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Chapter 0

Inference for More Than One
Unknown

0.1 More than one unknown

0.1.1 Basic ideas

MAS3301 mostly looked at Bayesian inference in the case where we have a single unknown quantity,
usually a parameter. In MAS8303 we will typically look at models with two or more, sometimes
many more, unknowns. So, in this lecture, we will look at what happens when we have more
than one unknown parameter. The principle is the same when we have more than one parameter.
We simply obtain a joint posterior distribution for the parameters. For example, if there are two
parameters, we might produce a contour plot of the posterior pdf, as shown in figure 1, or a “3-d”
plot, as shown in figure 2. If there are more than two parameters we need to “integrate out” some
of the parameters in order to produce graphs like this.

As usual, the basic rule is posterior ∝ prior × likelihood. If necessary, the normalising
constant is found by integrating over all parameters. Posterior means, variances, marginal proba-
bility density functions, predictive distributions etc. can all be found by suitable integrations. In
practice the integrations are often carried out numerically by computer. Apart from being the only
practical means in many cases, this removes the pressure to use a convenient conjugate prior.

Sometimes our beliefs might be represented by a model containing several parameters and we
might want to answer questions about a number of them. For example, in a medical experiment,
we might be interested in the effect of a new treatment on several different outcome measures so we
might want to make inferences about the change in the mean for each of these when we move from
the old to the new treatment. In frequentist statistics this can give rise to the “multiple testing
problem.” This problem does not arise for Bayesians. For a Bayesian the inference always consists
of the posterior distribution. Once we have calculated the posterior distribution we can calculate
whatever summaries we want from it without any logical complications. For example, we could
calculate a posterior probability that the mean outcome measure has increased from one treatment
to the other for each outcome, or a joint probability that it has increased for every member of
some subset of the outcomes or any or all of many other summaries.

0.1.2 The bivariate normal distribution

The normal distribution can be extended to deal with two variables. (In fact, we can extend this
to more than two variables).

If Y1 and Y2 are two continuous random variables with joint pdf

f(y) = (2π)−1|V |−1/2 exp

{
−1

2
(y − µ)TV −1(y − µ)

}
for −∞ < y1 < ∞ and −∞ < y2 < ∞ then we say that Y1 and Y2 have a bivariate normal
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Figure 1: Posterior density of two unknowns: Contour plot
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Figure 2: Posterior density of two unknowns: Wireframe plot

distribution with mean vector µ = (µ1, µ2)T and variance matrix

V =

(
v1,1 v1,2

v1,2 v2,2

)
where µ1 and µ2 are the means of Y1 and Y2 respectively, v1,1 and v2,2 are their variances, v1,2 is
their covariance and |V | is the determinant of V.

If Y1 and Y2 are independent then v1,2 = 0 and, in the case of the bivariate normal distribution,
the converse is true.

Note that, if X and Y both have normal marginal distributions it does not necessarily follow
that their joint distribution is bivariate normal, although, in practice, the joint distribution often
is bivariate normal. However, if X and Y both have normal distributions and are independent
then their joint distribution is bivariate normal with zero covariance.

If Y1 and Y2 have a bivariate normal distribution then a1Y1 +a2Y2 is also normally distributed,
where a1 and a2 are constants. For example, if X ∼ N(µx, σ

2
x) and Y ∼ N(µy, σ

2
y) and X and Y

are independent then X + Y ∼ N(µx + µy, σ
2
x + σ2

y).

0.1.3 Functions of continuous random variables (Revision)

Theory

As we shall see in the example below, we sometimes need to find the distribution of a random
variable which is a function of another random variable. Suppose we have two random variables X
and Y where Y = g(X) for some function g(). In this section we will only consider the case where
g() is a strictly monotonic, i.e. either strictly increasing or strictly decreasing, function.
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Suppose first that g() is a strictly increasing function so that if x2 > x1 then y2 = g(x2) > y1 =
g(x1). In this case the distribution functions FX(x) and FY (y) are related by

FY (y) = Pr(Y < y) = Pr(X < x) = FX(x).

We can find the relationship between the probability density functions , fY (y) and fX(x), by
differentiating with respect to y. So

fY (y) =
d

dy
Fy(y) =

d

dy
FX(x) =

d

dx
FX(x)× dx

dy
= fX(x)

dx

dy
= fX(x)

(
dy

dx

)−1

.

Similarly, if g() is a strictly decreasing function so that if x2 > x1 then y2 = g(x2) < y1 = g(x1),

FY (y) = Pr(Y < y) = Pr(X > x) = 1− FX(x)

and

fY (y) = −fX(x)
dx

dy

but here, of course, dx/dy is negative.
So, if g() is a strictly monotonic function

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ where

∣∣∣∣dxdy
∣∣∣∣ is the modulus of

dx

dy
.

A simple way to remember this is to remember that an element of probability fX(x)δx is
preserved through the transformation so that (for a strictly increasing function)

fY (y)δy = fX(x)δx.

Example

Suppose for example that X ∼ N(µ, σ2) and that Y = eX . So X = ln(Y ) and dx/dy = y−1.
Now

fX(x) = (2πσ2)−1/2 exp

{
−1

2

(
x− µ
σ

)2
}

(−∞ < x <∞)

so

fY (y) =
1

y
(2πσ2)−1/2 exp

{
−1

2

(
ln(y)− µ

σ

)2
}

(0 < y <∞).

The resulting distribution for Y is called a lognormal distribution because ln(Y ) has a normal
distribution. It can be useful for representing beliefs about quantities which can only take
positive values.

0.1.4 The multivariate normal distribution

Suppose that X has a multivariate normal Nn(M, V ) distribution. This distribution has a mean
vector M = (m1, . . . ,mn)T where mi is the mean of Xi, and a covariance matrix V. The diagonal
elements of V are the variances of X1, . . . , Xn with the element in row and column i, vii being the
variance of Xi. The covariance of Xi and Xj is vij , the element in row i and column j. Clearly
vji = vij and V is symmetric. It is also positive semi-definite.
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The pdf is

fX(x) = (2π)−n/2|V |−1/2 exp

{
−1

2
(x−M)TV −1(x−M)

}
.

(Here xT denotes the transpose of x). We often work in terms of the precision matrix P = V −1.
In this case, of course, we replace (x−M)TV −1(x−M) with (x−M)TP (x−M).

If X has a multivariate normal Nn(M, V ) distribution and V is a diagonal matrix, that is if
covar(Xi, Xj) = 0 when i 6= j, then X1, . . . , Xn are independent.

0.1.5 Numerical Methods for More Than One Parameter

It is often necessary to use numerical methods to do the necessary integrations for computing
posterior distributions and summaries. Such methods can be used when we have more than one
unknown. We will look at this first in the case of two unknown parameters.

