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NONCOMMUTATIVE TANGENT CONES AND CALABI YAU ALGEBRAS

RAF BOCKLANDT

ABSTRACT. We study the generalization of the idea of a local quiver cé@esentation

of a formally smooth algebra, to broader classes of finitelyegated algebras. In this new
setting we can construct for every semisimple representdt a local model and a non-
commutative tangent cone. The representation schemegs# thew algebras model the
local structure and the tangent cone of the representatibense of the original algebra
at M. In this way one can try to classify algebras according tir leal behavior. As

an application we will show that the tangent cones of Calahi X Algebras are always
preprojective algebras. For Calabi YalAlgebras the corresponding statement would be
that the local model and the tangent cones derive from sopsrpals. Although we do not
have a proof in all cases, we will show that this will indeeddhia many cases.

1. INTRODUCTION

Recently, Calabi Yau Algebras were introduced as a noncaative generalization
of Calabi Yau Varieties and they form an important tool foygicists in topological string
theory. It was noticed that Calabi Y8uAlgebras were tightly connected to superpotentials.

For quotients of path algebras by homogeneous ideals it wa®g in [2] that Calabi
Yau 3-Algebras are indeed algebras with a superpotentiaa@dlabi Yau Algebras are
preprojective algebras (in both cases the converse is walyaltrue). There are however
lots of algebras that do not fit in this framework (f.i. grougebras, filtered algebras,
deformations of graded algebras, etc). The aim of this pepter find a way to connect
these algebras to the graded case.

The road we will follow is the local study of representatiofslgebras. We will pursue
generalizations of local structure theorems by Le Bruyn Brnotesi([[12] and Crawley-
Boevey [4]. They proved that for certain algebras (path taige for the former, prepro-
jective algebras for the latter), the étale local struetnifrthe representation space around
a semisimple representation space can be modeled by a nelralghich is of the same
type (a path algebra or a preprojective algebra). In thigpeye will do a similar thing but
instead of looking at the étale local structure we will wavikh formal completions and
tangent cones because this adapts more easily to the nongativa case.

The commutative picture we want to generalize is the folfmyi Let X be ann-
dimensional affine variety with coordinate rirf¢} For any pointp € X we look at the
corresponding maximal ideah and this gives us am-adic filtration onR. Locally we
can describé aroundp using the formal completioRyy, .

We can also consider the associated gradedgiggR and this corresponds geometri-
cally to the tangent cone, and it has the advantage thatfitde easier to express in terms
of generators and relations. A majpetween two varieties is étalegaif the corresponding
map between the local rings pfand¢(p) is an isomorphism. This is equivalent to asking
that the map between the associated graded rings is an iphis@rand hence the tangent
cone is an important étale invariant.

In the setting of finitely generated noncommutative algehwa can define for every
semisimple representation a noncommutative tangent coth@ éocal model in a similar
way. Such a tangent cone will always be a graded path algdlarguiver with relations.
We will prove that if the original algebra is Calabi Yathen these noncommutative tangent
cones need not to be Calabi Yau but they will be preprojectigebras. For Calabi Yau 3
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algebras similar things happen and in many cases the load¢lnoo the noncommutative
tangent cone comes from a superpotential.

The paper is organized in the following way. We start with sgoneliminaries about
graded and complete algebras, path algebras and Calabiltyelras. In sectiohl3 we
introduce the noncommutative tangent cone and in setiamfBave study the connec-
tion with representation schemes and the slice results dgeBr, Le Bruyn and Crawley-
Boevey. After that we prove our main result about the tangengs of Calabi Yau algebras.
We end the paper with some examples.

2. PRELIMINARIES

2.1. Graded and Complete Algebras.Let S be a finite dimensional semisimple algebra
overC and¥ anS-bimodule. We define two tensor algebras:

TsW ::S@W@W®5W®~-~:{(ai)igN|aiEW®Si,ai:Oifi>> 0}
TsW =S8 xW xW Qg W x - = {(a;)sen|a; € W®s'}
(a:) - (b:i) == ( Y aik ®sby)

0<k<i

Both algebras have a standard projection ofitand we will denote the kernels in both
cases by233. On the former algebra we will put the standard gradationwaedvill refer
to it as thegraded tensor algebrawhile on the latter we will put th@3-adic topology
and call it thecompleted path algebraThe degree of an element in the graded algebra
will be the maximal degree of its homogeneous componentshéocompleted algebra we
will define the degree as the minimal degree of its homogesieomponents (i.e. d¢g=
max{i|f € Qﬂi}). Furthermore iff € TsW we definefmin € TsW as the homogeneous
component of minimal degree.

To preserve the graded or topological structure of the adgelthe ideals we will con-
sider in the two cases will be graded or closed. We will cadhsan ideal in admissibléf it
is contained iB3%. From now on ayraded or complete algebra is an algebra of the form
TsW/i or TsW/ifor someS, W and an admissible ideal If we writei = (r;,i € Z), we
mean that is the smallest graded or closed ideal containingth®&Ve will also assume in
this notation that thé; } form a minimal set (i.e. every subset generates a smallat)ide
and eachr; satisfiese;r;es for some minimal orthogonal idempotents e in the center
of S. The first idempotent(r;) := e; will be called the head aof; andt(r;) := es will be
the tail of ;. In the graded case we also suppose that {lae homogeneous.

If we want to study the representation theory of graded orpletad algebras we can
introduce the category of finite dimensional nilpotent meduNilAy,. In both cases
this is the full subcategory of the category of finite dimensil left modules\/ such that
pur : A — Endc(M) factorizes through some projection— A/25°. Therefore we can
seeNilAm as a direct limit of ordinary finite dimensional module catégs:

Nil A 2 lim Mod A/25 < ModA/25? < ModA/253% — ...

It is possible that different algebras have the same cagegfanilpotent modules. We
can solve this problem to restrict to graded or completith algebrasvith relations.

A quiver @ is an oriented graph consisting of a set of verticgs a set of arrows
by @, and maps,t that assign to each arrow its head and tail. To a quiver wgassi
semisimple algebré, = CQ, = C®?0 and we identify the minimal idempotents with the
vertices. We can also construct &rbimodulelVy = CQ; with multiplicationv,av, = a
if v1 = h(a) andv, = t(a) and zero otherwise. We cdllQ) := Tcg,CQ, the graded
path algebraand CQ) := TCQO(CQl the completed path algebrawe will also consider
graded or completed path algebras with relations whichrerearresponding quotients by
admissible ideals. In fact graded or complete path algedm@agust graded or complete
algebras with a commutative semisimple part.
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We can turn each graded or complete algelrito a path algebra with relations in
by standard Morita equivalence. Létbe the semisimple part ol and take a mini-
mal idempotent; for each simple component &f: ¢;Se; = Cd;; andSeS = S with
e =y .e;. Itis well knowneAe is a path algebra with relations and we have a functor
NilAm — NileAe : M — eM, which is an equivalence of categories.

