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Abstract. In this paper we classify all the symmetric quivers and correspond-

ing dimension vectors whose quotient space, classifying the semisimple repre-

sentation classes, is a complete intersection. The result we obtain is that such

quivers can be reduced to a few number of basic quivers, using some elementary

types of reduction.

1. Motivation

Quiver varieties and their quotients often appear in problems of representation

theory and invariant theory. For many interesting classes of algebras, like formally

smooth algebras, the variety classifying its isomorphism classes of n-dimensional

semisimple representations, can locally be seen as the quotient variety of a quiver.

To be more precise, Let A be a finitely generated algebra and let RepnA denote the

variety of its n-dimensional complex representations. On this space we have the

standard action of GLn(C) by conjugation and if we take the algebraic quotient of

this action we obtain a new space classifying all equivalence classes of semisimple

representations, issnA = RepnA/GLn(C).

Suppose now that A is n-Cayley-Smooth, which is equivalent to the demand that

RepnA is a smooth variety, and let p ∈ issnA correspond to a semisimple represen-

tion class. One can construct a quiver setting (Q,α) such that there is an étale

neighborhood of p isomorphic to a neighborhood of the zero representation in the

quotient variety issαQ (for the definition we refer to paragraph 2). This quiver set-

ting is called the local quiver of p and its structure depends on the decomposition

of p in simple representations (see [5] and [11]).

This technique for Cayley-Smooth algebras can be extended to many moduli space

problems (see [9]) because using the technique of universal localizations (see [1]
1
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and [12]), moduli spaces can locally be seen as quotient spaces of Cayley-Smooth

algebras.

Because the local structure of issnA is always given by quiver quotient varieties, it

is interesting to look at the local structures of these varieties. In [3] and [4] all the

quiver settings are determined for which issαQ is a smooth variety. Quiver settings

with this property are called coregular. The classification of coregular quivers re-

duces every coregular quiver to 3 basic coregular types using three reduction moves:

RI , . . . ,RIII (see 3.6).

In this paper we classify the symmetric quiver settings the corresponding issαQ is

a complete intersection.

Definition 1.1. A variety V of dimension n is called a complete intersection (C.I.)

if

C[V ] ∼= C[X1, . . . , Xk]/(f1, . . . , fl)

such that k − l = n.

It is impossible to give a list of all symmetric quiver settings whose issαQ is a

C.I. Therefore we restrict to strongly connected quiver settings without loops that

cannot be reduced using the reduction moves RI , . . . ,RIII and that are not the

connected sum of two smaller quiver settings (see 3.1). Such settings are called

prime reduced without loops.

The main result of the paper is the following:

Theorem 1.1. Let (Q,α) be a symmetric prime reduced quiver setting without

loops. If issαQ is a complete intersection then (Q,α) is either coregular or one of

the following list.
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• IV =

76540123m
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2. definitions and notations

A quiver Q = (V,A, s, t) consists of a set of vertices V , a set of arrows A between
those vertices and maps s, t : A → V which assign to each arrow its starting and
terminating vertex. We also denote this as

?>=<89:;t(a) ?>=<89:;s(a)
aoo .

A dimension vector of a quiver is a map α : V → N, the size of a dimension vector is

defined as |α| :=
∑

v∈V αv. A couple (Q,α) consisting of a quiver and a dimension

vector is called a quiver setting and for every vertex v ∈ V , αv is referred to as the

dimension of v. The dimension of the vertex is usually written inside the vertex. If

no vertex has dimension zero, the quiver setting is called sincere.

The space of dimension vectors admits a canonical basis of dimension vectors of the

form

εv : V → N : w 7→ δvw,

where δ is the Kronecker delta. On the space of dimension vectors we can also

define a bilinear form χQ : N#V × N#V → Z. This form is called the Euler form

and it is determined by the following matrix:

mvw = χQ(εv, εw) := δvw −#{a| /.-,()*+v 76540123w
aoo }.

A quiver Q = (V,A, s, t) is symmetric if and only if its Euler form is symmetric

which implies that the number of arrows between two vertices is the same in either

direction.

An α-dimensional complex representation W of Q assigns to each vertex v a linear

space Cαv and to each arrow a a matrix

Wa ∈ Matαt(a)×αs(a)(C)

The space of all α-dimensional representations is denoted by RepαQ.

RepαQ :=
⊕
a∈A

Matαt(a)×αs(a)(C)
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To the dimension vector α we can also assign a reductive group

GLα :=
⊕
v∈V

GLαv(C).

An element of this group, g, has a natural action on RepαQ:

W := (Wa)a∈A, W g := (gt(a)Wag−1
s(a))a∈A

Definition 2.1. Denote the algebraic quotient of RepαQ by GLα with issαQ. The

points of this space are the closed GLα-orbits in RepαQ. The coordinate ring of this

variety is the ring of GLα-invariant polynomial functions on RepαQ.

