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Lecture 4.1: Mixtures

Two reasons why we might want to do this:

1. We might believe that there really are two or more
sub-populations.

2. Using a mixture distribution allows more flexibility in the
sampling model.



Lecture 4.1: Mixtures

Consider a simple two-component mixture model. Our sampling
model for observation Yi has pdf

f (yi ; π, θ1, θ2) = πf1(yi ; θ1) + (1− π)f2(yi ; θ2).

Here fj(y ; θj) is the pdf for component j and depends on
parameters θj . The component membership probabilities are π and
1− π, with 0 ≤ π ≤ 1.
Suppose that we have n independent (given the parameters)
observations y1, . . . , yn. The likelihood is

L =
n∏

i=1

{πf1(yi ; θ1) + (1− π)f2(yi ; θ2)} . (4.1)

This has a rather complicated form. For example, it is a
polynomial of degree n in π.



Lecture 4.1: Mixtures

More generally we could have J components with

f (yi ; π,Θ) =
J∑

j=1

πj fj(yi ; θj), (4.2)

where
∑J

j=1 πj = 1 and πj ≥ 0 for j = 1, . . . , J. In this case the
likelihood is

L =
n∏

i=1


J∑

j=1

πj fj(yi ; θj)

 . (4.3)

This could be very complicated.



Lecture 4.1: Mixtures

We can make things much simpler by introducing a
group-membership variable which is unobserved. The values form
auxiliary data so this is an example of data augmentation.



Lecture 4.1: Mixtures

We introduce, for observation i , an auxiliary variable ci , which can
take the values 1, . . . , J. Then, given that ci = j , the conditional
pdf for observation i is simply fj(yi ; θj). The corresponding
conditional likelihood is then just

Lc =
n∏

i=1

πci fci (yi ; θci ).



Lecture 4.1: Mixtures

Now we give ci a multinomial (or “categorical”) distribution, in
which Pr(ci = j) = πj . We give the parameters π = (π1, . . . , πJ)T

and Θ = {θ1, . . . , θJ} a suitable prior distribution. Then, by
“integrating out”, i.e. “averaging over”, c1, . . . , cn, we obtain the
correct posterior distribution.



Lecture 4.1: Mixtures

The joint probability (density) that ci = j and Yi = yi is

f (yi , ci = j ; π,Θ) = πj fj(yi ; θj).

To find the marginal probability density of yi we sum over j and
obtain (4.2) as required.



Lecture 4.1: MCMC and label-switching : MCMC

Once we have the model set up with the auxiliary variables
c1, . . . , cn as above, we have a prior distribution with density
f0(Θ, π) for the parameters and we have initial values for the
unknowns, Θ, π, c1, . . . , cn, then we can proceed with MCMC as
follows.



Lecture 4.1: MCMC and label-switching : MCMC

1. Sample a new value for Θ. The fcd density is proportional to

f0(Θ, π)
J∏

j=1

Lc,j

where
Lc,j =

∏
i∈Cj

fj(yi ; θj)

and i ∈ Cj if ci = j . That is Cj is the set of observations currently
assigned to component j . We might well have
f0(Θ, π) = f0,θ(Θ)f0,π(π) in which case the fcd density is
proportional to

f0(Θ)
J∏

j=1

Lc,j



Lecture 4.1: MCMC and label-switching : MCMC

2. Sample a new value for π. The fcd density is proportional to

f0(Θ, π)
J∏

j=1

π
nj

j

where nj is the number of observations currently assigned to
component j . If f0(Θ, π) = f0,θ(Θ)f0,π(π) then the fcd density is
proportional to

f0,π(π)
J∏

j=1

π
nj

j .

A popular choice for f0,π(π) would be a Dirichlet density. In this
case the fcd is also a Dirichlet distribution. Sampling from a
Dirichlet distribution is quite easy.



Lecture 4.1: MCMC and label-switching : MCMC

3. Sample a new value for each of c1, . . . , cn. The fcd is a
categorical distribution with

Pr(ci = j) ∝ πj fj(yi ; θj).

4. Repeat.



Lecture 4.1: MCMC and label-switching : Label-switching

Consider the likelihood (4.1).
Suppose that both component distributions are of the same family
so that the likelihood is

L =
n∏

i=1

{πfy (yi ; θ1) + (1− π)fy (yi ; θ2).}

Suppose that we “switch the labels” and write

L̃ =
n∏

i=1

{
π̃fy (yi ; θ̃1) + (1− π̃)fy (yi ; θ̃2)

}
where π̃ = 1− π, θ̃1 = θ2 and θ̃2 = θ1.