On the other hand if two completed or graded path algebrasreiations have equiva-
lent categories of nilpotent modules then they are isomiorph

Lemma 2.1. A completed path algebra with relationsis determined up to isomorphism
by the categoryil Ay, .

Proof. We can reconstruct from Nil Ay, in the following canonical way. First defire
to be the semisimple object that is the direct sum of all sempbdules with multiplicity
one. We can put a filtration afy, c C; C --- C Nil Ay by definingC; the subcategory of
all semisimples and/ in C; if there exists ailV C M suchthatV € C; andM/N € C;_;.
Each of these categories is in fact the category of moduladiofte-dimensional alge-
bra: C; = ModA/253". The freeA /253" -module of rank one can be categorically defined
as the unique module that is projectivednand has top:. We will denote this module by
F;.
Between theF; we can chose surjective maps — F», =5 F; 8 Fy = %, If Ais
complete, we can construdtfrom the opposite algebras of morphisms:

lim Hom(E;, F;)°P — Hom(Fj 1, Fi1)° = lim A/25" — A/3° !
= A.
If Ais graded then we have to take the associated graded ofittiistinstruction. [

We will also need Ext-groups iNilAm and projective resolutions for completed and
graded path algebras with relations. The basic projectivéutes ofA = CQ/i or (CQ/i
are of the formP, = Ai wherei is a vertex ofQ. Every simple module imNilAy has a
minimal resolution of projectivel-modules:

—1
= P? = P? = @y()=iPhir) = P! = ®y(a)=iPha) = B — 8i =0
and for every mag?’ — P*~!, the image sits insid23 P* and we have that

Ext S;,8;) = Homu (P*, S;).

NnAm(
Finally, the associated graded of a complete path algehhaalationsA is by definition
grA := @0, W /W IF A = CQ/ithengrA = CQ/gri with gri = (fmin|f € i).
Naively, one would think that the generators of this new idea the lowest degree parts
of the generators df however this only holds for special choices of generatts. seuch
a set will be calledyradable F.i. {XY + Z3, Y X + Z3} is not gradable becaugei =
(XY, YX,XZ3—Z3X,YZ? - Z3Y), howeverthe sef XY + XY X, Y X + XY X }is
gradable becaus€Y X already sits in XY, Y X') and hence these commutators as well.
Using this type of reasoning one can see that &sgt € Z} C i is gradable if for
every linear combinatiol, ax(r;, )minbx thatis zero inCQ we have that} ", ax;, bx)min
is zero insidedn.ive = CQ/(rimin € i). For each base element in edekt 45 (S;,S;)
we can find a relation between the relations (the correspgralizygy) and its suffices to
check it for these relations (as they generate the rest).

2.2. Calabi Yau Algebras.

Definition 2.2. An algebraA is Calabi YauCalabi Yau of dimension if in the derived
category of finite dimensional modul® mod A there are natural isomorphisms

v N 2 HOMpopnoga (M, N) — HoMpupeaa (M, s N)*, (* is the complex dual)

hereM, N are complexes of modules ards the shift functor of the derived category.
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For further details about this property we refer(tb [2], [B}ihis paper we will only need
the following result:

Property 2.3. If A is Calabi Yau of dimension then
C1 The global dimension of is alson.
C2If X,Y € RepAthen
Exth (X,Y) = Exty % (Y, X)*.

C3 The identifications above gives us a pairifgs;,- : Exts (X, V) xExty " (Y, X) —
C which satisfy

(fs >XY = (lx,g* f>g<X = (_1)k(n_k)<1Ya [ 9)?/)/7
wherex denotes the standard composition of extensions.

To state the connection between graded algebras, we needesdra definitions:

Definition 2.4.
e If Q is a quiver then the double 6} is the quiverQ? > @ that contains for every
arrowa € @ an extra arronn™ with h(a*) = t(a) andt(a*) = h(a). The
preprojective algebra a is then defined as

m(Q? CQd/Zaa—Zaazer

h(a)=i t(a)=t

e For a given quiver the vector spa€é)/[CQ, CQ] has as basis the set of cycles up
to cyclic permutation of the arrows. We can embed this spaoed@ by mapping
a cycle onto the sum of all its possible cyclic permutations:

O: (CQ/[(CQa (CQ] - (CQ 1Ay Gp Z Qj - QpQy - Aj—1-

The elements of this vector space are caIIed superpotential

Another convention we will use is the inverse of arrowspit= a;---a,
is a path and an arrow, themb~—! = a; ---a,_, if b = a, and zero otherwise.
Similarly one can defing='p. These new defined maps can be combined to obtain
a 'derivation’

90 : CQ/CQ,CQ] = CQ: p—0 (p)a™t =a™" O (p).
An algebra with a superpotential is an algebra of the form
Aw = CQ/(0.W,a € Q1) with W € CQ/[CQ, CQ)]

Theorem 2.5([2]). Let A be a graded path algebra with relations.

e A is Calabi Yau of dimensiof if and only if A is the preprojective algebra of a
non-Dynkin quiver

e If Ais Calabi Yau of dimensioBithen A is an algebra with a superpotential, but
not all superpotentials give rise to Calabi Yau Algebras.

3. THE NONCOMMUTATIVE TANGENT CONE

We suppose thal = C(X1,... Xj)/(F1,..., F}) is a noncommutative finitely gener-
ated algebra with a finite number of relations. lidétbe a finite dimensional semisimple
module of4 which can be decomposed in simples= SP! & --- & S;2*. The action
of AonM givesus amapy; : A — EndM. The image of this map iBndcS1 @ 1., @

-+ @ EndcS;, ® 1, and this is isomorphic to the semisimple algebra

S = Mat dim S, (C) @ --- P Mat dim S}, (C)

We will denote the idempotents ifi that correspond to the ones byand the kernels of
the maps4d — ¢;S by s;. Using this notation we have the kernel of the map— S is
m:=0;s;.
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We can consider then-adic filtration onA
FA— mo z.< 0
A 1> 0.