C[issαQ] := C[RepαQ]GLα

For more details of this construction see [10].

Another way of looking at this problem comes from the representation theoretic

point of view. Two representations in RepαQ are called equivalent, if they belong

to the same orbit under the action of GLα.

A representation W is called simple if the only collections of subspaces (Vv)v∈V , Vv ⊆

Cαv having the property

∀a ∈ A : WaVs(a) ⊂ Vt(a)

are the trivial ones (i.e. the collection of zero-dimensional subspaces and (Cαv )v∈V ).

The direct sum W ⊕W ′ of two representations W,W ′ has as dimension vector the

sum of the two dimension vectors and as matrices (W ⊕W ′)a := Wa⊕W ′
a. A repre-

sentation equivalent to a direct sum of simple representations is called semisimple.

In [2] it is proven that an orbit of a representation is closed if and only if this

representation is semisimple. So one can also consider issαQ as the space classifying

all semisimple α-dimensional representation classes.

In order to study issαQ more closely, we recall some of the results of [5], which

studies the local structure of the invariant ring C[issαQ].
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A sequence of arrows a1 . . . ap in a quiver Q is called a path of length p if s(ai) =

t(ai+1), this path is called a cycle if s(ap) = t(a1). Every cycle defines a GLα-

invariant polynomial function

fc : RepαQ → C : W 7→ Tr(Wa1 · · ·Wap
)

We will call a cycle quasi-primitive for a dimension vector α if the vertices that are

ran through more than once have dimension bigger than 1. By cyclically permuting

a cycle and splitting the trace of a product of two 1× 1 matrices into a product of

traces, we can always decompose an fc into a product of traces of quasi-primitive

cycles. We now have the following result

Theorem 2.1 (Le Bruyn-Procesi). C[issαQ] is generated by all fc where c is a

quasi-primitive cycle of length smaller than |α|2 + 1.

3. Changing the structure of Quivers

In this section we define the reduction steps in the proof. More information can be

found in [3] and [4].

Two vertices v and w are said to be strongly connected if there is a path from v to

w and vice versa. It is easy to check that this relation is an equivalence so we can

divide the set of vertices into equivalence classes Vi. The subquiver Qi having Vi as

set of vertices, and as arrows all arrows between vertices of Vi is called a strongly

connected component of Q.

Lemma 3.1. If (Q, α) is a quiver setting then

C[issαQ] :=
⊗

i

C[issαiQi]

where Qi = (Vi, Ai, si, ti) are the strongly connected components of Q and αi :=

α|Vi .

Proof. This follows from the fact that that every quasi-primitive cycle is contained

in just one strongly connected component. See [3]. �

Definition 3.1. A quiver Q = (V,A, s, t) is said to be the connected sum of 2

subquivers Q1 = (V1, A1, s1, t1) and Q1 = (V2, A2, s2, t2) at the vertex v, if the
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two subquivers make up the whole quiver and only intersect in the vertex v. So in

symbols V = V1 ∪ V2, A = A1 ∪A2, V1 ∩ V2 = {v} and A1 ∩A2 = ∅.

Q1
#
vQ2 :=

. . .

  B
BB

BB
BB

BB
. . .

~~||
||

||
||

|

Q1
/.-,()*+v

  B
BB

BB
BB

BB

~~||
||

||
||

|
Q2

. . . . . .

If we connect three or more components we write Q1
#
vQ2

#
wQ3 instead of (Q1

#
vQ2)#wQ3

for sake of simplicity.

Lemma 3.2. Suppose Q = Q1
#
vQ2 and αv = 1 then

C[issαQ] := C[issα1Q1]⊗ C[issα2Q2]

where αi := α|Qi .

Proof. See [3], similar to lemma 3.1. �

The foregoing lemmas tell us that the ring of invariants of a quiver setting can be

written as the tensor product of rings of invariants of strongly connected quiver

settings that cannot be split into smaller pieces, by cutting it at a vertex with

dimension 1. Sincere quiver settings with this property will be called prime.

Apart from cutting we can also perform other operations on quivers, which remove

vertices or arrows. Such operations will be called reductions.

Lemma 3.3 (ReductionRI : Removing vertices). Suppose (Q,α) is a quiver setting

and v is a vertex without loops such that

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0.

Construct a new quiver setting (Q′, α′) by changing Q:
76540123u1 · · · ?>=<89:;uk

?>=<89:;αv
b1

bbFFFF
bk

<<xxxx

76540123i1

a1 <<yyyyy
· · · 76540123il

albbEEEEE

 −→


76540123u1 · · · ?>=<89:;uk

76540123i1

c11

OO

c1k

;;vvvvvvvvvvv
· · · 76540123il

clk

OO

cl1

ccHHHHHHHHHHH

 .

(Some of the top and bottom vertices in the picture may be the same.) Those two

quiver settings have isomorphic rings of invariants.