Lecture 4.1: MCMC and label-switching : Label-switching

Clearly L = L̃. The likelihood is therefore bimodal and, in fact, the
modes match each other. If the prior does not strongly favour one
mode over the other then the posterior distribution will also be
bimodal.



Lecture 4.1: MCMC and label-switching : Label-switching

I Constraints – eg order constraints – on parameters.

I Mixtures with unknown numbers of components.



Lecture 4.1: Multivariate mixtures

It is, of course, possible to make a mixture model where the
observation y is multivariate. For example, we might make several
measurements on each of a sample of birds belonging to one
species with the idea that there might be two or more subspecies.
In two dimensions we might expect a plot of observations y1

against y2 to reveal “clusters” of observations.



Lecture 4.1: Continuous mixtures

As well as the finite mixtures described above it is possible to have
a mixture model with an infinite number of components. It is also
possible to have a continuous mixture. In a continuous mixture
model, instead of (4.2), we have, for example,

f (yi ) =

∫
Ω

fθ(θ)fy (yi ; θ, λi ). (4.4)



Lecture 4.1: Continuous mixtures

f (yi ) =

∫
Ω

fθ(θ)fy (yi ; θ, λi ). (4.4)

Here θ is a parameter with a continuous distribution specified by
the mixing density fθ(θ). The range of values of θ is denoted by
Ω. There may be other parameters which do not vary in this way
and these are denoted by λi .



Lecture 4.1: Continuous mixtures

We saw an example of this in Section 3.3.3 where we used
Student-t errors in a regression. The model was

Yi | µi ,Xi ∼ N(µi , X−1
i ),

dσ2Xi ∼ χ2
d .

Here µi corresponds to λi in (4.4) and X corresponds to θ in (4.4).
The mixing density is that of a scaled χ2 distribution and

fy (yi ; θ, λi ) in (4.4) corresponds to φ(X
1/2
i [yi − µi ]) where φ() is

the standard normal pdf.
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Lecture 4.2: Mixture Examples: “Old Faithful”



Lecture 4.2: Mixture Examples: “Old Faithful”
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Lecture 4.2: Mixture Examples: Normal mixture

Let us try using a two-component normal mixture model for the
log intervals. So

Pr(ci = 1) = π

Pr(ci = 2) = 1− π
π ∼ Beta(aπ, bπ)

yi | µj , τj , ci = j ∼ N(µj , τ
−1
j )

µj | µ0 ∼ N(µ0 + δj , τ
−1
µ )

µ0 ∼ N(Mµ, Vµ)

τj ∼ Ga(aτ , bτ )



Lecture 4.2: Mixture Examples: Normal mixture

Notice that we have given µ1, µ2 a “hierarchical prior.” Each
depends on µ0 which then has a prior of its own. In order to avoid
label switching we can impose the restriction µ1 < µ2. We also
push the conditional prior means of µ1, µ2 apart by making them
µ0 + δ1 and µ0 + δ2 respectively, where δ1 = −δ and δ2 = δ.



Lecture 4.2: Mixture Examples: Normal mixture

We could also use a hierarchical prior for τ1 and τ2 although this is
not quite as straightforward with gamma distributions as it is with
normal distributions. I have just given them independent priors
here. There is no need to impose an order constraint on τ1, τ2.



Lecture 4.2: Mixture Examples: Normal mixture

The specification of the prior is completed by giving numerical
values to aπ, bπ, aτ , bτ ,Mµ,Vµ, τµ. We will use the following
values.

aπ = 4, bπ = 4, aτ = 4, bτ = 0.04,

Mµ = 4.0 ≈ log(60), Vµ = 0.30 ≈ (log(3)/2)2,

τµ = 3.3 ≈ (log(3)/2)−2, δ = 0.2.



Lecture 4.2: Mixture Examples: Normal mixture

model faithnorm

{for (i in 1:n)
{c[i]~dcat(q[])
y[i]~dnorm(mu[c[i]],tau[c[i]])
}

for (j in 1:2)
{tau[j]~dgamma(4,0.04)
}



Lecture 4.2: Mixture Examples: Normal mixture

mumean[1]<-mu0-0.2
mumean[2]<-mu0+0.2
mu[1]~dnorm(mumean[1],3.3) I(,mu[2]) # This imposes the
mu[2]~dnorm(mumean[2],3.3) I(mu[1],) # order constraint.

mu0~dgamma(4.0,p.mu)
p.mu<-1/0.3

pi~dbeta(3,3)
q[1]<-pi
q[2]<-1-pi
}



Lecture 4.2: Mixture Examples: Gamma mixture

As an alternative to the normal mixture for the log intervals, which
is, of course, equivalent to a lognormal mixture for the intervals,
we could try a gamma mixture for the intervals themselves.