If we have two unknown parameters θ1, θ2 then we often need to create a two-dimensional grid
of values, containing every combination of θ1,1, . . . , θ1,m1 and θ2,1, . . . , θ2,m2 , where θj,1, . . . , θj,mj
are a set of, usually equally spaced, values of θj . We therefore have m1m2 points and two step sizes,
δθ1, δθ2. Figure 3 shows such a grid diagramatically. Instead of a collection of two-dimensional rect-
angular columns standing on a one-dimensional line, we now have a collection of three-dimensional
rectangular columns standing on a two-dimensional plane. The contours in figure 3 represent the
function being integrated. The small circles represent the points at which the function is evaluated.
The dashed lines represent the boundaries of the columns. Of course we would really have many
more function evaluations placed much more closely together. Notice that some of the function
evaluations are in regions where the value of the function is very small. It is inefficient to waste
too many function evaluations in this way and some more sophisticated methods avoid doing this.

The approximate integral becomes∫ ∫
h(θ1, θ2) dθ1 dθ2 ≈

m1∑
j=1

m2∑
k=1

h(θ1,j , θ2,k)δθ1δθ2.

We can extend this to three or more dimensions but it becomes impractical when the number of
dimensions is large. If we use a 100×100 grid in two dimensions this gives 104 function evaluations.
If we use a 100×100×100 grid in three dimensions this requires 106 evaluations and so on. Clearly
the number of evaluations becomes prohibitively large quite quickly as the number of dimensions
increases. In such cases we would usually use Markov chain Monte Carlo methods which are beyond
the scope of this module.

It is sometimes possible to reduce the dimension of the numerical integral by integrating ana-
lytically with respect to one unknown.

0.1.6 Example: The Weibull distribution

Model

The Weibull distribution is often used as a distribution for lifetimes. We might be interested, for
example, in the lengths of time that a machine or component runs before it fails, or the survival
time of a patient after a serious operation. A number of different families of distributions are used
for such lifetime variables. Of course they are all continuous distributions and only give positive
probability density to positive values of the lifetime. The Weibull distribution is an important
distribution of this type. We can think of it as a generalisation of the exponential distribution.
The distribution function of an exponential distribution is F (t) = 1− exp(−λt). The distribution
function of a Weibull distribution is

F (t) = 1− exp (−λtα) (t ≥ 0) (1)

where the extra parameter α > 0 is called a shape parameter. It is often convenient to write λ = ρα

and then
F (t) = 1− exp (−[ρt]α) (t ≥ 0) (2)

and ρ > 0 is a scale parameter.
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Figure 3: Numerical integration in two dimensions.
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Differentiating (2) with respect to t, we obtain the pdf

f(t) = αρ(ρt)α−1 exp{−(ρt)α} (3)

for 0 ≤ t <∞.
If we use α, λ instead of α, ρ as the parameters, as in (1), then the pdf is

f(t) = αλtα−1 exp(−λtα). (4)

Evaluating the posterior distribution

Suppose that we work in terms of the α, ρ parameters of (3) and that we have n observations

t1, . . . , tn. Suppose that our prior density for α and ρ is f
(0)
α,ρ(α, ρ). The likelihood is

L(α, ρ) = αnρnα

(
n∏
i=1

ti

)α−1

exp

{
−ρα

n∑
i=1

tαi

}
.

The posterior pdf is
f (1)
α,ρ(α, ρ) ∝ hα,ρ(α, ρ) = f (0)

α,ρ(α, ρ)L(α, ρ).

To complete the evaluation of the posterior pdf we find

C =

∫ ∞
0

∫ ∞
0

hα,ρ(α, ρ) dα dρ

numerically and then
f (1)
α,ρ(α, ρ) = hα,ρ(α, ρ)/C.

Suppose, for example, that we give α and ρ independent gamma prior distributions so that

f (0)
α,ρ(α, ρ) ∝ αaα−1e−bααρaρ−1e−bρρ.

Then the posterior pdf is proportional to

hα,ρ(α, ρ) = αn+aα−1ρnα+aρ−1

(
n∏
i=1

ti

)α−1

exp

{
−

[
bαα+ bρρ+ ρα

n∑
i=1

tαi

]}
.

Figure 1 shows the posterior density of α and ρ when n = 50, aα = 1, bα = 1, aρ = 3, bρ = 1000
and the data are as given in table 1. Figure 2 shows the same thing as a perspective plot except
that, to make the axes more readable, ρ has been replaced with R = 1000ρ.

To find, for example, the posterior mean of ρ we evaluate∫ ∞
0

∫ ∞
0

ρ f (1)
α,ρ(α, ρ) dα dρ = C−1

∫ ∞
0

∫ ∞
0

ρ hα,ρ(α, ρ) dα dρ.

To find a 95 % hpd region for α, ρ we can either choose a value k and evaluate
∫ ∫

f
(1)
α,ρ(α, ρ) dα dρ

over all points in a grid for which f
(1)
α,ρ(α, ρ) > k then adjust k and repeat until the value of 0.95
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67 313 1391 630 627 573 2093 28 492 482

206 1166 165 1088 496 313 437 815 436 17

32 131 340 939 247 1859 57 132 813 254

950 1615 463 258 2285 672 506 50 637 246

178 431 306 662 33 254 858 187 344 545

Table 1: Data for Weibull example.

is obtained or rank all of the points in our grid in decreasing order of f
(1)
α,ρ(α, ρ) and cumulatively

integrate over them until 0.95 is reached.
To find the marginal pdf for α we evaluate∫ ∞

0

f (1)
α,ρ(α, ρ) dρ.

0.1.7 Transformations

Theory

It has probably become apparent by now that sometimes it may be helpful to use a transformation
of the parameters. For example, sometimes a posterior distribution where we need to use numerical
integration might have an awkward shape which makes placing a suitable and efficient rectangular
grid difficult.

In section 0.1.3 we saw how to change the pdf when we transform a single random variable.
Sometimes, of course, we need a more general method for transforming between one set of pa-
rameters and another. Let θ and φ be two alternative sets of parameters where there is a 1 - 1
relationship between values of θ and values of φ, and therefore each contains the same number of
parameters. (There could appear to be more parameters in θ than in φ, for example, but, in that
case, there would have to be constraints on the values of θ so that there was the same effective
number of parameters in θ and φ). Let θ = (θ1, . . . , θk)T and φ = (φ1, . . . , φk)T . Suppose also that
we can write, for each i,

φi = gi(θ1, . . . , θk)

where g is a differentiable function. Then, if the density of θ is fθ(θ) and the density of φ is fφ(φ),

fθ(θ) = fφ(φ)|J |

where J is the Jacobian determinant, often just called “the Jacobian,”∣∣∣∣∣∣∣∣∣∣

∂φ1

∂θ1

∂φ1

∂θ2
· · · ∂φ1

∂θk
∂φ2

∂θ1

∂φ2

∂θ2
· · · ∂φ2

∂θk
...

