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Introduction

Simple Motivational Example: 2× 2 contingency table.
Two binomial distributions (one fixed margin).

Outcome
0 1

Group 1 n1 − Y1 Y1

Group 2 n2 − Y2 Y2

Given θ1, θ2

Y1 ∼ Bin(n1, θ1)

Y2 ∼ Bin(n2, θ2)



Introduction

2× 2 contingency table

• Very simple.

• Only two parameters.

• No real difficulty with numerical calculations when we use
non-conjugate priors.

• E.g.

ηi = g(θi )

g(): logit, probit, whatever
(η1, η2): bivariate normal prior
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1 Generalisation to bigger problems.

2 It’s a simple problem. We’re just counting outcomes. It
should have a simple solution.



Introduction

BUT . . .

1 Generalisation to bigger problems.

2 It’s a simple problem. We’re just counting outcomes. It
should have a simple solution.



Introduction

BUT . . .

1 Generalisation to bigger problems.

2 It’s a simple problem. We’re just counting outcomes. It
should have a simple solution.



Introduction: 1. Generalisations to bigger
problems

(i) More than 2 proportions

• Perhaps many.

• Unlikely that we would want independent priors.

• E.g. bioassay.
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Introduction: 1. Generalisations to bigger
problems – bioassay

• Yi out of ni respond with dose xi .

• May be many different doses.

• We might not want to use a simple parametric model. We
might prefer a nonparametric regression.

• In a design problem there may be many potential doses
(design points).



Introduction: 1. Generalisations to bigger
problems

(ii) More than 2 outcomes.

• Collection of multinomial outcomes rather than binomial
outcomes.

• E.g.
• More complicated contingency tables.
• Transition matrix in a Markov chain.
• Item response questionnaires

• May be ordered categories – eg. student feedback.



Introduction: 2. It ought to be simple.

Single proportion, beta prior — beautifully simple.

• Prior: θ ∼ beta(a, b)

• Posterior: θ ∼ beta(a + y , b + n − y)

• Note: exchangeability of Bernoulli trials ⇒ sufficiency of two
counts y , (n − y)

• Can we not find a simple generalisation?

• . . . or, at least, one that is reasonable tractable?

• Can we have meaningful prior elicitation?
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Simple design illustration

• Single proportion

• Prior: θ ∼ beta(a, b)

• We will observe n trials

• . . . then make a terminal decision.

• Choose n.
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Simple design illustration – Terminal
decision

The terminal decision could be many things.

• E.g. Predict the number Z of successes out of m future trials.

• Introduce a benefit utility

Ub,n(Z ,P)

• E.g.

(i)

Ub,n(Z ,P) = 1− |Z − P|
m

(ii)

Ub,n(Z ,P) = 1−
(

Z − P

m

)2

(iii) We get to choose P. This is the terminal decision.
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m
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Simple design illustration – Terminal
decision

EZ |θ[Ub,n(Z ,P)] = 1− 1

m2
mθ(1− θ)− [θ − Eθ(θ)]2
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Simple design illustration – Terminal
decision

EZ ,θ[Ub,n(Z ,P)] = 1− 1

m
Eθ[θ(1− θ)]−Varθ(θ)− [Eθ(θ)−P/m]2

Maximise this expectation by setting P/m = Eθ(θ).
That is P = mEθ(θ).



Simple design illustration – Terminal
decision

We choose P = mEθ(θ). After our experiment, when we have
observed n trials with x successes, we have

Eθ(θ) = E1(θ | x) = θ̂ =
a + x

a + b + n

so we choose
P

m
=

a + x

a + b + n
.

Note the use of the explicit formula.



Simple design illustration – Choice of
sample size

So, our utility before the experiment is

U∗b,n(θ, θ̂) = 1− θ(1− θ)

m
− (θ − θ̂)2

= 1− θ(1− θ)

m
−
(
θ − a + x

a + b + n

)2

= 1− θ(1− θ)

m
−
[

(a + b)θ − a

a + b + n

]2

−
[

x − nθ

a + b + n

]2

+ 2
(x − nθ)[(a + b)θ − a]

(a + b + n)2

(after some algebra).
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{
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}2

− nθ(1− θ)
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(again, after some algebra).



Simple design illustration – Choice of
sample size

Finally we take expectations over the prior distribution of θ.
After some algebra (again):

E(U∗b,n) = 1− ab

(a + b)(a + b + 1)

{
1

m
+

1

a + b + n

}

• So we have an explicit formula which we can combine with a
cost utility and then we can maximise the result wrt n . . .

