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Stochastic processes and queueing systems

I Queues: e.g.:

I Post office
I Supermarket checkout
I Road junction
I Jobs in a factory
I Hospital waiting list
I Internet traffic

I We usual model queues as stochastic processes because the
“random” behaviour is important.
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Stochastic processes and queueing systems

I A stochastic process is a system whose development, in time
or space, is governed, at least partially, by probabilistic laws.

I Probability — I assume some basic ideas of probability. If this
causes a problem, please let me know.

I We use stochastic models for queues because features of the
behaviour depend on the “randomness.”
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Simple queueing system

Customers arrive at a service point and are served in order of
arrival.

I Probabilistic laws govern:

I The time, T , between successive arrivals which is a random
variable.

I The service time, S , of a customer. This is another random
variable.

I Deterministic laws:

I The queue discipline: first come, first served.
I The number of servers which is 1 in this case.

I Properties of interest:

I The number, N(t), of customers present in the queue at time
t.

I The waiting time, Wn, of customer number n.
I The proportion of time, p, when the server is idle.
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Queueing Systems
A queueing system is a system in which stochastic fluctuations can
cause congestion (and therefore the development of queues). In
describing a queueing system there are three essential features:

1. Pattern of arrivals

1.1 What is the probability distribution for the inter-arrival times?
1.2 Are the inter-arrival times independent of the state of the

system?

2. Service mechanism

2.1 How many servers are there?
2.2 What is the pattern of service times? What is the probability

distribution of service times? Are the service times
independent of the state of the system and of each other?

2.3 Service availability. Could there be, for example, random
interruptions to the queue service?

3. Queue discipline

3.1 First come first served.
3.2 Last come first served.
3.3 Priority systems.
3.4 Parallel queues, for example supermarket checkout.
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Arrival mechanism: Poisson process

A commonly used model for arrivals is called a Poisson process.
This is a very simple but useful model. The basic idea is that
arrivals occur “completely at random in time”. Examples where we
might use a Poisson process model include:

I “Clicks” on a Geiger counter.

I Vehicles passing on a (quiet) road.

I Arrivals of telephone calls at an exchange.

I Accidents.

We are often interested in N(t), the number of arrivals occurring
in a time interval of length t. Let pn(t) = Pr{N(t) = n}.



Arrival mechanism: Poisson process

We make three assumptions:

1. The process is stationary. That is the distribution of the
number of arrivals in the interval (t0, t0 + δt) is the same as
that for the interval (t0 + τ, t0 + τ + δt).

2. There is a constant rate λ, representing the mean number of
arrivals per unit time, such that for a short time interval of
length δt

p0(δt) ≈ 1− λδt
p1(δt) ≈ λδt

pn(δt) ≈ 0

for n > 1, where the approximation is to the order of δt.

3. The numbers of arrivals in non-overlapping time intervals are
independent.
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Arrival mechanism: Poisson process

As an approximation, imagine dividing time up into sections, each
of length δt. Suppose that the probability that an arrival occurs in
a particular section is λδt. In the time interval (0, t) there are t/δt
sections. The number of sections with events in them has a
binomial distribution and the probability of j events in (0, t) is

p̃j ≈
(

t/δt
j

)
(λδt)j(1− λδt)t/δt−j

≈
(

t/δt
j

)(
λδt

1− λδt

)j

(1− λδt)t/δt

≈ λj

j!
t(t − δt)(t − 2δt) · · · (t − {j − 1}δt)(1− λδt)t/δt−j



Arrival mechanism: Poisson process

It is easily shown that

p̃j →
exp(−λt)(λt)j

j!

as δt → 0.
Thus N(t), the number of arrivals in the time interval (0, t), has a
Poisson distribution with mean λt.



Arrival mechanism: Poisson process

We can prove formally that the number of arrivals in a time
interval of length t has a Poisson distribution with mean λt.
If this number is N(t) then

Pr{N(t) = j} =
e−λt(λt)j

j!

for j = 0, 1, 2, . . . .



Arrival mechanism: Time till next arrival

I Consider the waiting time, T , till the next arrival.

I Suppose we start waiting at time 0. Here 0 may be a fixed
point, the time of a previous arrival or whatever. It does not
matter.