...
...

...
∂φk
∂θ1

∂φk
∂θ2

· · · ∂φk
∂θk

∣∣∣∣∣∣∣∣∣∣
and |J | is its modulus.

For example, we could transform the (0,∞) ranges of the parameters α, ρ of a Weibull distri-
bution to (0, 1) by using

β =
α

α+ 1
, γ =

ρ

ρ+ 1
.

The Jacobian is

J =

∣∣∣∣∣ ∂β
∂α

∂β
∂ρ

∂γ
∂α

∂γ
∂ρ

∣∣∣∣∣ = (α+ 1)−2(ρ+ 1)−2.

Suppose that the joint posterior density of α and ρ is proportional to hα,ρ(α, ρ). So we define



0.1. MORE THAN ONE UNKNOWN 11

hβ,γ(β, γ) = (α+ 1)2(ρ+ 1)2hα,ρ(α, ρ),

where

α =
β

1− β
, ρ =

γ

1− γ

so

hβ,γ(β, γ) = (1− β)−2(1− ρ)−2hα,ρ

(
β

1− β
,

γ

1− γ

)
.

Then let

C =

∫ 1

0

∫ 1

0

hβ,γ(β, γ) dβ dγ.

The posterior mean of ρ is then

C−1

∫ 1

0

∫ 1

0

γ

1− γ
hβ,γ(β, γ) dβ dγ.

A hpd region for α, ρ can then be found by integrating C−1hβ,γ(β, γ) with respect to β, γ over
the points with the greatest values of

hα,ρ

(
β

1− β
,

γ

1− γ

)
= hα,ρ(α, ρ).

Example: A clinical trial

The Anturane Reinfarction Trial Research Group (1980) reported a clinical trial on the use of the
drug sulfinpyrazone in patients who had suffered myocardial infarctions (“heart attacks”). The
idea was to see whether the drug had an effect on the number dying. Patients in one group
were given the drug while patients in another group were given a “placebo,” that is an inactive
substitute. The following table gives the number of all “analysable” deaths up to 24 months after
the myocardial infarction and the total number of eligible patients who were not withdrawn and
did not suffer a “non-analysable” death during the study.

Deaths Total
Group 1 (Sulfinpyrazone) 44 560
Group 2 (Placebo) 62 540

We can represent this situation by saying that there are two groups, containing n1 and n2

patients, and two parameters, θ1, θ2, such that, given these parameters, the distribution of the
number of deaths Xj in Group j is binomial(nj , θj).

Now we could give θj a beta prior distribution but it seems reasonable that our prior beliefs
would be such that θ1 and θ2 would not be independent. There are various ways in which we
could represent this. One of these is as follows. We transform from the (0, 1) scale of θ1, θ2

to a (−∞,∞) scale and then give the new parameters, η1, η2, a bivariate normal distribution
(see section 0.1.2). We can use a transformation where θj = F (ηj) and F (x) is the distribution
function of a continuous distribution on (−∞, ∞), usually one which is symmetric about x = 0.
One possibility is to use the standard normal distribution function Φ(x) so that θj = Φ(ηj). We
write ηj = Φ−1(θj) where this function, Φ−1(x), the inverse of the standard normal distribution
function, is sometimes called the probit function. If we use this transformation then it is easily
seen that

fθ(θ1, θ2) = fη(η1, η2)/|J |,

where fθ(θ1, θ2) is the joint density of θ1, θ2, fη(η1, η2) is the joint density of η1, η2 and
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|J | = |

∣∣∣∣∣ ∂θ1
∂η1

∂θ1
∂η2

∂θ2
∂η1

∂θ2
∂η2

∣∣∣∣∣ | = φ(η1)φ(η2),

where φ(x) is the standard normal pdf.

Suppose that, from past experience, we can give a 95% symmetric prior interval for θ2 (placebo)
as 0.05 < θ2 < 0.20. (This is actually quite a wide interval considering that there may be a lot of
past experience of such patients). This converts to a 95% interval of −1.645 < η2 < −0.842. For
example, in R, we can use

> qnorm(0.025,0,1)

[1] -1.959964

If we give η2 a normal prior distribution then we require the mean to be µ2 = ([−1.645] +
[−0.842])/2 ≈ −1.24 and the standard deviation to be σ2 = ([−0.842]−[−1.645])/(2×1.96) ≈ 0.21,
since a symmetric 95% normal interval is the mean plus or minus 1.96 standard deviations. Let us
use the same mean for a normal prior distribution for η1 (sulfinpyrazone) so that we have equal prior
probabilities for an increase and a decrease in death rate when the treatment is given. However it
seems reasonable that we would be less certain of the death rate given the treatment so we increase
the prior standard deviation to σ1 = 2σ2 = 0.42. This implies a 95% interval −2.06 < η1 < −0.42
which, in turn, implies 0.02 < θ1 < 0.34. (This is a wide interval so we are really not supplying
much prior information).

We also need to choose a covariance or correlation between η1 and η2. At this point we will
not discuss in detail how to do this except to say that, if we choose the correlation to be r, then
the conditional variance of one of η1, η2 given the other will be 100r2% of the marginal variance.
For example, if we choose r = 0.7, then the variance of one is roughly halved by learning the
value of the other. Suppose that we choose this value. Then the covariance between η1 and η2 is
0.7× 0.21× 0.42 = 0.0617.

In evaluating the joint prior density of η1, η2, we can make use of the fact, which is easily
confirmed, that, if δj = (ηj − µj)/σj and r = covar(η1, η2)/(σ1σ2), then the joint density is
proportional to

exp

{
− 1

2(1− r2)
(δ2

1 + δ2
2 − 2rδ1δ2)

}
.

Figure 4 shows a R function to evaluate the posterior density. Figure 5 shows the resulting
posterior density. The dashed line is the line θ1 = θ2. We see that most of the probability lies on
the side where θ2 > θ1 which suggests that the death rate is probably greater with the placebo
than with sulfinpyrazone, which, of course, suggests that sulfinpyrazone has a beneficial effect.