This filtration gives rise to two new algebras: the assodigtadedsr,;; A and the formal
completionAm

grA = G_% —T
Am =lim(A/m — A/m? — ...)
= {(mi)ien|m; € Ajm’,m’ + m? = m/ if i > j}

There is a natural mag — A and its kernel is);m?.
In both new rings we can identify an ideal that substitutes
mi
grm = @izlm
m = lim(m/m? — m/m? — ...)
The first observation we can make is

Lemma 3.1. gri A is agraded algebra andm a complete algebra in the sense of section

21

Proof. First we show thatdy, containsS. We construct embeddingd — A/m by
induction. Fori = 1 this is trivial and the embedding — A/m’ can be lifted toA/m®*!
becauses is formally smooth[[9] andn’/mi*! is nilpotent inA/mi*!. Hence we get a

commuting diagram
T\\
m

A
m? ms

which we can combine to an embeddifig— Am. This establishes that, A and A
are bothS-algebras.

We will now chose a sefm,} C A such that then,, = m,, + m? form a minimal set
of generators fom/m? as anS-bimodule and each,, sits inside & (m,)m/m?t(m,),
whereh(my),t(my) € {e1,...,er}. These can be use to construct maps

m _ _
TSW — grmA m, — my
m A _
TSW — Am : My, — h(m,)mygt(m,,).

The first map is trivially surjective. The second one is sttiye because all maﬁ%% —
A/m' are. a

Remark3.2 In the proof we did not assume that the &et,. } was finite, however we will
see further on that this will always be the case.

Definition 3.3.

e Thetangent conef A at M is the unique graded path algeldra A with relations
that is Morita equivalent witlgr; ;.. .;,, A-

e Thelocal modelof A at M is the unique completed path algeldrg; A with rela-
tions that is Morita equivalentwitlzim.

e Thelocal quiverof A at M is the quiverQ ,, that underlies botl®',; A andT), A.
Its vertices correspond to the isomorphism classes of sirfggtors in)M and
arrows to then,;.
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e Thelocal dimension vectoof A at M is the mapuys : (Qum)o — N S; — ¢
that assigns to each vertex the multiplicity of the corresfiog simple in)/.

From the construction and the Morita equivalence we can athat the associated
graded ofLL; A at the ideal generated by the arrows is the algéhyad.

Now let Mod A, Nilgry, A andNilAm denote the categories of (nilpotent) finite dimen-
sional modules. We can embétl Ay, fully and exact inMod A becauseflm/tﬁi o
A/m'. There is pure categorical description of this embedding.

Lemma 3.4. NilAy is the full subcategory containing all modules whose coritipos
factors are contained ifSy, ..., Sk}

Proof. First note that submodules, kernels and cokernels of maplity, are also in
NilAm. In particular this means that the factors of a decompasiiries of a nilpotent
module are also nilpotent.

If a simple moduleV is nilpotent thenm! N = 0 for somel. The simplicity of N then
implies thatm N = 0 and hence there is arsuch thais; N = 0 and henceV = S;. O

The embeddinglil Am — ModA is exact so we can relate tlgt-groups of both cat-
egories: every element EIxtlAm(U, V') corresponds to an exact sequeRic® in Nil Ay

which is also exactiiviod A and we can map it to the corresponding elemefikity,, , , (U, V).
The mapping is well-defined becauselif® — X*° is a quasi-isomorphism iflil Ay
then it also is a quasi-isomorphismhfiodA. This means we have canonical morphisms
Ext:\mAm (U, V) — Extyoqa (U, V).
Lemma 3.5. The canonical isomorphisEktf\mAm(U, V) — Extjoga (U, V) is
(1) a bijectionifi = 1.
(2) an injection ifi = 2.

Proof. If 0 - U — F — V — 0 is a short exact sequenceModA andU, V € NilAm
then E also sits insideNil Ay because its set of composition factors is the union of those
of U andV'. So fori = 1 the morphism is surjective. Itis also injective becausedihect
sum ofU andV is the same in both categories.

To prove the injectivity ifi = 2, we use a well known criterion to check whether an
exact sequence is trivialt - A — B — C — D — (s trivial as an extension iMod A
if and only if there exists & € ModA such thatd — Im(A — B) @ J — B is a short
exact sequence. But as B € NilAy, then the middle term is also nilpotent and herice
aswell, sc0 — A — B — C — D — 0iis trivial in Nil Ay O

Remark3.6. We can use the bijectivity of the first Ext-spaces to show that num-
ber of arrows in the quiver is finite. The number of arrowsJr, from j to ¢ equals
Ext};MA((Cz', Cj), whereCi is the standard simple;; A-module corresponding to the ver-
tex . By Morita equivalence this equals E)(t}l(Sl-,Sj) and by bijectivity this equals
ExtL(Si, S;). This last space is finite dimensional becausis finitely generated.

In general the maps between the higher Ext-spaces are niifbetive nor surjective,
but we can obtain some surjectivity by extendinigto a bigger semisimple module.

Lemma 3.7. If Ais an ext-finite algebra and/ a semisimple module then for a givere

N, there exists a semisimplemoduleN suchthatM c N andthe mapExtf\HA (Si,55) —
iAm

Extioqa (Si, S;) are all surjective for allS;, S; that are simple factors off and! < k.

Proof. Chose bases for each of the spaEeg, 4 (S;, S;) and find a representative for
each basis element as an exact sequenceVlbat the direct sum af/ and all composition
factors of the modules that occur in these exact sequences. O

Such anV as in the lemma above will be called extension of\/ towards surjectivity
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Theorem 3.8. SupposéV is a semisimple representation dfand Ly A = (CQN/(m,i €

7). If M is a submodule oV then@ ,, will be the quiver obtained by deleting the vertices
of the factors that do not occur i/ and all arrows connected to them. There is a standard
projectionr : CQx — CQ ), that identifies all common vertices and arrows and maps all
the other vertices and arrows to zero. In this notation weehidnat

LMA = (CQM/(W(T‘i),i EI)

Proof. We have to show that,, A = LyA/(e;|S; ¢ M). As both are completed path
algebras with relations we just have to show that their ndppb module categories are
equivalent.

The category of nilpotent xy A/{¢;|S; ¢ M)-modules is the subcategory NflLy A
that contains the modules that factorize throlighA/ (e;|.S; ¢ M). These are the modules
that are annihilated by the with .S; ¢ M, i.e. their composition factors are submodules
of LvA/(LnyA>1,({e;|S; ¢ M)LnA)) but seen as a module hy ModA C  mod A.
This exactly corresponds to the moddie, -/ S;. O

4. THE CONNECTION WITH THE REPRESENTATION SCHEMES

In this section isA an algebra that is the quotient of a path algeB¢a with an ideal
i = (r;|i € Z) that is not necessarily graded but we supposeithafQ, = 0 and that the
ri € en,CQey,.