Proof. See [4] �
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Lemma 3.4 (ReductionRII : Removing loops of dimension 1). Suppose that (Q,α)

is a quiver setting and v a vertex with k loops and αv = 1. Take Q′ the corresponding

quiver without loops, then the following identity hold

C[issαQ] ∼= C[issαQ′]⊗ C[X1, · · · , Xk]

Proof. This follows easily from 3.2 and the fact that the ring of invariants of /.-,()*+1

��
is

C[X]. �

Lemma 3.5 (Reduction RIII : Removing a loop of higher dimension). Suppose

(Q,α) is a quiver setting and v is a vertex of dimension k ≥ 2 with one loop such

that

χQ(α, εv) = −1 or χQ(εv, α) = −1.

Construct a new quiver setting (Q′, α′) by changing (Q,α):

 76540123k

�� ((RRRRRRRRRR
��

/.-,()*+1

>>}}}} 76540123u1 · · · 76540123ul

 −→

 76540123k

�� ((RRRRRRRRRR

/.-,()*+1

k :B}}}}
}}}} 76540123u1 · · · 76540123ul

 ,

 76540123k

~~}}
}}

��

/.-,()*+1 76540123u1

OO

· · · 76540123ul

hhRRRRRRRRRR

 −→

 76540123k
k

z� }}
}}}}
}}

/.-,()*+1 76540123u1

OO

· · · 76540123ul

hhRRRRRRRRRR

 .

We have the following identity:

C[issαQ] ∼= C[issα′Q′]⊗ C[X1, . . . , Xk]

Proof. See [4]. �

The lemmas show us that these reductions can be used to simplify the structure of

the quiver setting while keeping the ring of invariants intact up to a tensor product

with a polynomial ring. Strongly connected sincere quiver settings to which we

cannot apply any of the three reduction steps will be called reduced.

In some cases we want to avoid loops in the quivers we investigate. This can be

done easily using the inverse of the first reduction, as is shown in the diagram:

/.-,()*+v
��

−→

/.-,()*+v

��/.-,()*+v

HH

.
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A reduced quiver setting where we have changed every loop as in the diagram will

be called reduced without loops.

The characterization of coregular quivers, provided in [4], can be stated as:

Theorem 3.6. The only reduced quiver settings that are coregular are:

76540123k 76540123k

�� /.-,()*+2

��

XX .

4. Complete intersections

The conditions of primeness and reducedness make also sense to investigate the C.I.-

property. Because a tensor product of rings is a C.I. if and only if all the factors

are C.I.’s, all the reductions keep the C.I.-property intact and the connected sum

of two quiver settings is C.I. if and only if those settings both are C.I.

However if there are no extra demands on the structure of the quivers, the task of

classifying all such quiver settings seems a hopeless task, therefore we restrict to

the case of symmetric quivers. If (Q,α) is a symmetric quiver setting, application

of the moves RI and RII will give us again a symmetric setting. If we apply the

RIII -move this is not true anymore but in this case we always can apply an RI

afterwards to make it symmetric again.

76540123m

		

��

/.-,()*+1

HH

−→

76540123m

m

�
/.-,()*+1

HH

−→
/.-,()*+1

�


Therefore the notion of being reduced or reduced without loops makes sense in the

symmetric case. Now we will classify the symmetric prime reduced quiver settings

that have a quotient space which is a C.I. For sake of simplicity we will call those

quiver settings C.I. as well.

The outline of the proof uses the technique of local quivers. If we want to check

whether a certain issαQ is a C.I., we have to check that issαQ is a C.I. in the

neighborhood of every point. Take a point p ∈ issαQ, this point will correspond

to the isomorphism class of a semisimple representation V ∈ RepαQ, which can be
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decomposed as a direct sum of simple representations:

V = S⊕a1
1 ⊕ · · · ⊕ S⊕ak

k .

A theorem by Le Bruyn and Procesi [5, Theorem 5] states that we can build a new

quiver setting with a similar quotient space, but having a simpler structure.

Theorem 4.1 (Le Bruyn-Procesi). For a point p ∈ issαQ corresponding to a

semisimple representation V = S⊕a1
1 ⊕· · ·⊕S⊕ak

k , there is a quiver setting (Qp, αp)

such that we have an étale isomorphism between an open neighborhood of the zero

representation in issαp
Qp and an open neighborhood of p.

(Qp, αp) is called the local quiver setting and has the following structure: Qp is has

k vertices corresponding to the set {Si} of simple factors of V and between Si and

Sj the number of arrows equals

δij − χQ(βi, βj)

where βi is the dimension vector of the simple component Si and χQ is the Euler

form of the quiver Q. The dimension vector αp is defined to be (a1, . . . , ak), where

the ai are the multiplicities of the simple components in V .

Because being a complete intersection is preserved by étale isomorphisms, see [7],

the local quiver setting will be C.I. as soon as the original setting is C.I. This must

hold for every point so we have to check all possible points p. If we find a p for

which the local quiver is not C.I., we know that the original quotient space is not a

C.I.