To investigate further what the posterior tells us about the effect of sulfinpyrazone, we can
calculate the posterior probability that θ1 < θ2. This is done by integrating the joint posterior
density over the region where θ1 < θ2. This calculation is included in the function shown in figure
4. The calculated probability is 0.972. We can also find the posterior density of the relative risk,
θ1/θ2, or the log relative risk, log(θ1/θ2). Let γ be the log relative risk. We can modify the function
in figure 4 so that it uses a grid of γ and θ2 values, evaluates the joint posterior density of γ and
θ2 and then integrates out θ2. Of course we need to transform between θ1, θ2 and γ, θ2 where the
densities are related by

fθ1,θ2(θ1, θ2) = fγ,θ2(γ, θ2)|J |

and J = θ−1
1 is the appropriate Jacobian. Figure 6 shows the prior and posterior densities of the log

relative risk, γ. Values of γ less than zero correspond to a smaller death rate with sulfinpyrazone
than with the placebo. Notice that the prior density is not quite symmetric about zero. It is
symmetric on the η scale but not on the γ scale. The prior median is zero, however.

There are other methods available to deal with problems of this sort, some involving approxi-
mations and fairly simple calculations.
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function(theta1,theta2,n,x,prior)

{# Evaluates posterior density for probit example.

# prior is mean1, mean2, sd1, sd2, correlation

n1<-length(theta1)

n2<-length(theta2)

step1<-theta1[2]-theta1[1]

step2<-theta2[2]-theta2[1]

theta1<-matrix(theta1,nrow=n1,ncol=n2)

theta2<-matrix(theta2,nrow=n1,ncol=n2,byrow=T)

eta1<-qnorm(theta1,0,1)

eta2<-qnorm(theta2,0,1)

delta1<-(eta1-prior[1])/prior[3]

delta2<-(eta2-prior[2])/prior[4]

r<-prior[5]

d<-1-r^2

logprior<- -(delta1^2 + delta2^2 - 2*r*delta1*delta2)/(2*d)

J<-dnorm(eta1,0,1)*dnorm(eta2,0,1)

logprior<-logprior-log(J)

loglik<-x[1]*log(theta1)+(n[1]-x[1])*log(1-theta1)+x[2]*log(theta2)+(n[2]-x[2])*log(1-theta2)

logpos<-logprior+loglik

logpos<-logpos-max(logpos)

posterior<-exp(logpos)

int<-sum(posterior)*step1*step2

posterior<-posterior/int

prob<-sum(posterior*(theta1<theta2))*step1*step2

ans<-list(density=posterior,prob=prob)

ans

}

Figure 4: R function for probit example (0.1.7).
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Figure 5: Posterior density of θ1 and θ2 in probit example (0.1.7). The dashed line is θ1 = θ2.
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Figure 6: Posterior density (solid) and prior density (dashes) of log relative risk in probit example
(0.1.7).
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0.2 The Dirichlet distribution and multinomial observations

0.2.1 The Dirichlet distribution

The Dirichlet distribution is a distribution for a set of quantities θ1, . . . , θm where θi ≥ 0 and∑m
i=1 θi = 1. An obvious application is to a set of probabilities for a partition (i.e. for an exhaustive

set of mutually exclusive events).
The probability density function is

f(θ1, . . . , θm) =
Γ(A)∏m
i=1 Γ(ai)

m∏
i=1

θai−1
i

where A =
∑m
i=1 ai and a1, . . . , am are parameters with ai > 0 for i = 1, . . . ,m. We write

Dm(a1, . . . , am) for this distribution.
Clearly, if m = 2, we obtain a Beta(a1, a2) distribution as a special case.
The mean of θj is

E(θj) =
aj
A

the variance of θj is

var(θj) =
aj

A(A+ 1)
−

a2
j

A2(A+ 1)

and the covariance of θj and θk, where j 6= k, is

covar(θj , θk) = − ajak
A2(A+ 1)

.

Also the marginal distribution of θj is Beta(aj , A− aj).
Note that the space of the parameters θ1, . . . , θm has only m − 1 dimensions because of the

constraint
∑m
i=1 θi = 1, so that, for example, θm = 1 −

∑m−1
i=1 θi. Therefore, when we integrate

over this space, the integration has only m− 1 dimensions.

Proof (mean)

The mean is

E(θj) =

∫
· · ·
∫
θj

Γ(A)∏m
i=1 Γ(ai)

m∏
i=1

θai−1
i dθ1 . . . dθm−1

=
Γ(A)

Γ(A+ 1)

Γ(aj + 1)

Γ(aj)

∫
· · ·
∫

Γ(A+ 1)∏m
i=1 Γ(a′i)

m∏
i=1

θ
a′i−1
i dθ1 . . . dθm−1

=
Γ(A)

Γ(A+ 1)

Γ(aj + 1)

Γ(aj)
=
aj
A

where a′i = ai when i 6= j and a′j = aj + 1.
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Proof (variance)

Similarly

E(θ2
j ) =

Γ(A)

Γ(A+ 2)

Γ(aj + 2)

Γ(aj)
=

(aj + 1)aj
(A+ 1)A

so

var(θj) =
(aj + 1)aj
(A+ 1)A

−
(aj
A

)2

=
aj

A(A+ 1)
−

a2
j

A2(A+ 1)

Proof (covariance)

Also

E(θjθk) =
Γ(A)

Γ(A+ 2)

Γ(aj + 1)

Γ(aj)

Γ(ak + 1)

Γ(ak)
=

ajak
(A+ 1)A

so
covar(θj , θk) =

ajak
(A+ 1)A

− aj
A

ak
A

= − ajak
A2(A+ 1)

Proof (marginal)

We can write the joint density of θ1, . . . , θm as

f1(θ1)f2(θ2 | θ1)f3(θ3 | θ1, θ2) · · · fm−1(θm−1 | θ1, . . . , θm−2).

(We do not need to include a final term in this for θm because θm is fixed once θ1, . . . , θm−1 are
fixed).

In fact we can write the joint density as

Γ(A)

Γ(a1)Γ(A− a1)
θa1−1

1 (1− θ1)A−a1−1 × Γ(A− a1)

Γ(a2)Γ(A− a1 − a2)

θa2−1
2 (1− θ1 − θ2)A−a1−a2−1

(1− θ1)A−a1−1

× · · · × Γ(A− a1 − · · · − am−2)

Γ(am−1)Γ(A− a1 − · · · − am−1)

θ
am−1−1
m−1 θam−1

m

(1− θ1 − · · · θm−2)am−1+am−1
.

A bit of cancelling shows that this simplifies to the correct Dirichlet density.
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Thus we can see that the marginal distribution of θ1 is a Beta(a1, A − a1) distribution and
similarly that the marginal distribution of θj is a Beta(aj , A−aj) distribution. We can also deduce

the distribution of a subset of θ1, . . . , θm. For example if θ̃3 = 1−θ1−θ2−θ3, then the distribution
of θ1, θ2, θ3, θ̃3 is Dirichlet Dd(a1, a2, a3, ã3) where ã3 = A− a1 − a2 − a3.