To a dimension vectar : Qo — N with |o| = n, we can assign a vector space

Rep,Q := @ Mat Qp(a) X Ot (a) (©)

a€Q

Equipped with the standar@L, := [],q, GLa,(C) action by conjugation. We will
consider this object as a scheme over the complex numbers.pdints of this scheme
can be seen as representation€4f and the orbits under the action are the isomorphism
classes of representations.

The coordinate ring of this scheme is a polynomial ring thad for every arrow:
a(a)Qit(a) Variables corresponding to the entries in the matrix thategents itC[Rep Q] =
Clf¥la € @Q1]. If p=a; - - - ar, € vCQw we will denote the function it induces drep,Q

by
f;;j — Z (11111 ;121'2 ;fzﬂj
If mis an ideal inCQ there is a corresponding ideal @Rep, Q] by
m, = (f9)r € vm,v,w € Qo)
We define the representation schelRep , A by its ring of functions:
C[Rep, 4] = C[Rep,Q]/ia-

The points of the associated scheme can be seen as reptiessntd A and orbits of
the induced action oL, are the isomorphism classes. The action defines a ring of in-
variantsC[iss, Q] := C[Rep, Q] and from geometrical representation theory we know
that the embeddin@[iss, A] C C[Rep,A] corresponds to a quotient map of schemes
Rep,A — iss, A which maps every representation to the isomorphism clatss#misim-
plifcation. The main problem in geometric representattogoty is to study the geometry
of this quotient map.

Another way to look at the ring above is using th& root of A [10]. This is the
centralizer ofvat ,, in the amalgamated product dfandMat ,, overCQy.

i"/Z = (A *CQo Mat n)Mat"

Mat ,, containsCQ by identifying the each vertexwith a diagonal idempotent of rank, .
(Reminder:A ¢ B is the universal algebra that has embeddingss : A, B — Ax¢ B
that agree on the subalgelta B, such that any other pair of mags,,v5 : A,B — R
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that agree orC factors throughd «o B. It consists of linear combinations of products
ay * --- * ag With a; € A U B subject to the relations that- « a; * aj4q % -+ = - %
(ajajy1) * -+ if aj,aj41 are both inA or both inB.) From now on we will delete the
subscriptCQ) in the expressions and assume thatalte implicitly taken ovefCQ.

The fact that the root is a centralizer is reflected in theofeihg identity

Mat ,,(VA) = A« Mat ,(C).
This can be used to defingi if i is an ideal of4 by demanding
Mat (Vi) = ().

where(i) is the A « Mat ,,(C)-ideal generated by the elementsiaf A C A « Mat ,,(C).
Using these notations, it can be checked that
vCQ ClRep, A] = VA s Vi
[v/CQ, VTqQl : [VA, VA" [VCQ, YTQI
where we divide out the ideals generated by the commutators.

TheGL,-action can also be defined naturallyL,, C Mat ,,(C) acts by conjugation on
Mat ,,(C) and it fixesCQ,. We can extend this action to an action.én Mat ,, by letting
it act trivially on A. This action fixes the centralizer bkt ,,(C) so we have &L, -action
on {/A. Finally commutators are mapped to commutators so therafaiors to an action
onC[Rep,Q].

This way of looking at things has the advantage that it isleagneralizable to the
complete case so ifi is a complete path algebra with relations we define its reptas

tion scheme as the scheme associated to the(] ﬁ@pa \/_/ \/_ \/_ The
quotient scheme is again associated to the suldtisg,, ] of GL -invariant elements.

Let M be a semisimple point iRep, A which corresponds to a maximal idddl<
C[Rep,A]. Denote the kernel ofy; : A — EndM again bym and the image of this
map byS. The idealm, C Mis the ideal whose points corresponds to representations
N € Rep,A such thatpy factorizes throughp,,;. As S is a semisimple algebra the
number of isomorphism classes of representatiofeim, .S is finite, so the points defined
by m,, form a finite set of closed orbits iRep, A. This means that we can sae, as the
intersection of ideals, each one corresponding to one o®it)/;) which we represent by
arepresentatiof/;. If we decomposé/ asSfaE1 DD S?g’“, the M; form a maximal set
of non-isomorphic moduledl,, = SP™ @- - @S2 withn) € N* suchthat\/, € Rep, A
The particular that corresponds tdf itself is clearly the local dimension vectag, := e.

For all these ideals above we can construct the associage@drgr,C[Rep,A] will
describe the tangent coneRép , A to M while gr, C[Rep,, A] describes the tangent cone
to the orbit. Geometrically this last scheme can be seen égldundle ovetL, M;. Its
fibers are the unions of the tangent line perpendicular tothis:

CongL, m;Rep,A = {p +T,GL,M|p € ConsRep,A,q € GL,M}.

Finally gry, C[Rep,A] is the direct sum of each of thg, C[Rep, A] and hence is cor-
responding scheme is the union of these tangent cones.
Now, we can make the connection with the representatioggR and Am:

ClRep.Q] = ==

Lemma4.1. If Ais an algebra ove€CQ, M a semisimple representation with correspond-
ing idealsm <1 A andm,, < C[Rep, 4] then

e grm,C[Rep,A] = C[Rep,grmA],

o C[Rep, Aly, = C[Rep,Am],
Proof. We only prove the first statement, the proof of the secondiig apalogous. The

first step in the proof is to show that taking the associatedeg or the completion com-
mutes with the free product

(grmA) *cq, Mat ,,(C) = grm, (A xcq, Mat ,,(C)).
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We note that for every € N we have thatm)® is the linear span of produatsx f; - - - ¢;* f;
with ¢; € Mat ,,(C) and f; € m" such thatz| := > .k, > . The rewriting rules for
the free product are such that if we reduce the length of thdymt by removing a; in
CQo C Mat ,,(C) thenf;_ic;f; € m"i-1*i so the sum of the's does not change. This
factimplies(m)? N A = m’ and(m)* N Mat ,,(C) = 0 and hence we have injections

grmA — gram) (A * Mat ,(C)) andMat ,,(C) — gr ) (A * Mat ,(C)).

By the universal property of the amalgamated product, theses combine to a big map
7 : grmAxMat ,,(C) — grim) (AxMat ,,(C)) which is a map of graded algebras if we give
grm A * Mat ,,(C) the grading coming from the grading gff,;; A and consideMat ,,(C)
of degree zero.