• . . . but notice how this depends on having explicit formulae for
the necessary expectations and for the terminal decision rule.
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Measures of association – 2 proportions

• Familiar with bivariate normal distribution – 5 parameters:
• 2 means
• 2 variances
• 1 (product-moment) correlation (or covariance)

• The same approach might not be appropriate for proportions
where 0 < θ < 1.



Measures of association – 2 proportions

Some possible alternatives:

• Rank correlation
• Kendall’s τ
• Spearman’s ρ

• Pearson (product-moment) correlation applied to transformed
unknowns (η1, η2)

ηi = g(θi )

g(): logits, probits, whatever.

• Directly in terms of observables.
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Measures of association – Kendall’s τ

• Suppose (θ1, θ2) have some bivariate distribution.

• Consider observing a sequence of independent draws
(T1,j ,T2,j), j = 1, 2, 3, . . . from this distribution.

• Kendall’s τ :

τ1,2 = Pr{(T1,1 − T1,2)(T2,1 − T2,2) > 0}
− Pr{(T1,1 − T1,2)(T2,1 − T2,2) < 0}

“Probability of concordance minus probability of discordance”

Equivalently

τ1,2 = 2 Pr{(T1,1 − T1,2)(T2,1 − T2,2) > 0} − 1



Measures of association – Kendall’s τ
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Measures of association – Spearman’s ρ

ρ1,2 = 3 Pr{(T1,1 − T1,2)(T2,1 − T2,3) > 0}
− Pr{(T1,1 − T1,2)(T2,1 − T2,3) < 0}

• Note: T1,2,T2,3 independent.

• Interpretation not as straightforward.



Measures of association – Transformations

“Ordinary” product-moment correlation of (η1, η2) where
ηi = g(θi ) (logits, probits, whatever).

• Choice of transformation a bit arbitrary.

• Elicitation a little tricky?



Measures of association – Directly from
observables

Bernoulli trial j with θ = θi :

Xi ,j =

{
1
0

E(Xi ,1) = E(θi )

E(Xi ,1Xi ,2) = E(θ2
i )

E(X1,1X2,1) = E(θ1θ2)

Hence

Var(θi ) = E(Xi ,1Xi ,2)− [E(Xi ,1)]2

Covar(θ1, θ2) = E(X1,1X2,1)− E(X1,1)E(X2,1)



Measures of association – Directly from
observables

This seems to argue in favour of simple product-moment
covariance/correlation for (θ1, θ2) but . . .

• would such elicitation work in practice (bearing in mind the
mean-variance relationship)?

• can we relate these moments to parameters of tractable joint
distributions?
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Some possible joint belief structures

1 Full probability distributions.

(i) Dirichlet distribution — and mixtures
(ii) Hierarchical beta distributions

(iii) Copulas
(iv) Multipliers — and mixtures

2 Partial belief specification

(i) Requirements
(ii) Bayes linear kinematics — (etc).

(iii) Direct counts method
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Dirichlet distribution
Consider again 2× 2 table.

Outcome
0 1

Treatment 1 n1 − Y1 Y1

Treatment 2 n2 − Y2 Y2

Imagine a population of individuals with four types, as follows.

Outcomes
Treatment 1 Treatment 2 Probability

1 1 π11

1 0 π10

0 1 π01

0 0 π00

• Let π11, π10, π01, π00 ∼ Dirichlet(a11, a10, a01, a00).

• 4 parameters — better than 2 but not quite enough.



Dirichlet distribution

θ1 = π11 + π10 1− θ1 = π01 + π00

θ2 = π11 + π01 1− θ2 = π10 + π00

• Prior density proportional to πa11−1
11 πa10−1

10 πa01−1
01 πa00−1

00

• Likelihood proportional to
(π11 + π10)y1(π01 + π00)n1−y1(π11 + π01)y2(π10 + π00)n2−y2

• Hence the posterior is a finite mixture of Dirichlet
distributions . . .

• . . . so why not start with a prior which is a mixture of
Dirichlet distributions? — Extra parameter(s).

• Need a suitable family of mixtures.
• Various possibilities.
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Dirichlet distribution – mixtures

The Dirichlet parameters can (sort of) be seen as counts of prior
observations of the four types of individual. Suppose we introduce
four more types of “prior individual” with “prior counts”
b1,∗, b0,∗, b∗,1, b∗,0.
Imagine a population of individuals with four types, as follows.