0.2.2 Multinomial observations

Model

Suppose that we will observe X1, . . . , Xm where these are the frequencies for categories 1, . . . ,m,
the total N =

∑m
i=1Xi is fixed and the probabilities for these categories are θ1, . . . , θm where∑m

i=1 θi = 1. Then, given θ, where θ = (θ1, . . . , θm)T , the distribution of X1, . . . , Xm is multinomial
with

Pr(X1 = x1, . . . , Xm = xm) =
N !∏m
i=1 xi!

m∏
i=1

θxii .

Notice that, with m = 2, this is just a Bin(N, θ1) distribution.
Then the likelihood is

L(θ; x) =
N !∏m
i=1 xi!

m∏
i=1

θxii

∝
m∏
i=1

θxii .

The conjugate prior is a Dirichlet distribution which has a pdf proportional to

m∏
i=1

θai−1
i .

The posterior pdf is proportional to

m∏
i=1

θai−1
i ×

m∏
i=1

θxii =

m∏
i=1

θai+xi−1
i .

This is proportional to the pdf of a Dirichlet distribution with parameters a1 +x1, a2 +x2, . . . am+
xm.

Example

In a survey 1000 English voters are asked to say for which party they would vote if there were
a general election next week. The choices offered were 1: Labour, 2: Liberal, 3: Conservative,
4: Other, 5: None, 6: Undecided. We assume that the population is large enough so that the
responses may be considered independent given the true underlying proportions. Let θ1, . . . , θ6

be the probabilities that a randomly selected voter would give each of the responses. Our prior
distribution for θ1, . . . , θ6 is a D6(5, 3, 5, 1, 2, 4) distribution.

This gives the following summary of the prior distribution.

Response ai Prior mean Prior var. Prior sd.
Labour 5 0.25 0.008929 0.09449
Liberal 3 0.15 0.006071 0.07792
Conservative 5 0.25 0.008929 0.09449
Other 1 0.05 0.002262 0.04756
None 2 0.10 0.004286 0.06547
Undecided 4 0.20 0.007619 0.08729
Total 20 1.00

Suppose our observed data are as follows.
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Labour Liberal Conservative Other None Undecided
256 131 266 38 114 195

Then we can summarise the posterior distribution as follows.

Response ai + xi Posterior mean Posterior var. Posterior sd.
Labour 261 0.2559 0.0001865 0.01366
Liberal 134 0.1314 0.0001118 0.01057
Conservative 271 0.2657 0.0001911 0.01382
Other 39 0.0382 0.0000360 0.00600
None 116 0.1137 0.0000987 0.00994
Undecided 199 0.1951 0.0001538 0.01240
Total 1020 1.0000



Chapter 1

The Normal Linear Model

1.1 Regression and the normal linear model

1.1.1 Introduction

A model which describes how the conditional distribution of one variable, often called the dependent
variable, given some other variables, depends on the values taken by these other variables, is called
a regression. Typically we are interested in how the conditional mean of the dependent variable
depends on the values of the other variables but other features of the distribution may also change.
Various names are used to describe these other variables, including regressors, explanatory variables
and covariates.

There are many different kinds of regression models. One of the simplest is described by the
equation

Y = α+ βx+ ε. (1.1)

This might be used in situations where an observation consists of a pair of values (xi, yi) where

yi = α+ βxi + εi,

• yi is observation number i on the dependent variable,

• xi is observation number i on a single explanatory variable,

• εi is a random “error” and

• α and β are parameters the values of which are usually unknown.

Our data might consist of n such pairs.

We also need to specify a sampling distribution for εi. In this chapter we assume the following
(conditional on model parameters):

Normality : ε ∼ N(0, σ2).

Independence : ε1, . . . , εn are independent , given the parameters of their distribution (typically

the variance σ2).

Equality of variance each of ε1, . . . , εn has the same variance σ2 (equivalently, the same preci-
sion τ).

Another way to express this model is to say that the conditional distribution of Y given x (and
the model parameters) is normal with mean α+βx and variance σ2 and that, given xi and xj and
the model parameters, Yi and Yj are independent for i 6= j.

This model, with the relationship given in (1.1) and these assumptions about the errors is called
an ordinary linear regression on a single covariate with normal errors.

19
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1.1.2 Example

Here is a simple example. We wish to be able to predict the height of a student if we know the
student’s shoe size.

Suppose that we are prepared to accept (1.1) as a reasonable description of the relationship.
That is, the conditional mean height, given shoe size, is a linear function of shoe size and the actual
heights, given a particular shoe size, have a distribution centered on this mean. The “errors” ε
are the differences between the actual height values and the conditional mean given by our linear
function of shoe size. Suppose that we are also prepared to accept the usual assumptions of
normality, independence and equal variance, that is that the conditional variance of height given
shoe size does not depend on shoe size. These are issues of model choice. One way to think of a
regression model like this is as a device which allows us to use information from many different
values of the regressor X to help us to make predictions about Y for other values of X, in a way
which seems to be appropriate to us according to our prior beliefs.

We need to specify our prior distribution for the parameters. There are three parameters in
this model, α, the intercept, β, the slope of the regression line, and τ = σ−2, the error precision.

There are many possibilities, including the following.

• The value of τ is known and we give α and β a bivariate normal prior.

• The value of τ is unknown but we use a conjugate prior. We give τ a gamma prior and
we give α and β a bivariate normal conditional prior, given τ, where the precision matrix is
proportional to τ.

• We use a semi-conjugate prior in which τ has a gamma prior and α and β have a bivariate
normal prior independently of τ.

• A non-conjugate prior.

For illustration, consider a semi-conjugate prior.
As it stands, our model says that the conditional mean height for a student with shoe size x

is α + βx. This makes α a rather unnatural paramater because it represents the mean height for
students with shoe size zero, a shoe size which is well outside the usual range for students. This
makes it difficult for us to think about our prior beliefs about α and also creates a rather awkward
relationship between α and β in our beliefs since a change in α would require a change in β to
make the regression line continue to pass through the region where we think (X,Y ) points will
typically be found. It is better to change the origin of X to a more usable reference value xref .
I know my own shoe size and height so let us use my shoe size, 11, as a reference value. Let
z = x− xref1 = x− 11 then our regression equation becomes

Y = α̃1 + βz + ε,

where α̃1 = α + βxref1 = α + 11β now represents the mean height for students who take size 11
shoes. I can now use my own height, 74 inches, as a guide to the likely value of α̃. Let us give α̃
a prior distribution which is normal with mean 74. Of course I can not assume that I am exactly
the average height for size 11 shoe-wearers so we need a suitable prior standard deviation for α̃1. I
think that, even bearing in mind that it is a long time since I was a first year student, I am unlikely
to be more than six inches from the conditional mean so let us make the standard deviation 3,
giving a variance of 9 and a precision of 0.111. We could choose to make the standard deviation
larger, of course, if we felt less confident about the value of our prior information.