We will show that this map is an isomorphism. The surjectiat 7 follows from the
fact that

7T(Cl * (fl +mml)"'cl * (fl +mﬁz)) = C1 * fl st Cl X fl + <m>zz"‘“|
For the injectivity we construct a right inverse for everynimgeneous part. So fixiae N

and define
t :gremy (A * Mat ,,(C))x — grimA + Mat ,,(C) :

co* fo...cox fi + (m)F Z crx (fi +m ) e x (f +mm
||=Fk
The sum is taken over every vectgdr € N! such that the sum of its coefficients s
Although this sum seems to consist of several terms it hasoat one nonzero term and
this will be one coming from the vectarwe defined earlier. The sum seems to depend on
the length of the sequence (i#.but if we can reduce the length because one ot:ther
f;isinCQy, it is easy to check that the new sum will give the same ansineagef; is
a scalar this becausg then must be zero, in the casgis a scalar we can use the product
rule ingryy A). Finally one can see tha;m(g,mA*,\,m @) = L.
The second step is to restrict to the root. If R is a ring andk an ideal then

Mt , () Mat ,,(R) = Mat ,,(gre R).

This follows from the fact thakat ,,(xv)* = Mat ,,(¢*). If we apply this to the case with
R = /A we get

(grm)A = Mat ()M (@) = (g"wmn( /) Mat n(VA))ME(©)
= Nht n(gr W %/Z)Nm "((C) = .gr W %/Z
The last step is the compatibility with commutators. Eebe a ring andR, R] the ideal
generated by the commutators anan ideal ofR. We have to prove that

gre R o gr R
lgreR,gre Rl & R, R])’
This can be done by a straightforward computation:
( grtR ) - tk/thrl
lereRgreR]" T ([R RN eF) /b H

tk

([R, R] Ntk) + vht1
B v*/([R, R] N +¥)
T (R, R| N ek L)

R
=y R
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Finally, to make the connection with the noncommutativeg&ar cone and the local
model, we have to study what happens to the Morita equivalenc

Lemma 4.2.
° RepagArmA - Un,M,,eRepaA RepﬁCMA X GLy, GLa
e RepAm = L, ar, crep, 4 REPy LA Xet, Gla

Proof. Again we only prove the first statement. Let " e; be the idempotent inl/m
such thakgry, Ae = Cyy A. Each of theM,, € Rep, A corresponds to the zero represen-
tation of C'; A with dimension vector,.

The injectionAd/m C gri A gives us &L ,-equivariant projectionr : Rep,grim A —
Rep,S. Let X,, be the fiber of the image a¥/,, underr. We have that

Rep.grmd = |_| Xy xaL, Gla
n - njed=a

This is clear from the fact that we can transform every regregtion of Rep,A/m to
one of the formr(M,). The equivariantness of implies that every representation of
Rep,grm A can be transformed into one of the fibéfs, so each component becomes of
the formX,, xswpar, GLo and itis easy to check th&tabM,, = GL,,.

So it only remains to prove th&ep, Cyy A = X,. Without loss of generality we can
assume thaiy, (e) is diagonal. This means that every representatienX,, contains cer-
tain rows and columns that are zero and if we strip those astdeetoCyy A = egryy Ae C
egrmAe we get a representation 6f,; A with dimension vector,.

To show that the mag,, — Rep, Cis A has an inverse we reinsert the zero rows and
columns and induce gy A-representation. We get a maf, — Rep,Cy A : p — p
with Vo € CprA : Vsi,50 € A/m : p(s1xs2) = par, (51)p(x)par, (s2) , where the tilde
means that we reinsert the zeros at the proper placssuniquely defined becaust/m
andC,, A generategr;,, A as an algebra. O

The two lemmas summarize to the following connection betwemcommutative tan-
gent cones and representation spaces.

Theorem 4.3.
¢ Rep,,, Cn A describes the fiber of the tangent cone to the orbitbin Rep,, A.
issa,, Cvr A describes the tangent cone to the imag@®oin iss, A.
e Rep,,, L Adescribes the fiber of the completization at the orbitbin Rep , A.
issa,, L ar A describes the completization at the imagéeoin iss,, A.

Although L A gives more information about the local structure becausetmight be
different complete algebras with the same associated dré&ds in many cases more use-
full to useCy; A. Cy A is more easily describable in the path algebra formalisnabse
its relations are homogeneous, while the relation& gfA might not even be finite com-
binations of monomials. Moreover the properties we areré@sted in can be determined
using the tangent cones, as is seen in the following corediar

Corollary 4.4. For everyM we denote the such that\/,, = M by, and we call it the
local dimension vector of/. The coupléCs A, «py) is called the tangent cone setting.

(1) The dimension dés, A around} is the same as the dimensionisf,,, Cs A.

(2) Ifissqa,, Car A has only one irreducible component thihis also contained in one
irreducible component.

(3) issq A is smooth atV/ if and only ifiss,,, Car A.

(4) If M is contained in a unique irreducible component then thisponent contains
simple representations if and onlyisé, C'; A contains simple representations.

Proof. The first three statements are easy consequences of theidefafitangent cones.
The last one needs a bit more elaboration. We will prove tiatitimension of the generic
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stabilizer around in Rep, A and around the zero representatiofRep,,,, Ci A are the
same using the standard formula for the dimension of thergestabilizer.

dim gen Stall = dim GL,, — dimy; Rep, A + dim; iss, A
=dim GL, — (dlmo RepaM Cym A+ dimGL, — dim GLQM) + dim iSSaM CyA
= dim GLQM — dimg RepaM Cyp A+ dimyy iSSaM CyA
= dim gen Stald’y; A

In this calculation we substitutedim,; Rep, A by dimg Rep,,,CynA + dimGL, —

dim GL,,,, this follows from the fact that by theordm %.2 arouhtiRep,, A is a fibered
product O

We end this section with a schematic picture of the situatierdescribed:

GL  -0rbits . Repq A

//Gla

1 Tangent cone at orbit =

Fiber atp

// Stabp,

Stabp, -orbits

It is important to note that although the picture suggesthé tangent cone bundle does
not embed as a scheme insi@ep, A and in general there need not to be a morphism of
schemes between the bundle and the representation scheme.

5. TANGENT CONES AND SLICE RESULTS

For special types of algebras there are already resultselzd the étale local structure
of the representation spaces with path algebras for quivéfs describe the two main
examples below.

For the first we recall that a formally smooth algebra is arltg A that satisfies the
following lifting property: If p; A — B/iis an algebra morphism ands a nilpotent ideal,
then we call lift¢ to a mapp : 4 — B.