The structure of the local quiver setting only depends on the dimension vectors

of the simple components. Therefore one has to look at decompositions of α into

dimension vectors βi

α = a1β1 + · · ·+ akβk (the βi need not to be different).

rather than to explicit direct sums of simple representations. One can ask whether

there is a semisimple representation corresponding to such a decomposition. The

answer to this question will be positive whenever for all the βi there exist simple

representations of that dimension vector and if there are two or more βi equal, there

are at least as many different simple representation classes with dimension vector
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βi (otherwise you cannot make a direct sum with different simple representations

having the same dimension vector).

To check the above conditions we must also have a characterization of the dimension

vectors for which a quiver has simple representations. We recall a result from Le

Bruyn and Procesi [5, Theorem 4].

Theorem 4.2. Let (Q,α) be a sincere quiver setting. There exist simple represen-

tations of dimension vector α if and only if

• If Q is of the form

'&%$ !"# , '&%$ !"#�� or

'&%$ !"# // '&%$ !"#
��=

==
==

'&%$ !"#
@@�����

#V ≥ 2 '&%$ !"#
����

��
�

'&%$ !"#
^^===== '&%$ !"#

and α = 1 (this is the constant map from the vertices to 1).

• Q is not of the form above, but strongly connected and

∀v ∈ V : χQ(α, εv) ≤ 0 and χQ(εv, α) ≤ 0.

In both cases the dimension of issαQ is given by 1 − χQ(α, α). In all cases except

for the one vertex without loops this dimension is bigger then 0, so then there are

infinite classes of simples with that dimension vector. In the case of the one vertex

v without loops, there is one unique simple representation Sv.

If (Q,α) is not sincere, the simple representations classes are in bijective correspon-

dence to the simple representations classes of the sincere quiver setting obtained by

deleting all vertices with dimension zero.

To check whether a given local quiver setting is not C.I. it suffices to look at a

subquiver.

Definition 4.1. Define a partial ordering on the set of quivers as follows. A quiver

Q′ = (V ′, A′, s′, t′) is smaller than Q = (V,A, s, t) if (up to isomorphism)

V ′ ⊆ V, A′ ⊆ A, s′ = s|A′ and t′ = t|A′ ,

Q′ is called a subquiver of Q.
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Lemma 4.3. If issαQ is a C.I. and Q′ ≤ Q then issα′Q′ is also a C.I., where

α′ := α|V ′

Proof. We have an embedding

Repα′Q′ � � // RepαQ

by assigning to the additional arrows in Q zero matrices. So

C[RepαQ] // // C[Repα′Q′] ⇒ C[RepαQ]GLα // // C[Repα′Q′]GLα .

Because the action of GLα on Repα′Q′ reduces to that of GLα′ , C[issα′Q′] is a

quotient ring of C[issαQ]. The only relations that we have to divide out are the

generators that correspond to a cycle containing one of the additional arrows we

put zero, so C[issα′Q′], therefore issα′Q′ is also a C.I. �

5. Proof of the main theorem

The proof of the main theorem now proceeds as follows. First of all we prove that

the quiver setting /.-,()*+1
R". /.-,()*+1Rbn is not a complete intersection (lemma 5.1). After

that we look at two special quivers settings that are variants of cases IIb and IIIb,

(we denote these variants with a prime). We prove that these variants are C.I. if

and only if they are of the form IIb and IIIb (lemmas 5.2-5.3).

In the second part of the proof we will study in depth all possible prime reduced

quiver settings and prove that if they are C.I. if they are of the forms I−V I, II ′b or

III ′b (lemmas 5.4-5.7). This is done by finding decompositions in simples that give

rise to a local quiver that contains /.-,()*+1
R". /.-,()*+1Rbn . In the proofs we will only state

the two components of the decomposition that are important and we will leave the

calculation that these components correspond to simples and that −χQ(α1, α2) ≥ 3

to the reader. This calculation can be done visually using the rule that the number

of arrows between two components equals

∑
76540123w /.-,()*+voo ∈A

α1(v)α2(w)−
∑
v∈V

α1(v)α2(v).

Showing that Ia, Ib, IIIa, IV are indeed C.I. in combination with lemmas 5.2 and

5.3 finishes our proof.
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Lemma 5.1. The quiver setting

76540123m

k
%- /.-,()*+n

k

em , m ≤ n, k > 1

has a quotient space which is a complete intersection if and only if m = 1 and

n ≥ k − 1.

Proof. If m = 1, we can see RepαQ as the space of couples of a k × n- and a

n × k-matrix, and the action reduces to the natural base change action in the n-

dimensional space. In [10] it is proven that this is in fact the same as the space

of k × k-matrices with rank smaller than n. It is well known that this space is a

complete intersection if and only if k ≥ n− 1, see [6].