I The probability that the arrival has not happened by time t is

Pr{N(t) = 0} = exp(−λt).

This is the probability that the waiting time is at least t.

I Thus the distribution function of T , that is the probability
that T < t, is

FT (t) = 1− exp(−λt).

I This is the distribution function of an exponential distribution
with parameter λ.
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Distribution function of inter-arrival time
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Probability density function
If a continuous random variable T has distribution function FT (t)
then

fT (t) =
d

dt
FT (t)

is called the probability density function (or pdf) of T .
Note that ∫ ∞

−∞
fT (t) dt = 1

— the total probability.
For our exponential distribution

FT (t) = 1− exp(−λt)

so
fT (t) = λ exp(−λt)

(0 < t <∞).



Probability density function of inter-arrival time
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Example: Road vehicle headways

The times of arrivals of motor vehicles passing a point in Chester
Road, Sunderland going East.

12.40 3, 6, 9,15,24,28,30
12.41 7,12,14,16,21,24,30,50
12.42 9,22,28,46,53
12.43 22,25,35,38,58
12.44 2, 5, 8,10,14,17,27,30,45
12.45 3,46
12.46 13,42,51
12.47 0, 9,11,18,23,26,39,51

.............................

12.59 2,31,34,38,54,59



Example: Road vehicle headways

These can be converted to time intervals (in seconds)between
vehicles. (The first value is the time till the first arrival, which has
the same distribution under our model).

3 3 3 6 9 4 2 37 5 2 2
5 3 6 20 19 13 6 18 7 29 3
10 3 20 4 3 3 2 4 3 10 3
15 18 43 27 29 9 9 9 2 7 5
3 13 12 44 4 16 13 2 9 1 13
12 1 2 16 26 4 13 13 4 14 3
31 5 2 5 5 20 1 1 7 21 3
4 25 22 14 2 4 11 15 8 41 18
3 10 7 3 5 21 6 5 22 2 2
5 7 3 24 3 7 32 3 19 2 1
6 29 3 4 16 5



Example: Road vehicle headways
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Time to second arrival

I The second arrival has not occurred before time t if N(t) < 2.

I Now

Pr{N(t) < 2} = Pr{N(t) = 0}+Pr{N(t) = 1} = e−λt+λte−λt

I Hence the distribution function is

F2(t) = 1− (1 + λt)e−λt

I Hence the probability density function is

f2(t) =
d

dt
F2(t)

= λ(1 + λt)e−λt − λe−λt

= λ2te−λt
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Gamma distribution

If a continuous random variable T has probability density function

fg (t) =

{
0 (t < 0)
λαtα−1e−λt

Γ(α) (t ≥ 0)

where α and λ are positive parameters, then we say that T has a
gamma(α, λ) distribution.
Here Γ(α) denotes the gamma function. This has the property
that, if x is a positive number, then

Γ(x) = (x − 1)Γ(x − 1).

If n is a positive integer, then

Γ(n) = (n − 1)!.



Gamma distribution

Gamma pdf:

fg (t) =
λαtα−1e−λt

Γ(α)

The time to the second arrival has pdf

f2(t) =
λ2t2−1e−λt

1!
=
λ2t2−1e−λt

Γ(2)
.

So this is a gamma(2, λ) distribution.
Notice that an exponential(λ) distribution is a gamma(1, λ)
distribution.



Time to second arrival
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Mean of a continuous random variable

A continuous random variable X has pdf fX (x).
Its mean or expectation (if it exists) is

E(X ) =

∫ ∞
−∞

x fX (x) dx .

Similarly, if g(X ) is some function of X , then the expectation of
g(X ) is

E[g(X )] =

∫ ∞
−∞

g(x) fX (x) dx .