Theorem 5.1(Le Bruyn). If A is a finitely generated formally smooth algebra &h =
S @@ Sffe’“ a semisimple representation then there exists a qui¥grand a di-
mension vectod,, such that There is &L ,-equivariant morphism

¢ : Rep,,, @ XcL,,, GLa — Rep,A
this morphism i€tale at the poin{0, 1) with ¢(0,1) = M.
In [4] Crawley-Boevey proved the following result:

Theorem 5.2 (Crawley-Boevey) If M € Rep,II(Q?%) be a semisimple representation
with decompositio$7" @ --- @ Sffék then there exists a new preprojective algeblg
such that there is &L . -equivariant morphism

¢ : Rep,,, IT' x6L,  GLo — Rep, II(Q)

M
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this morphism igtale at the poinf0, 1) with ¢(0,1) = M. The double quive®,,; under-
lying IT,; has a vertex for each simple component, and the number ofvarfiom thei*"
to thej*" vertex is

{2 + Pacqs @' (h(a))a! (t(a)) = 28 cqq @' (V)a'(v) i =]
Pacqp @ (Ma))a' (tHa)) =2 cqq @' (W)ai(v) i

In both cases we have a picture like this:

GL  -orbits Repgy A
B -

LI [ ] ] S

X etale
Slice

0 //Stab(p)
. - -
"/
Stabp-orbits

Contrarily to the tangent cone the slice maps iRép , A and as such it can be considered
as a subvariety (modulo the technicalities from the é@pology). Also the map from the
guotient of the slice to the quotient of the representatahreme is an étale map so it might
be finite to one instead of one to one. This is illustrated leystacond sheet in the quotient
of the slice.

To work out the connection between the slice results and dmeammutative tangent
cones, we need a reconstruction theorem

Theorem 5.3. If B is a graded path algebra with relations andis a dimension vector
which is nowhere zero, then we can reconstiidrom the graded ring€[Rep,,, B] and
the maps

D ReplaB X Rep,mB — Rep(k_H)aB

Proof. First of all we note that for any graded path algebr¢he varietyRep,., B XaL,.,
Gl embeds as an open and closed subsBepf, B with n = k|a|. These embeddings
are also compatible with taking the direct sum.

A collection( f3) of GLj4|-equivariantfunctiongy, : Repj, XcL,., GLija) B — Mt 44
is called a representable sequence if they are homogenéthes same degreélfegf €
N: fr(Ap) = X% f;.(p)) and

VIV € Repy, : VIV2 € Repy, : fii(Wh @ Wa) = fi (Wh) @ fi(Wa) (%).

These sequences generate a ring which we will denotB3y3). We will prove that
RS(B) = B.

From the reconstruction theorem of Procési [14] we know évaty GL,,-equivariant
function fromRep,, B to Mat ,,(C) is generated by functions of the formg : M — ps(b)
andt, : M — 1, Trpp (B). So if (f) is a representable sequence tligran be expressed
as a noncommutative function &f(¢,, us,, - . ., ts,, up,.). We can use this expression to
computef; with |k in different ways. We can use the diagonal embeddingey,, B —
Repr.B : W — WK/ this will give us the expressiol (5ty, , u, , . .., Xt us, ).
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BecauseC[Rep, B] is graded, we can define the zero representdtias the one corre-
sponding to the maximal ideal of positive degree. The emingdRep,;, B — Rep;.B :
W +— W @ 09*~! provides us with another expression for F'(0, up, , . - ., 0, up, ).

Taking the difference of the two expressions, we obtain aimat equations fork /1,
each at most of degree dédf we chosek = degf! this equation has more solutions than
its degree so we know that it is zero. This implies thatloes not depend on functions
of the form¢_ . But F(0, up,,...,0,up, ) = UF(0,up, ,....0,up,)» SO if (f) is a representable
function we can find a sequen@e.) € BY such forvk € N : f;, = uy, .

For a givend = degf we could find ar? such thatB/B-, is a submodule of a repre-
sentation irRep,, B. Thus ifk > [ we have that ally,, b € B, are different sqby) is a
sequence that is constant for large The diagonal embedding®ep,;, — Rep, imply
that we can even find a sequer(ég) that is completely constant. So m&— RS(B) :

b — (uyp) is an isomorphism. O

Theorem 5.4. SupposeA is a finitely generated algebra antd an n-dimensional rep-
resentation. IfB is a graded path algebra with relations such that for ai* there is a
GLy-equivariant morphism

(bk : RepaMkB XGLkaM GL;W — Rep,mA

which isétale at the point0, 1) with ¢(0,1) = M* and compatible with direct sums i.e.
©a 0 (Pr, ¢1) = Pr1 0 ©p with

©a:ReprA X Repiu A — RepyynA i (a1,a2) — a1 @ az
Dp: (Rep,mMB XGLmM GL;W) X (ReplaMB XGLzaM GLla)

- (Rep(zﬁuz)aMB XGLk1)ay, GL(k+l)a) 2 (b1, 91) % (b2, 92) = (b1 @ b2, g1 © g2),
thenB = LA

Proof. Because the map is étale we have that
C0n0(071)RepaMkB xGleM Glpo = ConO(Mk)Rep,mA
ConoRepaMkB X Glia,, GLpo = Rep,mMCMA X Glia,, GLgqo
soConoRepaMkB = RepaMkB =~ RepaMkCMA

It is clear from the construction that this map is compatibith the graded structure on
the rings. Finally we have to check that there is a compdihilith the direct sum maps,
but this follows directly from taking the associated gradeahs of the direct sums 4 and
DB. O

The existence of such an algelasatisfying the condition of this theorem for general
A and M is not clear. Even in the commutative case it can go wronguszaot every
singularity has an étale map to it coming from its tangeniecd he theoremn 5.2 is hence a
stronger than the corresponding theofem 6.1 but the Igtf@ies in many more cases than
the former and can be seen as a usefull generalization.

It is of crucial importance that the étale morphism existsdll the M/®* to have the
isomorphism. In many cases there is an isomorphism justffioii. C(X,Y") andC[X, Y]
have even isomorphic representation spaces- 1, but their non-commutative tangent
cones are non-isomorphic (in every polit € Rep,C[X,Y], CwC[X,Y] = C[X,Y]
andCywC(X,Y) =C(X,Y)).

6. TANGENT CONES OFCALABI YAU ALGEBRAS

In this section we will prove that the tangent cones of CY@ehlas are preprojective
algebras. We will also discuss some of the extra troublesateur in the 3-dimensional
case.
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Theorem 6.1. If A is 2-Calabi Yau andM is a semisimpled-module thenC, A is a
preprojective algebra.

