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Longitudinal data
Repeated observations made on units over time
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Longitudinal data
Repeated observations made on units over time

General model

Yij = x1i(tij)
T β1 + W1i(tij) + εij

independent measurement errors

εij ∼ N(0, σ2

ε )

W1i(tij) is a latent process incorporating random
effects and/or serial correlation
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ITU data II
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ITU data III
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Example: Random slope and intercept
Takes form of a Laird-Ware (1982) model

Yij = x1i(tij)
T β1 + U0i + U1itij + εij

where
(

U0i

U1i

)

∼

(

N

(

0

0

)

,

(

σ00 σ01

σ10 σ11

))

,

or, alternatively,

Ui ∼ N(0,V );

once more,
εij ∼ N(0, σ2

ε ).
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Event data
Collection of times observed on individuals when an
event of interest is recorded
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Event data
Collection of times observed on individuals when an
event of interest is recorded

Focus on single event - survival data
Observe time si with associated failure indicator

∆i =

{

0 censored,

1 failure.
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Event data
Collection of times observed on individuals when an
event of interest is recorded

Focus on single event - survival data
Observe time si with associated failure indicator

∆i =

{

0 censored,

1 failure.

Cox proportional hazards model

αi(t; x2i,Ui) = α0(t)exp{x2i(t)
T β2 + W2i(t)}

How to use all the data efficiently?
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Joint model
Joint model - combine longitudinal and survival
elements in larger meta-model, see Wulfsohn and
Tsiatis (1997)
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Joint model
Joint model - combine longitudinal and survival
elements in larger meta-model, see Wulfsohn and
Tsiatis (1997)

Proportional association: W2(t) = γW1(t)

αi(t; x2i,Ui) = α0(t)exp{x2i(t)
T β2 + γ(U0i + U1it)}

Separate effects association

αi(t; x2i,Ui) = α0(t)exp{x2i(t)
T β2 + γ0(U0i) + γ1(U1it)}

Can also include a frailty term

αi(t; x2i,Ui) = α0(t)exp{x2i(t)
T β2 + γ(U0i + U1it) + U2i}
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Pre-event ITU plot
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Pre-event ITU plot II
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Joint model II
Observed data likelihood

m
∏

i=1





∫

∞

−∞

{

ni
∏

j=1

f(yij | ·)

}

f(si, ∆i | ·)f(U i | V ) dU i
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Joint model II
Observed data likelihood

m
∏

i=1





∫

∞

−∞

{

ni
∏

j=1

f(yij | ·)

}

f(si, ∆i | ·)f(U i | V ) dU i





Complete data likelihood

EM algorithm

Maximisation (M) step
score equations
maximum likelihood estimates
Newton-Raphson iterative algorithm
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Joint model III
Expectation (E) step

conditional expectations of the form

E{h(U i) | si, ∆i,Y i, θ̂}

where
θ = (β1,β2,V , σ2

ε ,γ, α0)

require appropriate density

f(U i | si, ∆i,Y i, θ̂)

transformation of variables
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Joint model III
Expectation (E) step

conditional expectations of the form

E{h(U i) | si, ∆i,Y i, θ̂}

where
θ = (β1,β2,V , σ2

ε ,γ, α0)

require appropriate density

f(U i | si, ∆i,Y i, θ̂)

transformation of variables

Gauss-Hermite quadrature
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Software
Aim is to develop software for general use

user sees only R syntax
call C/Fortran for intensive computations
use built-in libraries to provide starting values
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Software
Aim is to develop software for general use

user sees only R syntax
call C/Fortran for intensive computations
use built-in libraries to provide starting values

Tested via simulation studies and publicly available
data-sets

Further testing provided and user-friendliness assessed

Submit to CRAN (http://www.r-project.org/). . .
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Application: ITU dataset
Full study explanation - see Toh et al. (2003)

1183 subjects, 2-year study
371 deaths, covariate info
exploratory analyses
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371 deaths, covariate info
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Fit variety of models using software
Laird-Ware models
random intercept only, quadratic etc.
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Application: ITU dataset
Full study explanation - see Toh et al. (2003)

1183 subjects, 2-year study
371 deaths, covariate info
exploratory analyses

Fit variety of models using software
Laird-Ware models
random intercept only, quadratic etc.

Follow-up study
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ITU data
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ITU data II
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ITU data III
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Results I

Parameter Separate Joint model
β10 96.746 96.734
β11 0.098 0.096
σ2

ε 23.229 23.219
σ2

0
18.721 18.794

σ2
1

0.083 0.083
ρ -0.652 -0.647

β21 0.014 0.014
γ - -0.035

logL -34609.78 -34571.15
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Results II

Parameter Model A Model B Model C
β10 97.07 (0.12) 96.73 (0.13) 96.73 (0.13)
β11 0.02 (0.01) 0.10 (0.02) 0.10 (0.02)
σ2

ε 26.64 (2.16) 23.30 (1.84) 23.22 (1.80)
σ2

0
12.99 (2.19) 18.77 (2.33) 18.79 (2.34)

σ2
1

- 0.08 (0.31) 0.08 (0.35)
ρ - -0.67 (0.17) -0.65 (0.20)

β21 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
γ -0.10 (0.01) -0.06 (0.02) -0.04 (0.02)

logL -34911.95 -34586.07 -34571.15
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Further work
Competing risks

individual can fail due to any of k reasons
failure terminates the event process
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Multiple event data
individual can experience each event type
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eg. hip replacement
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Further work
Competing risks

individual can fail due to any of k reasons
failure terminates the event process

Multiple event data
individual can experience each event type
failure doesn’t terminate the event process
eg. hip replacement

Comparison with other methods
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