If both n, m are bigger than 1, we can make a decomposition

/.-,()*+1
$, /.-,()*+0dl ⊕ GFED@ABCm−1

&. 76540123mhp ⊕ · · ·

with −χQ(α1, α2) = 2m−m + 1 = m + 1 ≥ 3. �

Lemma 5.2. The quiver setting

II ′b = /.-,()*+l
((76540123kgg

$, /.-,()*+1dl , k ≥ 1

is a complete intersection if and only if k = 2.

Proof. Because we only have to check this for reduced settings without loops we

can suppose that l = k, k−1 (otherwise we can apply RI to the middle vertex). For

every representation of (Q,α) we define A to be the 2× k-matrix corresponding to

the double arrow to the left. B is the k×2 matrix coming from the double arrow to

the right and C is the k × k-matrix coming from the cycle starting in 76540123k running

through /.-,()*+l .

Using 2.1 we can check that C[issαQ] is generated by the following 5k invariants:

Xi := TrCi, 1 ≤ i ≤ k and Y st
j := (ACjB)st, 0 ≤ j ≤ k − 1, s, t = 1, 2.

Using 4.2 we can check that the dimension of issαQ is

1− χQ(α, α) =


4k if l = k,

4k if l = k − 1.

So if issαQ is a C.I. there must be exactly k relations if k = l and k + 1 if l = k− 1.
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• Case 1: k = 2. Suppose first that l = 2. We can deduce 2 simple relations

(i) Tr(ABACB) = Tr((BA)2C) = Tr(AB)Tr(ACB)− det(AB)Tr(C) im-

plies that∑
st

Y st
0 Y ts

1 =
∑
st

Y ss
0 Y tt

1 −X1(Y 11
0 Y 22

0 − Y 12
0 Y 21

0 )

(ii) det(ACB) = det C det(AB) implies that

Y 11
1 Y 22

1 − Y 12
1 Y 21

1 =
1
2
(X2

1 −X2)(Y 11
0 Y 22

0 − Y 12
0 Y 21

0 )

Using the Groebner base algorithm in Maple we can check that these rela-

tions generate the ideal of relations. We know that Dim issαQ = 8 = 10− 2

and hence (Q,α) is a complete intersection.

For k = 2 and l = 1 the dimension of Dim issαQ is one lower and we have

one extra relation detC = 1
2 (X2

1 −X2) = 0. So if k = 2 issαQ is always a

complete intersection.

• Case 2: k = 3. If k = 3 we can produce relations similar to (i). Using the

Cayley-Hamilton identity in 3 dimensions for the sum of 2 matrices

(M + N)3 − Tr(M + N)X2 +
1
2
((Tr(M + N))2 − Tr(M + N)2))

+
1
6
(Tr(M + N)3 − 3(Tr(M + N))3 + 2Tr(M + N)Tr(M + N)2) = 0,

we can express a MNM in terms of all other products of M and N with de-

gree smaller or equal than 3. With this expression we can produce relations

of the following forms

∑
s,t

Y ts
1 Y st

1 = Tr(A(CBAC)B) = . . .

take M = C and N = BA and substitute MNM,∑
s,t

Y ts
1 Y st

2 = Tr(A(CBAC)CB) = . . .

take M = C and N = BA and substitute MNM,∑
s,t

Y ts
2 Y st

2 = Tr(AC(CBAC)CB) = . . .

take M = C and N = BA and substitute MNM,∑
s,t

Y ts
2 Y st

2 = Tr(A(C2BAC2)B) = . . .

take M = C2 and N = BA and substitute MNM,
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Using Maple we can check that none of these relations is generated by the

others. This, together with the fact that there are no relations of smaller

degree, shows us that for k = l = 3, issαQ is not a complete intersection.

The same can be deduced for l = 2.

• Case 3: k > 3. We can construct a decomposition of the form

/.-,()*+1
(( /.-,()*+1hh

$, /.-,()*+0dl
⊕k−1

⊕ /.-,()*+0
(( /.-,()*+1hh

$, /.-,()*+1dl ⊕ /.-,()*+1
(( /.-,()*+0hh

$, /.-,()*+0dl
⊕l−k+1

The local quiver contains a subquiver of the form

?>=<89:;k−100
$, /.-,()*+1hp

So if issαQ is a C.I. for k then it is a C.I. for k − 1. Continuing this

construction we can reduce to the case k = 3. For k = 3, issαQ is not a C.I.

and therefore neither for k > 3.

�

Lemma 5.3. The quiver setting

III ′b =

76540123k
C1 ++

A1

��

76540123k
C2

kk

A2

xx/.-,()*+1

B2

88

B1

XX

is a complete intersection if and only if k ≤ 2.