Now we need a prior for β. How much does the mean height change when we change the shoe
size by one unit? As a guide, my wife is 64 inches tall and takes size 5 shoes. This suggests a
change of 10 inches in 6 shoes sizes or β = 10/6 ≈ 1.7. Let us use xref2 = 5 as a second reference
value. Let α̃2 = α + βxref2 = α + 5β now represent the mean height for students who take size 5
shoes. Let us give α̃2 a N(64, 9) prior distribution.

In this example it seems reasonable to make α̃1 and α̃2 independent in our prior distribution
and this is what we will do. In other examples we might, for example, feel that we are likely to have
misjudged both conditional means in the same direction and so give them a positive covariance.
So, let us write

β̃ =

(
α̃1

α̃2

)
.
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Then β̃ has a bivariate normal prior distribution with mean

M̃ =

(
E(α̃1)
E(α̃2)

)
=

(
74
64

)
and variance

Ṽ0 =

(
var(α̃1) covar(α̃1, α̃2)

covar(α̃1, α̃2) var(α̃2)

)
=

(
9 0
0 9

)
.

It is easily seen that

β =
α̃1 − α̃2

xref1 − xref2
and α =

α̃2xref1 − α̃1xref2

xref1 − xref2
.

We could continue to work with, for example, z rather than x but we can convert back to the
original parameters using

β =

(
α
β

)
=

1

xref1 − xref2

(
−xref2 xref1

1 −1

)
β̃ = Hβ̃.

Then α, β have a bivariate normal prior distribution with mean

M0 = HM̃ =
1

6

(
−5 11
1 −1

)(
74
64

)
=

(
55.7
1.7

)
and variance

V0 = HṼ0H
T =

1

36

(
−5 11
1 −1

)(
9 0
0 9

)(
−5 1
11 −1

)
=

(
36.5 −4
−4 0.5

)
.
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1.1.3 The normal linear model

The normal linear model is a more general class of models which includes (1.1) and many more
kinds of model, as special cases.

First of all let us rewrite (1.1), using slightly different notation, as

Y = β0 + β1x+ ε. (1.2)

Now suppose that we want to relate the dependent variable Y to the values, x1, . . . , xk, of two or
more regressors X1, . . . , Xk. One way to do this is to write

Y = β0 + β1x1 + · · ·+ βkxk + ε.

So, our model for observation i is

Yi = β0 + β1xi,1 + · · ·+ βkxi,k + εi, (1.3)

where xi,j is the value of regressor Xj in observation i.
It is convenient to make a further change to the notation. We relabel the regressors and

coefficients 1, . . . , p instead of 0, . . . , k. So k = p− 1. Then

Yi = β1xi,1 + · · ·+ βpxi,p + εi =

p∑
j=1

βjxi,j + εi. (1.4)

We seem to have lost the intercept term β0 in (1.2) and (1.3). However this is easily overcome by
defining X1 so that xi,1 = 1 for all i. Then we can rewrite (1.2) as

Y = β11 + β2x+ ε

and define X1 ≡ 1 and X2 = X.

Example: one-way layout We observe several samples from normal distributions (as in the
“one-way ANOVA”). Model: Yi,j ∼ N(µj , τ

−1) for the ith observation in sample j. Let us
rename µj as βj . Then we can write the model as

Yi,j = βj + εi,j (1.5)

where εi,j ∼ N(0, τ−1). Now, suppose that, instead of numbering the observations within

each sample, we number them all in one long sequence Y1, . . . , Yn, where n =
∑J
j=1 nj .

We need a way to indicate to which sample an observation belongs so we define regressors
X1, . . . , XJ where xi,j = 1 if observation i is in sample j and xi,j = 0 otherwise. Then our
model is exactly of the form (1.4) if we set p = J.

Notice that, for fixed values of the regressors xi,1, . . . , xi,p, (1.4) is linear in the coefficients
β1, . . . , βp. This is therefore called a linear model or a linear regression. It is called a normal linear
model because of our assumption that the “errors” ε are normally distributed. The normal linear
model includes a great variety of models which are commonly used in statistics. Generalisations
and extensions allow an even greater variety but we will leave these for later. Just to illustrate
that the linearity refers to the coefficients and not to the shape of a graph which we might draw to
represent how Y changes, consider a model in which we want to describe the way that Y changes
over time t using a cubic function of t. We simply write xi,1 = 1, xi,2 = ti, xi,3 = t2i and xi,4 = t3i .
Then

Yi = β1 + β2ti + β3t
2
i + β4t

3
i + εi.

Matrix notation

It is convenient to use matrix notation. We rewrite (1.4) as

Y = Xβ + ε (1.6)
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where Y = (Y1, . . . , Yn)T is a n× 1 vector of observations on Y,

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
xn1 xn1 · · · xnp


is a n × p matrix whose elements are known x-values. (In some cases all of the elements are 0 or
1). We call X the design matrix. This name reflects the fact that sometimes, that is is designed
experiments, the elements of X are deliberately chosen and X then represents the design of the
experiment. The p× 1 vector of unknown parameters is β = (β1, . . . , βp)

T and ε = (ε1 . . . , εn)T is
a n× 1 error vector. The vector of random errors has a multivariate normal distribution (given τ):

ε ∼ Nn(0, τ−1I)

where 0 is a vector of zeroes and I is a n× n identity matrix.
Given τ and β, the vector of observations y is an observation from a multivariate normal

distribution:
Y ∼n N(Xβ, τ−1I).

Example: Regression on a single covariate Here Yi = α+ βxi + εi. We have

X =

(
1 1 1 . . . 1
x1 x2 x3 . . . xn

)T
and

β =

(
α
β

)
.

Example: one-way layout (as above). Suppose, for illustration, that we have four samples,
each with three observations. Then we have

β =


µ1

µ2

µ3

µ4

 and X =



1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1



.

(There is, in fact, more than one way to parameterise, that is express in terms of parameters,
this model and it is sometimes convenient to do it in a different way).

Notice that the design matrix contains one column corresponding to each of the coefficients
β1, . . . , βp.
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1.2 Inference for the normal linear model

1.2.1 Likelihood and sufficient statistics

Given the model in (1.6) and a data vector y containing n observations, the likelihood is

L = (2π)−n/2τn/2 exp
{
−τ

2
(y −Xβ)T (y −Xβ)

}
.