Pr(ci = 1) = π

Pr(ci = 2) = 1− π
π ∼ Beta(aπ, bπ)

ti | αj , βj , ci = j ∼ Ga(αj , βj)

βj = αj/λj

λj = exp(µj)

µj | µ0 ∼ N(µ0 + δj , τ
−1
µ )

µ0 ∼ N(Mµ, Vµ)

αj ∼ Ga(aα, bα)



Lecture 4.2: Mixture Examples: Gamma mixture

Since the mean of a Ga(αj , βj) distribution is αj/βj and we set
βj = αj/λj , the mean interval, in component j , is λj . We then
treat µj = log(λj) in the same way as we treated µj in the
lognormal mixture. Of course the log of the mean is not the same
as the mean of the logs but, in this case, this difference has little
effect. (To avoid this slight discrepancy we would have to make λj

the median rather than the mean but this is not convenient with a
gamma distribution).



Lecture 4.2: Mixture Examples: Gamma mixture

I have not used a hierarchical prior for α1, α2. I have just given
them independent priors here. There is no need to impose an order
constraint on α1, α2.



Lecture 4.2: Mixture Examples: Gamma mixture

We will use the following values to complete the prior specification.

aπ = 1, bπ = 1, aα = 3, bα = 0.1,

Mµ = 4.0 ≈ log(60), Vµ = 0.30 ≈ (log(3)/2)2,

τµ = 3.3 ≈ (log(3)/2)−2, δ = 0.2.



Lecture 4.2: Mixture Examples: Gamma mixture

model faithgamma

{for (i in 1:n)
{c[i]~dcat(q[])
t[i]~dgamma(alpha[c[i]],beta[c[i]])
}

for (j in 1:2)
{alpha[j]~dgamma(3,0.1)
beta[j]<-alpha[j]/lambda[j]
lambda[j]<-exp(mu[j])
}



Lecture 4.2: Mixture Examples: Gamma mixture

mumean[1]<-mu0-0.2
mumean[2]<-mu0+0.2
mu[1]~dnorm(mumean[1],3.3) I(,mu[2]) # This imposes the
mu[2]~dnorm(mumean[2],3.3) I(mu[1],) # order constraint.

mu0~dnorm(4.0,p.mu)
p.mu<-1/0.3

pi~dbeta(1,1)
q[1]<-pi
q[2]<-1-pi
}



Lecture 4.2: Mixture Examples: Headways

Time gaps, or “headways”, between vehicles passing along a road.
The idea is that headways fall naturally into one of two
sub-populations:

1. Headways where the following vehicle is not impeded by the
vehicle in front.

2. “Congested” headways where the following vehicle is impeded
by the vehicle in front.



Lecture 4.2: Mixture Examples: Headways

1: non-congested headways : Exponential distribution, that is
Ga(1, β1).

2: Congested headways : Ga(α2, β2) distribution with α2 > 1.



Lecture 4.2: Mixture Examples: Headways

I The constraint that α2 > 1 is imposed by letting α2 = 1 + A
where A ∼ Ga(aA, bA). We have aA = 2 and bA = 8.

I The mean headway in component 1 is µ1 = β−1
1 .

I The mean headway in component 2 is µ2 = α2/β2.

I We set β2 = α2B where B ∼ Ga(aB , bB). We have aB = 1
and bB = 2. Thus µ2 = B−1.

I By imposing the constraint B > β1 we ensure that µ1 > µ2.



Lecture 4.2: Mixture Examples: Headways

model headway;

{

for (i in 1:N)
{c[i]~dcat(q[])
t[i]~dgamma(alpha[c[i]],beta[c[i]])
}



Lecture 4.2: Mixture Examples: Headways

alpha[1]<-1
alpha[2]<-1+aa
aa~dgamma(1,0.5)
beta[1]~dgamma(2,8) I(,bb)
beta[2]<-alpha[2]*bb
bb~dgamma(1,2) I(beta[1],)
pi~dbeta(1,2)
q[1]<-pi
q[2]<-1-pi

mu[1]<-1/beta[1]
mu[2]<-1/bb

}
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Lecture 4.3: Hidden Markov Models
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Lecture 4.3: Hidden Markov Models