Proof. If k > 2 then issαQ cannot be a complete intersection because we can make

the decomposition

/.-,()*+1
++

��

/.-,()*+1kk

xx/.-,()*+0

88WW
⊕k

⊕

/.-,()*+0
++

��

/.-,()*+0kk

xx/.-,()*+1

88WW

of which the local quiver is

76540123k88
$, /.-,()*+1dl ,

which is not a C.I. by lemma 5.2.
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If k = 2 the ring of invariants is generated by the folowing traces

TrC1C2 Tr(C1C2)2

TrA1B1 TrA1C1C2B1

TrA2B2 TrA2C1C2B2

TrA1C1B2 TrA1C1C2C1B2

TrA2C2B1 TrA2C2C1C2B1,

where the matrices Ai, Bi and Ci correspond to the arrows drawn in the quiver

setting. Consider the points in the open subset U ⊂ issαQ for which det C1C2 6= 0.

These points correspond to orbits that contain a representation for which C1 is a

unit matrix. Simplifying the traces, by setting C1 = 1 and C2 = C, we can consider

C[issαQ] as a subring of the ring of invariants of the quiver setting

/.-,()*+288
$, /.-,()*+1dl

generated by

X1, X2,Y
11
0 , Y 11

1

Y 12
0 , Y 12

1 ,Y 21
0 , Y 21

1

Y 22
1 and X1Y

22
1 − 1

2
(X2

1 −X2)Y 22
0 .

Using this fact for a Groebner base computation in Maple allows us again to prove

that issαQ is a C.I. �

In the following lemmas we examine all possible structure elements that a symmetric

quiver setting can contain. In each of these lemma we assume that (Q,α) is a

reduced prime symmetric quiver setting without loops for which issαQ is a C.I.

Using this information we show that Q is of the forms I-IV.

Lemma 5.4. If Q contains a subquiver of the form

�������� ++

vv

��������kk

����������
66

��

#V ≥ 3 ��������
SS

vv��������
SS

��������
66

then (Q, α) is of the form IIIa or IIIb.
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Proof. If 2 vertices of the cycle in Q are connected to each other by a third way we

can make a decomposition

/.-,()*+1
++

��

/.-,()*+0kk

��
yy...

		

II

/.-,()*+1

99

...

		

II

/.-,()*+1
++

KK

/.-,()*+0kk

KK
⊕

/.-,()*+0
++

��

/.-,()*+1kk

��
yy...

		

II

/.-,()*+0

99

...

		

II

/.-,()*+0
++

KK

/.-,()*+1kk

KK
⊕ · · ·

of which the locale quiver is not C.I., so this is not possible. Note that the lower right

vertex and the central vertex may be identified, without changing the argument.

Also a situation where there are two vertices connected by a double arrow in both

directions is impossible. At least one of those two vertices must have dimension one

according to lemma 5.1, suppose the left one. Make a decomposition of the form

/.-,()*+0
'/

ww

/.-,()*+1go

��/.-,()*+1

77

��

#V ≥ 3 /.-,()*+1

UU

ww/.-,()*+1

UU

/.-,()*+1

77 ⊕

/.-,()*+1
'/

ww

/.-,()*+0go

��/.-,()*+0

77

��

#V ≥ 3 /.-,()*+0

UU

ww/.-,()*+0

UU

/.-,()*+0

77 ⊕ · · · .

We remark that one of the vertices of the cycle must have dimension one otherwise

we would have a decompositon containing two simples with dimension vector 1.

Between those 2 components there are #A−#V = #V > 2 arrows.

There cannot be any branching vertex (i.e. a vertex connected to at least 3 other

vertices) with dimension k > 1 in the cycle. If there were, we could make a decom-

position

/.-,()*+0
++

ww

/.-,()*+0kk

��/.-,()*+1
(( /.-,()*+2hh

77

��

#V ≥ 3 /.-,()*+0

UU

/.-,()*+1
++

UU

/.-,()*+0kk

⊕

/.-,()*+1
++

ww

/.-,()*+1kk

��/.-,()*+0
(( /.-,()*+0hh

77

��

#V ≥ 3 /.-,()*+1

UU

/.-,()*+0
++

UU

/.-,()*+1kk

⊕· · · .

This decomposition is always possible because if the second component contains

only one vertex (i.e. in the case that the cycle has 3 vertices) the previous remark

allows us to assume that this vertex has dimension 1 in our quiver setting.

If the cycle contains more than 3 vertices, the dimension vector must be 1. Oth-

erwise, because of the reducedness, there must be two consecutive vertices with
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dimension 2 or more and we can make a decomposition of the form

/.-,()*+2
++

ww

/.-,()*+2kk

��/.-,()*+1

77

��

#V ≥ 3 /.-,()*+0

UU

ww/.-,()*+0

UU

/.-,()*+0

77 ⊕

/.-,()*+0
++

ww

/.-,()*+0kk

��/.-,()*+0

77

��

#V ≥ 3 /.-,()*+1

UU

ww/.-,()*+1

UU

/.-,()*+1

77 ⊕ · · · .

So if there are more than 3 vertices in the cycle we are in case IIIa.

