle]) and consider

oy B
u

U
_as

ag By }
w i
S

us=ps(u)+€[ } wszps(w)JrE{7 o

S

aU U
vo=p)+e T |

The conditions orfu,, ws, Us) are the defining relations of’:
UsWs + Wty = wsUg + Uswg = usUg — Ugug =0
and withe? = 0, this leads to
af =0, yr=bpY, of =B
and with 3 linear relations, this yields a 6-dimensional tangent space. A similar construction
(and notation) lead for the semisimple points to

e
ss T

which again leads to a six dimensional subspace and the smoothness,of’ is verified.
We wonder how the (twisted weighted) local quiver in these orbits look like. The stabi-
lizer subgroups oEL, x C* are the following:

oW
Vss = Oss =0.
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¢ in simple pointse the stabilizerG,, looks likeC* x uy where the generator of;

is given by
1 0
(b 2]-)

e in semisimple points the stabilizerG, looks like (C* x C*) x us where the
component of-1 € 5 is embedded by

(b a-—)

Proposition 2. The (weighted) local quivers are as follows:
(1) In simple points they look like

@Q with action ofy,.

(2) In semisimple points they look like

@ with the action ofis.

Proof. In a simple point, the action of the stabilizef* x u, on a tangent vector is given

by
10 0 gy fow B af By 10
0 —1| \[pB* 0 e | WY =Y ) o~

The action on the individual coefficients can therefore be expressed by

ﬁ:’_)_ :7 O‘éu'_)a;uv
U U U U
(3) 6:] = 7ﬂ’swv 7:] = 77:)7 65 '_)ﬁs ) Vs T Vs -

We now need to calculate the submodule corresponding to the tangent space of the orbit of
x. This can be done by calculating

(4) (1 + et <ﬂ2 te [i; iﬂ) z (ﬂQ —F [i; ii])

with Z = ps(u), ps(w), ps(U) ande? = 0. This result in the space

0 0 0 —2ax9 bro — 3 t+x1 — x4
0 0|’|2ax; 0 "ot + g — 1) x3— bao ’
which under the action af,. has the mapping

To > —Ty, T3> —x3, t=t, (11— 24) > (21— 24)

and by identifying variables, we can remove line (3), to arrive at the desired twisted
weighted local quiver setting.
In semisimple points, the action 6€* x C*) x uy 0n a tangent vector is given by

0 6] ([ax 0O 0 gl oY LTy [0 6!
n 0 0 —a¥] [¥% 0 75 —al] ' 0

which leads to

u u w w,,—1 w w ¢—1
Qg = — 0Oy, ﬁss = 575577 y Yss T nﬂssé )
U U U U, -1 U Ugc—1
(5) Qgs > Qg ss T _575577 )y Vss T _nﬁssé .

If we do the calculation of (4), we have the space

0 0 0 0 at —2axs

0 0’0 0|’|2axs —at ’
and the action of~,, yields

tst, a9+ —0x3n” L, —nrgd L.
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This makes us delete the variables of (5) and the remaining variables with the action on
them can be encoded in the twisted weighted local quiver setting

oga

with the action ofus. |

REFERENCES

1. Raf Bocklandt, Smooth quiver representation spaced. Algebra 253 (2002), no. 2, 296-313.
MR MR1929191 (2003i:16020)

2. Raf Bocklandt, Lieven Le Bruyn, and Geert Van de Wegnooth order singularities). Algebra Appl.2
(2003), no. 4, 365-395. MR MR2020934 (2005e:16029)

3. Andrew HuberyQuiver representations respecting a quiver automorphism: a generalisation of a theorem of
Kac, J. London Math. Soc. (89 (2004), no. 1, 79-96. MR MR2025328 (2004k:16033)

4. Lieven Le BruynEtale cohomology in non-commutative geometi§97, UIA-preprint, available from the
author's website.

5., Local structure of Schelter-Procesi smooth ordéfsans. Amer. Math. So52 (2000), no. 10,
4815-4841. MR MR1695028 (2001b:16018)

, Noncommutative smooth mode2602, arXiv math.RA/0209067.

, One quiver to rule them glR003, arXiv math.RA/0304196.

8. Lieven Le Bruyn and Claudio ProceSiemisimple representations of quivefsans. Amer. Math. So817
(1990), no. 2, 585-598. MR MR958897 (90e:16048)

9. Domingo LunaSlicesétales Sur les groupes addpriques, Soc. Math. France, Paris, 1973, pp. 81-105. Bull.
Soc. Math. France, Paris,&hoire 33. MR MR0342523 (49 #7269)

10. Claudio ProcesiA formal inverse to the Cayley-Hamilton theoredn Algebral07 (1987), no. 1, 63-74.

MR 88b:16033

11. Idun Reiten and Christine Riedtmar8kew group algebras in the representation theory of Artin algeliras

Algebra92(1985), no. 1, 224-282. MR MR772481 (86k:16024)

RAF BOCKLANDT, UNIVERSITY OF ANTWERP, MIDDELHEIMLAAN 1, B-2020 ANTWERPEN(BELGIUM)
E-mail addressrafael.bocklandt@ua.ac.be

STIIN SYMENS, UNIVERSITY OF ANTWERP, MIDDELHEIMLAAN 1, B-2020 ANTWERPEN(BELGIUM)
E-mail addressstijn.symens@ua.ac.be