We will assume in what follows that the design matrix X is of full rank and that therefore
(XTX)−1 exists. If X is not of full rank then this does not mean that the likelihood does not exist
nor that no Bayesian inference is possible. However it does mean that there is at least one linear
function of β about which the data will tell us nothing. In such a case it may be best to reconsider
the model. For example, suppose that, instead of the model in (1.5), we had Yi,j = µ + βj + εi,j
where µ is meant to represent a sort of overall mean. Then, when we put this in the form (1.4), µ
becomes, in effect, βJ+1 and we have an extra regressor XJ+1 where xi,J+1 = 1. However, for all i,
xi,J+1 = xi,1 + · · ·+xi,J so the rank of X is still J, not J+1 even though it now has J+1 columns.
It is easy to see that, in this case, we have too many parameters and they can not all be identified.
If we replaced β1, . . . , βJ with β̃1, . . . , β̃J , where β̃j = βj + δ, and βJ+1 with β̃J+1 = βJ+1− δ, then
we would get exactly the same model and exactly the same likelihood so the data can not tell us
about δ and therefore not about the complete set of values of β1, . . . , βJ . We could, however, learn
about the differences βj − βJ+1 for j = 1, . . . , J.

So, assuming that (XTX)−1 exists, let us write

β̂ = (XTX)−1XT y.

We call β̂ the least squares estimates of β.

Then

(y −Xβ)T (y −Xβ) = (y −Xβ̂ −X[β − β̂])T (y −Xβ̂ −X[β − β̂])

= (y −Xβ̂)T (y −Xβ̂) + (β − β̂)TXTX(β − β̂)− 2(β − β̂)TXT (y −Xβ̂)

but

(β − β̂)TXT (y −Xβ̂) = (β − β̂)T {XT y −XTX(XTX)−1XT y} = 0.

Thus

L = (2π)−n/2τn/2 exp
{
−τ

2
[Sd + (β − β̂)TXTX(β − β̂)]

}
(1.7)

and Sd and β̂ are sufficient for τ and β, where

Sd = (y −Xβ̂)T (y −Xβ̂).

Moreover, if τ is known, then β̂ is sufficient for β.

The sampling distribution of Y is

Y | τ, β ∼ Nn(Xβ, τ−1I)

so the sampling distribution of β̂ is

β̂ | τ, β ∼p N(β, τ−1[XTX]−1)

since (XTX)−1XTXβ = β and (XTX)−1XT [τ−1I]X(XTX)−1 = τ−1[XTX]−1. Thus the “data

precision” is τXTX.
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1.2.2 Inference with known error precision

Suppose that the error precision is known and that our prior distribution for β is a multivariate

normal distribution with mean b0 and variance V0 = P−1
0 . Then the posterior distribution is a

multivariate normal distribution with mean b1 and variance V1 = P−1
1 where

b1 = P−1
1 (P0b0 + Pdβ̂),

P1 = P0 + Pd

and Pd = τXTX.

The matrices P0 and P1 are the prior and posterior precision matrices respectively.

Proof: The prior density is proportional to

exp

{
−1

2
(β − b0)TP0(β − b0)

}
.

The posterior density is therefore proportional to

h(β) = exp

{
−1

2
(β − b0)TP0(β − b0)

}
exp

{
−1

2
(β − β̂)TPd(β − β̂)

}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2(bT0 P0 + β̂

T
Pd)β + bT0 P0b0 + β̂

T
Pdβ̂

]}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2(bT0 P0 + β̂

T
Pd)(P0 + Pd)

−1(P0 + Pd)β + bT0 P0β0
+ β̂

T
Pdβ̂

]}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2bT1 (P0 + Pd)β + bT0 P0b0 + β̂

T
Pdβ̂

]}
= exp

{
−1

2

[
βT (P0 + Pd)β − 2βT

1
(P0 + Pd)β + bT1 (P0 + Pd)b1

]}
× exp

{
−1

2

[
bT0 P0b0 + β̂

T
Pdβ̂ − bT1 (P0 + Pd)b1

]}
= exp

{
−1

2
(β − b1)T (P0 + Pd)(β − b1)

}
× exp

{
−1

2

[
bT0 P0b0 + β̂

T
Pdβ̂ − bT1 (P0 + Pd)b1

]}
which is proportional to

exp

{
−1

2
(β − b1)T (P0 + Pd)(β − b1)

}
which, in turn, is proportional to the pdf of a normal distribution with mean b1 and precision
matrix P0 + Pd.
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Example 1

In a regression on a single covariate, where Yi = α+ βxi + εi, we have

XTX =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

)
and XT y =

( ∑n
i=1 yi∑n
i=1 xiyi

)
.

So

(XTX)−1 =
1

nSxx

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n
i=1 xi n

)
where

Sxx =

n∑
i=1

x2
i −

1

n

(
n∑
i=1

xi

)2

=

n∑
i=1

(xi − x̄)2

and x̄ is the sample mean of x, that is (
∑n
i=1 xi)/n.

Therefore we can find the least squares estimates of β = (α, β)T as

β̂ = (XTX)−1XT y

=
1

nSxx

( ∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

)
=

(
ȳ − x̄Sxy/Sxx
Sxy/Sxx

)
,

where

Sxy =

n∑
i=1

xiyi −
1

n

n∑
i=1

xi

n∑
i=1

yi =

n∑
i=1

(xi − x̄)(yi − ȳ)

and ȳ is the sample mean of y, that is (
∑n
i=1 yi)/n.
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For the shoe-size and height example in section 1.1.2 we have

b0 =

(
55.7
1.7

)
and P0 = V −1

0 =

(
0.2222 1.7778
1.7778 16.2222

)
.

Suppose that we choose τ = 0.5, corresponding to an error standard deviation of 1.414 inches.
From the data (a class of first-year students some years ago) we have n = 152,

∑
xi =

1208.5,
∑
yi = 10427,

∑
x2
i = 10202.25 and

∑
xiyi = 83828. From these we can calculate

β̂ =

(
56.19516
1.56006

)
and

Pd = 0.5

(
152 1208.5

1208.5 10202.25

)
=

(
76.00 604.25
604.25 5101.125

)
.

Therefore

P1 = P0 + Pd =

(
76.2222 606.0278
606.0278 5117.3472

)
,

V1 = P−1
1 =

(
0.22458 −0.026597
−0.026597 0.0033451

)
,

b1 = P−1
1 (P0b0 + Pdβ̂) =

(
56.1894
1.5610

)
.

The following table summarises the changes in our beliefs about α and β from prior to posterior.

Prior Posterior
Mean Std. deviation Mean Std. deviation

α 55.7 6.042 56.189 0.474
β 1.7 0.707 1.561 0.058

The parameters are strongly negatively correlated in both the prior and posterior distributions.
The prior correlation is −0.94 and the posterior correlation is −0.97.
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Example 2

After certain material is extracted from an organism, the concentration of a certain compound in
the material decreases exponentially over time.