Outcomes
Treatment 1 Treatment 2 Probability

1 ? π11 + π10

0 ? π01 + π00

? 1 π11 + π01

? 0 π10 + π00



Dirichlet distribution – mixtures

• Prior density proportional to πa11−1
11 πa10−1

10 πa01−1
01 πa00−1

00

×(π11 + π10)b1∗(π01 + π00)b0∗(π11 + π01)b∗1(π10 + π00)b∗0

• Recall that the likelihood is proportional to
(π11 + π10)y1(π01 + π00)n1−y1(π11 + π01)y2(π10 + π00)n2−y2

• We now have 8 parameters — more than enough!

• . . . but can we really elicit 8 parameters for just two
proportions?
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Hierarchical beta distribtuions

Based on a suggestion by Sarah Germain.

θi | µ ∼ beta(kµ, k[1− µ])

µ ∼ beta(c, d)

Joint density

f (µ, θ1, θ2) = B−1(c , d)µc−1(1− µ)d−1

×B−1(kµ, k(1− µ))θkµ−1
1 (1− θ1)k(1−µ)−1

×B−1(kµ, k(1− µ))θkµ−1
2 (1− θ2)k(1−µ)−1



Hierarchical beta distribtuions

Generalise to:

θi | µ ∼ beta(kiµ+ ai , ki [1− µ] + bi )

µ ∼ beta(c , d)

f (µ, θ1, θ2) = B−1(c , d)µc−1(1− µ)d−1

×B−1(k1µ+ a1, k1(1− µ) + b1)

×θk1µ+a1−1
1 (1− θ1)k1(1−µ)+b1−1

×B−1(k2µ+ a2, k2(1− µ) + b2)

×θk2µ+a2−1
2 (1− θ2)k2(1−µ)+b2−1



Hierarchical beta distribtuions

• Now conjugate . . .

• . . . but marginal for θi not very nice.

• Needs more work to make the correlation structure flexible.

• Still, could be useful for some problems.
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Copulas

Suppose, for example,

θi ∼ beta(ai , bi )

Ui = Gi (θi )

where Gi () is the cdf of beta(ai , bi ). Hence

Ui ∼ U(0, 1)

Introduce H(u1, u2) as a joint cdf for U1,U2.

• If H(, ) is a copula then it preserves the uniform marginal
distributions of U1,U2 but makes them dependent. Hence the
beta marginal distributions of θ1, θ2 are also preserved.
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Copulas

• Joint pdf of (θ1, θ2) is

f (θ1, θ2) =
∂2

∂θ1∂θ2
H(u1, u2)

= g1(θ1)g2(θ2)h(u1, u2)

= g1(θ1)g2(θ2)h(G (θ1),G (θ2))

where h(, ) is the copula density and g() is (eg) the beta
density.

• Useful for marginal elicitation.

• Rank correlation just depends on the choice of copula.

• But standard copula families give limited range of correlation.

• Prior is conjugate

• But posterior is no longer a copula so marginals are not nice.
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Multipliers — and mixtures
Recall copula. Joint density:

g1(θ1)g2(θ2)h(G (θ1),G (θ2))

• What if h(, ) is not a copula density?

• We could make it something convenient like a polynomial in
(θ1, θ2).

• Joint density proportional to

g1(θ1)g2(θ2)h(θ1, θ2)

• If h(, ) is a polynomial we get a mixture density

f (θ1, θ2) =
∑

πkg1,k(θ1)g2,k(θ2)

where each gi ,k is a beta density.
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Multipliers — and mixtures

• Eg (for positive correlation)

h(θ1, θ2) = [(1 + θ1 − θ2)(1− θ1 + θ2)]q

with q > 0.

• h(, ) is maximised when θ1 = θ2

• . . . but this might not be what we want. We might want, for
example, a tendency towards θ1 = θc

2 .

• Also, of course, it makes the marginals a bit more complicated
— elicitation.
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Multipliers — and mixtures

• Eg (for negative correlation)

h(θ1, θ2) = [(θ1 + θ2)(2− θ1 − θ2)]q

with q > 0.

• h(, ) is maximised when θ1 + θ2 = 1

• Comments as for previous example.

• Further work needed . . .
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• Eg (for negative correlation)

h(θ1, θ2) = [(θ1 + θ2)(2− θ1 − θ2)]q

with q > 0.

• h(, ) is maximised when θ1 + θ2 = 1

• Comments as for previous example.

• Further work needed . . .