We could model the sequence c1, . . . , cn using a two-state Markov
chain with the folowing transition matrix, where
qj ,k = Pr(ci = j | ci−1 = k).(

q1,1 q1,2

q2,1 q2,2

)
=

(
0 π
1 1− π

)
. (4.5)



Lecture 4.3: Hidden Markov Models

Of course, before we saw the data we would not know about this
pattern so it could be argued that we should use a more general
model in which we allow q1,1 > 0. In this case we would have(

q1,1 q1,2

q2,1 q2,2

)
=

(
π1 π2

1− π1 1− π2

)
. (4.6)



Lecture 4.3: Hidden Markov Models

Examples of hidden Markov models or HMM:

I Time series,

I DNA sequences,

I Linguistics,

I etc.



Lecture 4.3: Hidden Markov Models

In general, in a HMM, we have a sequence of (possibly vector)
observations . . . yi−1, yi , yi+1 . . . where the distribution of yi

depends on the value of an unobserved (i.e. latent) (possibly
vector) variable xi and the sequence . . . xi−1, xi , xi+1, . . . forms a
Markov chain.



Lecture 4.3: Hidden Markov Models: Figure 4.6
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Lecture 4.3: Hidden Markov Models: Figure 4.7
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Lecture 4.3: Hidden Markov Models: Old Faithful

Stationary distribution of the Markov chain, in this case, is

Pr(c1 = 1) =
π

1− π
,

Pr(c1 = 2) =
1

1− π
.



Lecture 4.3: Hidden Markov Models: Old Faithful

model faithnormhmm

{p0[1]<-0.5
p0[2]<-0.5
cc[1]~dcat(p0[])

for (i in 2:30)
{cc[i]~dcat(q[,cc[i-1]]) # This is the
} # "burn-in" section.

c[1]~dcat(q[,cc[30]]) # This is for
# the initial state.



Lecture 4.3: Hidden Markov Models: Old Faithful

for (i in 2:n)
{c[i]~dcat(q[,c[i-1]])
}

for (i in 1:n)
{y[i]~dnorm(mu[c[i]],tau[c[i]])
}

for (j in 1:2)
{tau[j]~dgamma(4,0.04)
}



Lecture 4.3: Hidden Markov Models: Old Faithful

mumean[1]<-mu0-0.2
mumean[2]<-mu0+0.2
mu[1]~dnorm(mumean[1],3.3) I(,mu[2]) # This imposes the
mu[2]~dnorm(mumean[2],3.3) I(mu[1],) # order constraint.

mu0~dnorm(4.0,p.mu)
p.mu<-1/0.3

q[1,2]<-pi
pi~dbeta(1,1)
q[2,2]<-1-q[1,2]
q[1,1]<-0.0
q[2,1]<-1-q[1,1]

}



Lecture 4.3: Hidden Markov Models: Road traffic
headways

The stationary distribution of the Markov chain in this case has

Pr(c1 = 1) =
π2

1 + π2 − π1
,

Pr(c1 = 2) =
1− π1

1 + π2 − π1
.



Lecture 4.3: Hidden Markov Models: Road traffic
headways

model headway

{p0[1]<-0.5
p0[2]<-0.5
cc[1]~dcat(p0[])
for (i in 2:30)

{cc[i]~dcat(q[,cc[i-1]]) # This is the
} # "burn-in" section.

c[1]~dcat(q[,cc[30]])
t[1]~dgamma(alpha[c[1]],beta[c[1]])



Lecture 4.3: Hidden Markov Models: Road traffic
headways

for (i in 2:N)
{c[i]~dcat(q[,c[i-1]])
t[i]~dgamma(alpha[c[i]],beta[c[i]])
}



Lecture 4.3: Hidden Markov Models: Road traffic
headways

alpha[1]<-1
alpha[2]<-1+aa
aa~dgamma(1,0.5)
beta[1]~dgamma(2,8) I(,bb)
beta[2]<-alpha[2]*bb
bb~dgamma(1,2) I(beta[1],)
pi[1]~dbeta(1,2)
pi[2]~dbeta(1,2)
q[1,1]<-pi[1]
q[1,2]<-pi[2]
q[2,1]<-1-pi[1]
q[2,2]<-1-pi[2]



Lecture 4.3: Hidden Markov Models: Road traffic
headways

lrr<-log(pi[1]/pi[2])
pos<-step(lrr)
mu[1]<-1/beta[1]
mu[2]<-1/bb

}