Proof. We can extend\/ towards surjectivity foR-extensions by lemma 3.8. Now look
at the filter categoryNil N of this new semisimple modul&’. Let us denote the simple
factors of N by S;,i € Zy and the subset of indices that refer to factordbby I,,. For
the S;, S; with 4, j € I, the2-extension spaces ifiy ModA = NilL y A are in bijection
with the 2-extensions ifMMlodA. For such anS; we can find a projective resolution as a
topological module:

a)=i Phia) == P, —=5;

ra” !
s @t(r):i Phry—— @t(

the number of relations with h(r) = i,t(r) = j € In equals the dimension of the
spaceExt%NA(Si,Sj), so wheni,j € Iy we know this is equal to the dimension of

Exti(Si, S;) @ Hom(S;, S;) = ;5. Soifi € Ips we will denote byr; the unique relation
with h(r;) = t(r;) = i. For everya with h(a),t(a) € Iy we definef, = ryqa=t.
Because; € QU?V we can splitf, = ZbeQm garb + d, where the first part is a linear

combination of arrows and,, € jﬁ,.
We work out the composition of € Ext'(S;, S;) and¢ € Ext'(S;, S;) with i, € Iny.
both extensions can be seen as maps:

n:{alh(a) =i,t(a) = j} — Cand¢ : {alh(a) = j,t(a) =u} — C
We can use thig to explicitly calculate the pairing.

Eth(Sj, Sz) X Eth(Si, Sj) — EXtQ(Si, Sz) : (&1) * (7’]()) = Zgabganb-
ab

PropertyC3 for Calabi Yau algebras now implies that there are scalars€ @ (coming
from the traces) such that,,)g.s is antisymmetric and non-degenerate. Using a base
transformation on the arrows we can pyt,)g.» in its standard symplectic form. The fact
thatg., # 0 = h(a) = t(b) A t(a) = h(b) indicates that this base transformation only
mixes arrows with identical head and tail. In this new basésarrows can be partitioned in
couples(a, a*) with ay(q)ga*a = 1 @nday(q)gar = 0 if b # a*. The relation now becomes

r, = Zt(a):i,h(b):i at(a)gabba +d; with d; € 21?3.

If we now proceed to the tangent cone/df, we must factor out akb; with 7 ¢ I, and
then take the associated graded. This means that all redatat were not one of the
become zero. The, are in fact the preprojective relation with some higher otdams, so
if we can prove that thér;} form a gradable set (s€eR.1) then we are done. First assume
that@ ), is connected. We have to distinguish two cases.

e If Qs is not the double of a Dynkin quiver then it was proved|ih [Gttlthe
preprojective algebra o has global dimensio. This implies that there are
no Ext’s of degree3, and hence there are no relations between the preprojective
relations which means that tHe; } are gradable set.

e If Qs is the double of a Dynkin quiver then the preprojective afgeb not of
global dimensior2 but using the work of [17]/17],13] we have a nice description
of the syzygies. The preprojective algebra is finite dimemai and as it is graded
we can look at the highest degree component that is nonzexbth@ degreei.

For every vertex in the quiver there is a unique relation between the relation
Timin-

Z am'Timinbm' = 0 with deglm- + deg7m' =d

If we substituter;min by ; and evaluate its homogeneous parts in the preprojective
algebra we see that the must evaluat® teecause their degree is to high. This
implies that the{r; } form again a gradable set.
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If Qs is not connected then we must look at each connected compseEarately because
then theCy; A and L, A are direct sums of the subalgebras supported by the comhecte
components. O

Take care: although most preprojective algebraa@alabi Yau themselves it is not
true thatC); A is always &-CY algebra. The easiest counterexample is the followiake t
A to be the preprojective algebra of the double of a quiver with cycle, this is a Calabi
Yau algebra by theorefn 2.5. L&1 be the semisimple module that is the direct sum of all
simple modules except one. The tangent cone is the prefivg@tgebra of the double of
a Dynkin quiver of typeA,,. As we already noted, this algebra is not Calabi Yau.

If we want to consider the case of CY3, extra problems arisesithe moment there is
no proof that works in all cases. There are however somegsiieg partial results. First
of all if the categoryNilM is itself CY3 then Rouquier and Chuarg[16] have proved that
Ly A must derive from a superpotentidl (CQM.

If NilM is not CY3 it is still sometimes possible to prove thai; A comes from a
superpotential using a result by Ed Segal. [In [18] he prohed if the A>°-structure on
Ext4 (M, M) admits a bilinear structure) for which itis cyclici.e.(ag, mi (a1, ..., ax)) =
(a1, mg(az,...,a9)) thenLy, A derives from a superpotential. It is not clear whether this
always holds ifA is CY3, but it holds ifA is itself derived from a superpotential. SoAf
is a graded CY3 algebra ardd any semisimple representation thegy A is derived from
a superpotential.

The fact thatlL,; A derives from a superpotential does not necessary implyGhat
derives from a superpotential. This is truéiin, is a nondegenerate superpotential (i.e.
CQ/(0.Wmin) is CY3) but in the other cases extra relations between thiealise OWin
might prevenf 0, W} might from being a gradable set. At the moment there is noagho
known for algebras with degenerate superpotentials toquii¢hese problems.

7. EXAMPLES

In this final section we will describe two examples comingrriundamental groups of
compact orientable aspherical manifolds (i.e. for whiahhigher dimensional homotopy
groups vanish). It was pointed out by Kontsevich and Ginglfi} that the group algebras
of such groups are CYd whergis the real dimension of the manifold. These algebras
are not graded and do in general not derive from preprogcgiations or superpotentials.
Hence they form a nice class of algebras for which we can tepitopute the tangent cone.

7.1. Compact surfaces. The fundamental group of a compact orientable surface is@xgr
of the form

G = (X0, Vi, Xy, X X VXTIV XY, XY

whereg is the genus of the surface.
Let us look at some tangent cones for some representaticorsentable compact sur-
face groups. I#V is a one-dimensional representation one can manually chatk

CwCG = (C<X1vylv tee 7ngYq>/<[X1’Y1] +oe Tt [X(J’Y(]D =: H29

Which is indeed the preprojective algebra on one vertex2gridops.
In [15] it is shown that for every. Rep,,CG is an irreducible variety. We can compute
its dimension using the results on preprojective algebam {5].

n’4+n g=1

DimRep,II, =
mRePn e {(29—1)n2+1 g>1

Now if g > 1 then every varietyRep,,II, contains simples and hence so déep, CG.
The tangent cone of such a simple representdiiomust again be of the foriii;, for some
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h € N. We must have that
DimRep,,II, = Dim Rep;1I;, + Dim Ow
(29 —1)n*+1=2n+n*—1
(g—1)n*+1=nh
Soh only depends on the dimension of the simple representdtiamsimilar way we can

deduce that ifi’’; andWW, are simple representations with dimensionandn., then the
number of arrows between the two simple components will BeN such that

DimRep,,, 1,1y = DimRep(; )Cw,ew, CG + Dim Ow, aw,
(29— 1)(n1 +n2)?> +1=2(h1 + ha +a) — 1+ (n1 +n2)* — 2
(29 —2)(n1 +n2)* +4=2((g = Dni + (g — 1)n3 +2+a)
(g = D((m1 +n2)* =ni —n3) =a
2nina(g — 1) = a.