If there are 3 vertices and we are not in IIIa, one of them must have dimension 1

the other must both have the same dimension because of the reducedness, so this

is case III ′b and by the lemma 5.3 more precise case IIIb. �

Lemma 5.5. If Q contains a branching vertex we are in case IV .

Proof. It is impossible that there are four vertices connected with the branching

vertex. Because of 5.4 the quiver is a tree (i.e. all primitve cycles are of length

2) and by the primeness of (Q,α), the branching vertex must have dimension 2 or

more. Make a subdecomposition of the form

/.-,()*+1

��

/.-,()*+1

vv/.-,()*+1

��

66

vv

VV

/.-,()*+0

66

/.-,()*+0

VV ⊕

/.-,()*+0

��

/.-,()*+0

vv/.-,()*+1

��

66

vv

VV

/.-,()*+1

66

/.-,()*+1

VV ⊕ · · · .

Also there is only one arrow to each vertex connected with the branching vertex

because of the decomposition

/.-,()*+1

��

/.-,()*+1

ss/.-,()*+1

XX
33

�
/.-,()*+0

EM ⊕

/.-,()*+0

��

/.-,()*+0

ss/.-,()*+1

XX
33

�
/.-,()*+1

EM ⊕ · · · .

Suppose there are only 3 vertices connected with the branching vertex and its

dimension is 3. Because (Q,α) is reduced, one of the adjecent vertices must have

dimension bigger than 1. We can make a decomposition of the form

/.-,()*+2

��

/.-,()*+0

ss/.-,()*+2

XX
33

		/.-,()*+1

II ⊕

/.-,()*+0

��

/.-,()*+1

ss/.-,()*+1

XX
33

		/.-,()*+0

II ⊕ · · ·
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If the branching vertex has dimension 2 then Q is of the form IV . If there would be

another vertex connected to one of the outer vertices, this vertex would have dimen-

sion 2 or more because of the primeness. Therefore we would have a decomposition

like /.-,()*+0

��

/.-,()*+0

ss/.-,()*+1

XX
33

		/.-,()*+2

II

		/.-,()*+1

II

⊕

/.-,()*+1

��

/.-,()*+1

ss/.-,()*+1

XX
33

		/.-,()*+0

II

		/.-,()*+0

II

⊕ · · · .

�

Lemma 5.6. If Q contains a quiver like �������� k
#+ ��������

k

ck then we care in cases IIa or IIb

Proof. By lemma 5.1 we already know that one of the 2 vertices must have dimension

one, and is because of the primeness at the end of the quiver.

If k > 2 we can make a decomposition like

/.-,()*+0
(( /.-,()*+1hh

Q!- /.-,()*+1Qam ⊕ /.-,()*+1
(( /.-,()*+1hh

Q!- /.-,()*+0Qam ⊕ · · · .

Suppose now that k = 2 then we are in situation IIa or IIb because if there are 4

vertices in Q we can make a decomposition like

/.-,()*+0
(( /.-,()*+0

((
hh /.-,()*+1hh

$, /.-,()*+1dl ⊕ /.-,()*+1
(( /.-,()*+2

((
hh /.-,()*+1hh

$, /.-,()*+0dl ⊕ · · ·

and if there are 3 vertices, only one double arrow can leave a vertex, otherwise we

can make a decomposition like

/.-,()*+0
$, /.-,()*+1dl

$, /.-,()*+1dl ⊕ /.-,()*+1
$, /.-,()*+1dl

$, /.-,()*+0dl ⊕ · · · .

Together with 5.1 this implies that if Q has 2 vertices we are in case IIa and if Q

has 3 vertices we are in IIb. �

Lemma 5.7. If Q is linear, not containing double arrows then we are in cases Ia,

Ib or (Q, α) is coregular.

Proof. If Q is linear and prime, Q cannot have five vertices. Otherwise we would

have a subdecomposition like

/.-,()*+1
(( /.-,()*+2

((
hh /.-,()*+1

((
hh /.-,()*+0

((
hh /.-,()*+0hh ⊕ /.-,()*+0

(( /.-,()*+0
((

hh /.-,()*+1
((

hh /.-,()*+2
((

hh /.-,()*+1hh ⊕ · · · .
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Take Q with 4 vertices and consider the vertex with the highest dimension to be

the second from the left (this is always possible because otherwise we could reduce

the dimension of the outer vertex). If this dimension is bigger than 2 than we can

make a decomposition like

/.-,()*+1
(( /.-,()*+2

((
hh /.-,()*+1

((
hh /.-,()*+0hh ⊕ /.-,()*+0

(( /.-,()*+1
((

hh /.-,()*+2
((

hh /.-,()*+1hh ⊕ · · ·

or

/.-,()*+2
(( /.-,()*+2

((
hh /.-,()*+1

((
hh /.-,()*+0hh ⊕ /.-,()*+0

(( /.-,()*+1
((

hh /.-,()*+1
((

hh /.-,()*+1hh ⊕ · · ·

Depending on whether the first vertex has dimension 1 or higher. So if Q has 4

vertices we are in case Ib.