Means: Example 1

T ∼ exponential(λ)

E(T ) =

∫ ∞
0

tλe−λt dt

= [−te−λt ]∞0 +

∫ ∞
0

e−λt dt

=

[
− 1

λ
e−λt

]∞
0

=
1

λ



Means: Example 2

T ∼ gamma(α, λ)

E(T ) =

∫ ∞
0

tλαtα−1e−λt

Γ(α)
dt

=

∫ ∞
0

λαtα+1−1e−λt

Γ(α)
dt

=
Γ(α + 1)

Γ(α)

1

λ

∫ ∞
0

λα+1tα+1−1e−λt

Γ(α + 1)
dt

=
Γ(α + 1)

Γ(α)

1

λ

=
α

λ



Means: Example 2

T ∼ gamma(α, λ)

E(T 2) =

∫ ∞
0

t2λαtα−1e−λt

Γ(α)
dt

=

∫ ∞
0

λαtα+2−1e−λt

Γ(α)
dt

=
Γ(α + 2)

Γ(α)

1

λ2

∫ ∞
0

λα+2tα+2−1e−λt

Γ(α + 2)
dt

=
Γ(α + 2)

Γ(α)

1

λ2

=
(α + 1)α

λ2



Variance of a random variable

The variance of a quantitative random variable X (if it exists) is

Var(X ) = E
{

[X − E(X )]2
}

= E
{
X 2 − 2XE(X ) + [E(X )]2

}
= E(X 2)− 2E(X )E(X ) + [E(X )]2

= E(X 2)− [E(X )]2



Variance: Example

T ∼ gamma(α, λ)

I

E(T ) =
α

λ
I

E(T 2) =
(α + 1)α

λ2

I So

Var(T ) =
(α + 1)α

λ2
−
{α
λ

}2
=

α

λ2
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Normal distribution

I The normal distribution, sometimes called the Gaussian
distribution is very important in probability and statistics. It is
a continuous distribution.

I It has two parameters, the mean and the variance, often
written µ, σ2. If X has a normal distribution with mean µ and
variance σ2 we write

X ∼ N(µ, σ2

The range of X is −∞ < X <∞.
I The probability density function is

1√
2πσ2

exp

[
−1

2

(
x − µ
σ

)2
]

(−∞ < x <∞).

I The distribution function can not be written explicitly.
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Normal distribution
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Probability density function f (x) and distribution function F (x) for
a normal distribution with mean µ = 12 and variance σ2 = 16.



The standard normal distribution

If µ = 0 and σ2 = 1 we have a standard normal distribution. If Z
has a standard normal distribution we write Z ∼ N(0, 1).

I Probability density function:

φ(z) =
1√
2π

e−
z2

2

I Distribution function:

Φ(z) =

∫ z

−∞
φ(u) du



The lognormal distribution

I Sometimes a variable does not have a normal distribution but
some transformation of the variable does.

I For example, if X must be positive, eg a service time, then
perhaps ln(X ) has a normal distribution.

0 < X <∞ ⇔ −∞ < ln(X ) <∞

I If Y ∼ N(µ, σ2) and X = eY (so Y = ln(X )) then we say
that X has a lognormal(µ, σ2) distribution,
X ∼ lognormal(µ, σ2).



The lognormal distribution
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Probability density function for a lognormal distribution with µ = 3
and σ2 = 0.49 (σ = 0.7).



The lognormal distribution

If X ∼ lognormal(µ, σ2) what is the mean of X?
If X ∼ lognormal(µ, σ2) and Y = ln(X ) then E(X ) = E(eY ).
Hence

E(X ) = E(eY ) =

∫ ∞
−∞

ey (2πσ2)−1/2 exp

{
− 1

2σ2
(y − µ)2

}
dy

=

∫ ∞
−∞

(2πσ2)−1/2 exp

{
y − 1

2σ2
(y − µ)2

}
dy



The lognormal distribution

y − 1

2σ2
(y − µ)2 = − 1

2σ2
[y2 − 2µy − 2σ2y + µ2]

= − 1

2σ2
[y2 − 2(µ+ σ2)y + (µ+ σ2)2

−(µ+ σ2)2 + µ2]

= − 1

2σ2
[{y − (µ+ σ2)}2 − (µ+ σ2)2 + µ2]

= − 1

2σ2
[{y − (µ+ σ2)}2 − 2µσ2 − σ4]

= − 1

2σ2
(y − θ)2 + µ+

σ2

2

where θ = µ+ σ2.