This implies that the local quiver and the tangent cone of semisimple representation
can be determined by the dimensions of the simples:

Theorem 7.1.1f M = SP“ @ - @ S,ieek is a semisimplé&€FG,, representation and the
factor S; has dimensiom, then the local quiver of/ hask vertices with on theé'” vertex
2(g — 1)n? + 2 loops ann;n;(g — 1) arrows from thei*” to thej*" vertex.

In general ifA is a 2-CY algebra we can deduce some information about tiegepta-
tion spaces using the tangent cones. First of all we knowetterty connected component
of Rep,, A must be irreducible because this is the case for the pregtragealgebras. This
allows us to define the component semigrdi§gA). Its elements are the connected com-
ponents of alRep,, A. The group operation is induced by the direct sum:

Y+ v =73 < IWr ey :IWy €y W) & W € 3.

Two simples in the same componenhave the same local quiver because the number of
loops in the local quiver is equal to the dimensiom@fGL,,. A simple is never located at
a singularity becauseep,I1(Q), whereQ is a quiver with one vertex, is always smooth.

If we have one simpl€’ in v; and two simplesSy, Sy in vo then the local quiver and
hence the tangent cone ©f® S; andT @ Ss are the same. This is because if the double

quiver is of the form

We can deducé; from the dimensions ofy; /GL,,, anda from the dimension ofy; +

72//GLn1+n2:
dim~y; + 72/ Glp, 4n, = €1 + 2 +2a — 2.

If we have a finite set of generators for the component semafg, . . ., v, and we chose

a simple representatiofi; in each component;, we can construct the tangent cone of
M=5®---®S,: GlobA := C); A this tangent cone can be seen as a global modé! of
in the sense that for every semisimplemodule there exists d&lobA-moduleM’ with
Cy A = Cy A. This notion of global quiver is a generalization of the oniévgr in [11].

7.2. The Heisenberg Algebra. The integral Heisenberg algebra is the group
H:= {{égfﬂ :a,b,cEZ}

it can be presented as a group generated by two elements dticltcommute with their
commutator.

(X, YHUXAX, Y}V {X,Y})with {X, Y} = XY X'y L
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The corresponding group algebra has the following presienta
CX,Y, X LYy H/ Xyx 'y ' -yx 'y I X XxyxX 'y -y ilxyx
Itis a CY3 algebra because the Heisenberg group is the fuanl@irgroup of the quotient

{[6‘%’3} La,bc€ R}/H.
001
The left side of the expression is contractible so the qabiseaspherical.

To calculate the tangent cones we need some technical neaghiSupposél/ is a
simple representation of = CQ/Z. Define B, to be the open disc with radiusaround
the origin inC and letd : B¥ — Rep,Q be an analytical parameterization such that

e 0(0) =M

o ThimdNTyyGL,M =0

e GL,Im@ covers an analytical open neighborhood\éfin Rep, A (so not neces-
sarily the wholeRep, Q).

This implies that we can expartidas
G(t) =pm +t;0; + titjeij + ...

For everyu € N we can define an expanded versiorgdhat acts onu x p-matricesT;
instead of scalars and has value&ep Q.

0U(T) = 1, 0o +Ti00; + Ty @0 + ...
HereT is ak-vector ofi, x p-matrices. This map is by constructiGih ,-covariant.
If r is a relation inZ then we can calculate(6(*)) which gives us for every-entry
of r a GL,-covariant functiorr,, : Mat ,L((C)’“ — Mat ,(C). We can split every-, in
its homogeneous paris;;. These functions are compatible with taking the direct sum

so using the techniques from the reconstruction thegrehth&y can be expressed as a
noncommutative monomials in the variableand ther, as noncommutative power series.

Theorem 7.2. Ly A == C(Ty, ..., T}.)/{(r.)

Proof. The embedding(* is in fact a slice oRep,,,Q at M*. This slice is however not
an algebraic slice but an analytical one. The restrictiothéozero locus of the,, gives a

slice ofRep,,,A. We can in fact replicate the reasoning in the reconstra¢tieoreni 513,
adapted to complete instead of graded algebras and useiealaiices. O

We will now apply this theorem to the case of simple represoris of the integral
Heisenberg group.

Theorem 7.3. The tangent cone of any simple module of the integral Heegngroup
algebra is isomorphic to the algebra coming from the suptaptial X2Y? — XY XY

CwCH = C(X,Y)/(0x (X?Y? — XY XY), (0y (X?Y? — XY XY)).

Proof. In [13] the simplen-dimensional representations of this group have beenifitaks
and they can be written in the following form

00 a 0 ... 0 pe2mi/n 0 0

00 a ... 0 0 pedmi/n 0
pa,b(X) =1 . andp%b(Y) = .

a 00 ... 0 0 0  be2nmi/n

So for a givenp,;, we have a2-parameter familyd : (t1,t2) — pa(i4e,),b(14t,) that
satisfies the conditions of theor€m]|7.2. We get the folloveiqgalities

O(T)(X) = 1@ pap(X) +T1 @ pap(X)

0T X)) =1® pap(X) = T1 @ pap(X) + T ® pap(X) + ...
O(T)Y) =1® pap(Y) + T2 ® pap(Y)

OT)Y ) =1®pap(Y) = T2 ® pap(Y) + T35 @ pap(Y) + ...
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so the relatior = XY X~ 'Y ~! - YX~'Y~1X becomes

r@T)=(A+T)A+T) ATy +TE+ ... )1 —To+ T +...)® pap(XY XYY
—(I+T) A -Ti 4T+ .. )1 -To+ Ty +... )1+ T1) ®@ pap(YX 'Y IX)
=((1+T)A+T) A -T +T2+ .. YA =Ty + T3 4...)
—(A+T)A-T+T¢+.. )1 -Ta+T;+.. )1+ T))®1
= (TTy + ToT1? = 2\ ToT)) @ 1 + - - -
= 0p, (T3Ty — Ty ' To) @14 - -

The second equation transforms analogously. Now it is krtbatC (X, Y) /(0x (X2Y 2 —
XYXY),(0y(X?Y?2—- XY XY))is CY3 [1],[2] and hence we can take the minimal parts
of the relations to get the tangent cone. O

One can also calculate that there are no extensions betufeseidat simples this implies
that all tangent cones are of the form

CuA = [C(X,Y)/(0x(X?Y? = XYXY), (dy (X?Y? — XY XY))|®F
for M = SP @ - @ S,
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