If Q has 3 vertices the central vertex has the highest dimension. In order to be

reduced, none of the vertices can have dimension 1 (otherwise we could apply move

RIII). If this dimension is bigger than 3 we can make a decomposition like

/.-,()*+1
(( /.-,()*+2

((
hh /.-,()*+2hh ⊕ /.-,()*+1

(( /.-,()*+2
((

hh /.-,()*+1hh .

So in this case, if the dimension of the central vertex is 3 we are in Ia, if it is 2 then

(Q, α) is coregular.

If Q has 2 vertices (Q,α) is coregular. �

Finally we only have to prove that the listed quiver settings have indeed a quotient

space that is a C.I.

For IIa this is already done in lemma 5.1, for IIb and IIIb in lemmas 5.2 and 5.3.

In [8] it is proven that the ring of invariants of the quiver situation IV where

l, n,m ≥ 2, can be seen as a free module of rank two over the subalgebra generated

by the invariants

TrXi,TrXiXj , 1 ≤ i ≤ j ≤ 3

In this notation Xi stand for the matrix coming from the path that runs through

one of the three branches.

This subalgebra is a polynomial ring and the element of rank two is TrX1X2X3 and

satisfies the equation

(TrX1X2X3)2 + A(TrX1X2X3) + B = 0 (†)
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where

A = TrX1TrX2X3 + TrX2TrX3X1 + TrX3TrX1X2 − TrX1TrX2TrX3

B = det X1(TrX2X3)2 + detX2(TrX3X1)2 + detX3(TrX1X2)2

− TrX1TrX2TrX1X2 detX3 − TrX2TrX3TrX2X3 det X1

− TrX3TrX1TrX3X1 detX2

+ (TrX1)2 detX2 detX3 + (TrX2)2 detX3 detX1 + (TrX3)2 detX1 detX2

− 4 detX1 detX2 detX3 + TrX1X2TrX2X3TrX3X1

and detXi stands for 1
2 ((TrXi)2−TrX2

i ). So for l,m, n ≥ 2, situation V I is definitely

a complete intersection. For the dimension vectors where l,m or n equal 1, the only

extra relations we have to divide out are of the form TrX2
i = (TrXi)2, so for situation

IV , issαQ is always a complete intersection.

Using this explicit expression for C[issαQ] one can also easily deduce that the subring

C[TrXi,TrXiXj , 1 ≤ i ≤ j ≤ 3, (i, j) 6= (a, b)][TrX1X2X3]

is a polynomial ring for every couple (a, b) (A relation in this ring combined with

(†) would imply that either TrX1X2X3 satisfies a linear equation or

C[TrXi,TrXiXj , 1 ≤ i ≤ j ≤ 3]

is not polynomial. This fact can be used to prove that Ib is also a complete inter-

section.

Suppose first that m,n are bigger than 1, then we can modify setting Ib to the

following situation

/.-,()*+2

C
((

A 88
/.-,()*+2

D

hh Bff .

If A, . . . ,D are the matrices that represent the corresponding arrows then we can

make a list of generators:

TrA TrA2

TrB TrB2

TrCD Tr(CD)2

TrCAD TrDBC

TrCADB TrCADCDB.
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Every other trace of cycles can be written in function of those ten using the Cayley-

Hamilton identity for A, B or CD.

The first nine traces generate a polynomial algebra. If there would be an alge-

braic relation between those traces, we could specialize this to C = 1 to obtain an

algebraic relation in

C[TrXi,TrXiXj , 1 ≤ i ≤ j ≤ 3, (i, j) 6= (1, 2)][TrX1X2X3]

where we set X1 = A, X2 = B, X3 = D, which is impossible.

To find a quadratic relation for TrCADCDB we use (†) and specialize this to

X1 = CAD, X2 = CD and X3 = B. So again the ring of invariants is a rank 2

free module over a polynomial ring and hence Ib is a complete intersection when

m,n ≥ 2. For m = 1 or n = 1 we only have to divide out TrA2 = (TrA)2 or

TrB2 = (TrB)2 so these cases we will also be C.I.

To prove that Ia is a complete intersection, we can use the same technique as for

IV . In [13] it was proven that the ring of invariants of Ia can be seen as a rank 2

free module over the subalgebra generated by

TrXj
1 ,TrXj

2 ,TrXs
1Xt

2, 1 ≤ j ≤ 3, 1 ≤ s, t ≤ 2.

where X1 and X2 are similar to the previous situation. This ring is again polynomial

for all possible m,n.

Finally case IIIa is a C.I. because its dimension is #V + 1 and its quotient ring is

C[X1, . . . , Xk, Y+, Y−]/(X1 · · ·Xk − Y+Y−)

Where the Xi stand for traces of the small cycles between 2 vertices and Y+, Y− are

the big cycles clock- and anti clockwise.
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