The lognormal distribution

Hence

E(X ) =

∫ ∞
−∞

(2πσ2)−1/2 exp

{
− 1

2σ2
(y − θ)2

}
dy eµ+σ2/2

= eµ+σ2/2



Estimation: Method of moments

I A simple way to estimate the values of parameters of a
distribution if we have data is to equate sample moments
(mean, variance) with theoretical moments and solve.

I Suppose we have n = 50 independent observations y1, . . . , y50

from N(µ, σ2):

5.82 3.96 3.57 5.00 ...... 5.32 5.95 5.64 6.66 3.33

I Sample mean:

ȳ =
1

n

n∑
i=1

yi =
268.3

50
= 5.366.

I We estimate µ with µ̂ = ȳ = 5.366.
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ȳ =
1

n

n∑
i=1

yi =
268.3

50
= 5.366.

I We estimate µ with µ̂ = ȳ = 5.366.
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Estimation: Method of moments

I Sample variance:

s2 =
1

n − 1

n∑
i=1

(yi − ȳ)2 =
1

n − 1

{
n∑

i=1

y2
i − nȳ2

}

=
1

49
{1503.931− 50× 5.3662} = 1.3109

I We estimate σ2 with σ̂2 = s2 = 1.3109 and estimate the
standard deviation σ with s =

√
s2 = 1.1449.
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1

n − 1

{
n∑

i=1

y2
i − nȳ2
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Estimation: Lognormal distribution

In the case of data from a lognormal distribution we can saimply
take logs of the data and then proceed as for a normal distribution.
Eg: X1, . . . ,X50 ∼ lognormal(µ, σ2).
Data: 336.97, 52.46, 35.52, 148.41, . . .
Take logs: 5.82, 3.96, 3.57, 5.00, . . . as before.



Simulation

I One way to investigate stochastic system behaviour is to
simulate.

I Quicker and cheaper than experimenting on the real thing!

I Generate artificial pseudo-random inter-arrival times and
service times.

I Build up the events and see what happens.

I Possibly repeat many times.

I Actually more useful in more complicated systems.



Simulation: Example

As an example, consider use of a computer network.

I Users log on as a Poisson process. Inter-arrival times are
independent exponential(λ) variables.
Choose λ = 0.1. So mean inter-arrival time is 10.

I Service times: Users stay logged on for random lengths of
time, eg lognormal(µ, σ2).
Choose µ = 3.5, σ2 = 1.0 so µ+ σ2/2 = 4.0 and the mean
service time is e4 = 54.6.

I We assume that there is unlimited capacity.

I Let us start the simulation with an empty system.

I Generate inter-arrival and service times by computer. (In the
case of lognormal service times we might generate normal
random variables and then exponentiate).
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Simulation: Inter-arrival and service times

User
Inter-
arrival
time

Arrival
time

Service
time

Service
ends

1 15.7 44.2
2 10.4 24.9
3 3.9 83.0
4 12.7 19.2
5 7.8 41.8
6 1.0 16.9
7 28.2 37.7
8 10.4 23.1
9 13.4 83.8

10 0.3 49.6
11 3.5 11.3
12 7.7 6.5



Simulation: Service start and end times

User
Inter-
arrival
time

Arrival
time

Service
time

Service
ends

1 15.7 15.7 44.2 59.9
2 10.4 26.1 24.9 51.0
3 3.9 30.0 83.0 113.0
4 12.7 42.7 19.2 61.9
5 7.8 50.5 41.8 92.3
6 1.0 51.5 16.9 68.4
7 28.2 79.7 37.7 117.4
8 10.4 90.1 23.1 113.2
9 13.4 103.5 83.8 187.3

10 0.3 103.8 49.6 153.4
11 3.5 107.3 11.3 118.6
12 7.7 115.0 6.5 121.5



Simulation: Events and user numbers

Event Time Change
Number of
users

0.0 0 0
1 15.7 1 1
2 26.1 1 2
3 30.0 1 3
4 42.7 1 4
5 50.5 1 5
6 51.0 -1 4
7 51.5 1 5
8 59.9 -1 4
9 61.9 -1 3

10 68.4 -1 2
11 79.7 1 3



Simulation: Graph
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Simulation: Second run
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Simulation: Change to µ = 5
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