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L ongitudinal data

#® Repeated observations made on units over time
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L ongitudinal data

#® Repeated observations made on units over time
#® General model

Yij = x1i(tij)" By + Wiiltij) + €
» Independent measurement errors
. 2
eij ~ N(0,07)

s Wii(ti;) 1s a latent process incorporating random
effects and/or serial correlation
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Example: Random slope and inter cept

# Takes form of a Laird-Ware (1982) model

Y;,] — 3317,( ’L]) By + Uy + Ulztm + €

(UOi)N N(O), 000 001 |
Ui 0 010 011

or, alternatively,

o where

o 0ONnce more,
2
eij ~ N(0,07).
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Event data

® Collection of times observed on individuals when an
event of interest Is recorded
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Event data

® Collection of times observed on individuals when an
event of interest Is recorded

#® [Focus on single event - survival data
o Observe time s; with associated failure indicator

0 censored,
A; =

1 failure.
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Event data
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#® [Focus on single event - survival data
o Observe time s; with associated failure indicator

0 censored,
A - {

1 failure.
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Event data

® Collection of times observed on individuals when an
event of interest Is recorded

#® [Focus on single event - survival data
o Observe time s; with associated failure indicator

0 censored,
A - {

1 failure.
#® Cox proportional hazards model

;i (t; o5, U;) = ap(t)exp{aa;i(t)! By + Wai(t)}

# How to use all the data efficiently?
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Joint model

# Joint model - combine longitudinal and survival
elements in larger meta-model, see Wulfsohn and
Tsiatis (1997)
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Joint model

# Joint model - combine longitudinal and survival
elements in larger meta-model, see Wulfsohn and
Tsiatis (1997)

# Proportional association: Ws(t) = vWi(t)
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Joint model

# Joint model - combine longitudinal and survival

elements in larger meta-model, see Wulfsohn and
Tsiatis (1997)

# Proportional association: Ws(t) = vWi(t)

ai(t; @2i, U;) = ag(t)exp{xai(t)" By + v (Ui + Urit)}

#® Separate effects association

a;(t; 25, U;) = ap(t)exp{x2i(t)’ By + v0(Uni) + 71 (Urit)}
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Joint model

o

Joint model - combine longitudinal and survival
elements in larger meta-model, see Wulfsohn and
Tsiatis (1997)

Proportional association: Ws(t) = ~vW;(t)
ai(t; @2i, U;) = ag(t)exp{xai(t)" By + v (Ui + Urit)}
Separate effects association

a;(t; 25, U;) = ap(t)exp{x2i(t)’ By + v0(Uni) + 71 (Urit)}

Can also include a frallty term

Ozz‘(t; o, Uz) — ozo(t)exp{a:%(t)T,BQ + ’Y(U()q; + Ulz‘t) -+ UQZ'}
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Joint modd ||

® Observed data likelihood

/OO{ | f(ij | ')}f(stAz' ) fU; | V) dU;
oo |
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Joint modd ||

® Observed data likelihood

1|/ {ﬂf(%j r ->}f<s@-7Az- U V) dU;

# Complete data likelihood
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Joint modd ||

® Observed data likelihood

1|/ {ﬂf(yij r ->}f<s@-7Az- U V) dU;

i=1 X

# Complete data likelihood
# EM algorithm
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® Observed data likelihood

i=1 X

# Complete data likelihood
# EM algorithm

# Maximisation (M) step
s Score equations
s maximum likelihood estimates
» Newton-Raphson iterative algorithm
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Joint model |11

#® EXxpectation (E) step
s conditional expectations of the form

E{n(U;) | si,A;,Y;,0}

where
0 = (/317 /327 Va 0627 g O‘O)
s require appropriate density

fU; | 5i,0,Y5,0)

o transformation of variables
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Joint model |11

#® EXxpectation (E) step
s conditional expectations of the form

E{n(U;) | si,A;,Y;,0}

where
0 = (/317 /327 Va 0627 g O‘O)
s require appropriate density
fU; | 5i,0,Y5,0)

s transformation of variables
#® Gauss-Hermite quadrature
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Softwar e

# Aim is to develop software for general use
» user sees only R syntax
s call C/Fortran for intensive computations
» use built-in libraries to provide starting values
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Softwar e

# Aim is to develop software for general use
» user sees only R syntax
s call C/Fortran for intensive computations
» use built-in libraries to provide starting values

# Tested via simulation studies and publicly available
data-sets

#® Further testing provided and user-friendliness assessed
# Submit to CRAN (http://www.r-project.org/). ..
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Application: | TU dataset

# Full study explanation - see Toh et al. (2003)
s 1183 subjects, 2-year study
s 371 deaths, covariate info
s exploratory analyses
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Application: I TU dataset

# Full study explanation - see Toh et al. (2003)
s 1183 subjects, 2-year study
s 371 deaths, covariate info
s exploratory analyses

# Fit variety of models using software
s Laird-Ware models
s random intercept only, quadratic etc.

o Follow-up study
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Results |

Parameter | Separate | Joint model
510 06.746 06.734
B11 0.098 0.096
o2 23.229 23.219
o 18.721 18.794
0 0.083 0.083
0 -0.652 -0.647
B21 0.014 0.014
v - -0.035
logL -34609.78 | -34571.15
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Results ||

Parameter Model A Model B Model C
510 97.07 (0.12) | 96.73 (0.13) | 96.73 (0.13)
b11 0.02 (0.01) | 0.10(0.02) | 0.10 (0.02)
o2 26.64 (2.16) | 23.30 (1.84) | 23.22 (1.80)
o 12.99 (2.19) | 18.77 (2.33) | 18.79 (2.34)
0 - 0.08 (0.31) | 0.08 (0.35)

0 - -0.67 (0.17) | -0.65 (0.20)
B21 0.01 (0.00) | 0.01(0.00) | 0.01 (0.00)
o -0.10 (0.01) | -0.06 (0.02) | -0.04 (0.02)
log L -34911.95 -34586.07 -34571.15
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Further work

# Competing risks
s Individual can fail due to any of k reasons
» fallure terminates the event process
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Further work

# Competing risks
s Individual can fail due to any of k reasons
» fallure terminates the event process

# Multiple event data
s Individual can experience each event type
s fallure doesn’t terminate the event process
s eg. hip replacement

# Comparison with other methods
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