Our model is
yi = a− cti + εi

for i = 1, . . . , 6, where yi is the logarithm of a measurement on the concentration of the com-
pound ti minutes after the material is extracted. We assume that εi ∼ N(0, σ2), where σ2 is
known to be 0.0025, and εi is independent of εj for i 6= j. So τ = 400.
Our prior distribution for β = (a, c)T is normal with mean

β
0

=

(
4.605
0.01

)
and variance

V0 =

(
0.1251 0

0 0.000025

)
.

Hence

P0 =

(
7.9936 0

0 40000

)
.
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The data are as follows.

i 1 2 3 4 5 6
Time ti 25 50 75 100 125 150

Measured Concentration Z̃ 113 81 74 52 43 36
Log Concentration Y 4.73 4.39 4.30 3.95 3.76 3.58

We can write xi = −ti. Then

XTX =

(
6 −525
−525 56875

)
.

Hence

P1 = P0 + τXTX =

(
2407.994 −210000
−210000 22790000

)
and

V1 = P−1
1 =

(
2.114458× 10−3 1.948382× 10−5

1.948382× 10−5 2.234139× 10−7

)
.

The least squares estimates are

β̂ =

(
4.91733

0.0091314

)
.

The posterior mean of (a, c)T is

b1 = P−1
1 (P0b0 + Pdβ̂) =

(
4.9127

0.0090905

)
.
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1.3 Inference with a conjugate prior

1.3.1 Prior and posterior

Suppose now that τ is unknown. There is a conjugate prior.
We give τ a gamma Ga(d0/2, d0v0/2) prior. Then d0v0τ has a χ2

d0
distribution.

We then define the conditional prior distribution of β given τ as a multivariate normal distri-
bution with mean b0 and precision P0 = C0τ, where the value of C0 is specified. Thus the prior
precision of β is proportional to the error precision τ. It is easily shown that the marginal prior
distribution of βj is such that

βj − b0,j√
v0/c0,j,j

∼ td0

where b0,j is the jth element of b0 and c−1
0,j,j is the jth diagonal element of C−1

0 .
The prior density is then proportional to

τd0/2−1e−τ(d0v0/2)τp/2 exp
{
−τ

2
(β − b0)TC0(β − b0)

}
.

From (1.7) the likelihood is proportional to

τn/2 exp
{
−τ

2
Sd

}
exp

{
−τ

2
(β̂ − β)TCd(β̂ − β)

}
where Cd = XTX.

The posterior density is therefore proportional to

τ (d0+n)/2−1e−τ(d0v0+Sd)/2τp/2 exp
{
−τ

2
[(β − b0)TC0(β − b0) + (β̂ − β)TCd(β̂ − β)]

}
.

Some further algebra shows that the posterior density is proportional to

τd1/2−1e−τd1v1/2τp/2|C1|1/2 exp
{
−τ

2
(β − b1)TC1(β − b1)

}
where

d1 = d0 + n

v1 =
d0v0 + nvd
d0 + n

vd =
Sd +R

n

R = bT0 C0b0 + β̂
T
Cdβ̂ − bT1 C1b1

C1 = C0 + Cd

b1 = (C0 + Cd)
−1(C0b0 + Cdβ̂)

Thus

• The marginal posterior distribution of τ is gamma Ga(d1/2, d1v1/2).

So d1v1τ ∼ χ2
d1
.

• The conditional posterior distribution of β given τ is multivariate normal with mean b1 and

variance P−1
1 = τ−1C−1

1 .

It is convenient to use a R function to do the calculations. A suitable function is shown
in figure 1.1. The prior specification is supplied as a list containing d0, v0, b0 and V0, where
(V0/v0)−1 = C0. The function returns a list containing d1, v1, b1 and V1, where (V1/v1)−1 = C1.
The data are supplied as a matrix X and a vector y. The function can be called with a command
such as the following.

posterior<-linmod(prior,X,y)
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linmod<-function(prior,X,y,unknown=TRUE)

{Xt<-t(X)

Cd<-Xt%*%X

Xty<-Xt%*%y

b0<-prior$b

betahat<-solve(Cd,Xty)

n<-length(y)

C0<-solve(prior$V/prior$v)

C1<-C0+Cd

b1<-solve(C1,(C0%*%b0+Cd%*%betahat))

res<-y-X%*%betahat

Sd<-sum(res^2)

if (unknown)

{d1<-prior$d+n

R<-t(b0)%*%C0%*%b0 + t(betahat)%*%Cd%*%betahat - t(b1)%*%C1%*%b1

nvd<-Sd+R

v1<-(prior$d*prior$v + nvd)/d1

v1<-v1[1,1]

}

else

{v1<-prior$v

d1<-0

}

V1<-v1*solve(C1)

result<-list(d=d1,v=v1,b=b1,V=V1)

result

}

Figure 1.1: R function for the normal linear model

Optionally, we can use a command such as the following.

posterior<-linmod(prior,X,y,unknown=FALSE)

In this latter case the calculations for the known-τ case are used and the prior argument is a list
containing v0 = τ−1, b0 and V0 = P−1

0 . Similarly the result is a list containing v1 = v0 = τ−1, b0
and V1 = P−1

1 . The result in this case also contains the value d1 = 0.
The use of the function is illustrated in the following examples.

Example 1

This is the example involving shoe sizes and heights of students, as in section 1.2.2. The only
difference here is that we make τ unknown with d0 = 2 and v0 = 2. We can use the R function as
follows.

> Xshoe<-matrix(c(rep(1,152),shoesize),ncol=2)

> d0shoe<-2

> v0shoe<-2

> b0shoe<-matrix(c(55.7,1.7),ncol=1)

> V0shoe<-matrix(c(36.5,-4,-4,0.5),ncol=2)

> priorshoe<-list(d=d0shoe,v=v0shoe,b=b0shoe,V=V0shoe)

> postshoe<-linmod(priorshoe,Xshoe,height)

> postshoe

$d

[1] 154

$v
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Treatment Diet Weight gain
1 Beef Low 90 76 90 64 86 51 72 90 95 78
2 Beef High 73 102 118 104 81 107 100 87 117 111
3 Cereal Low 107 95 97 80 98 74 74 67 89 58
4 Cereal High 98 74 56 111 95 88 82 77 86 92

Table 1.1: Weight gains in rats given different diets

[1] 3.515502

$b

[,1]

[1,] 56.189352

[2,] 1.561022

$V

[,1] [,2]

[1,] 0.3947624 -0.046750199

[2,] -0.0467502 0.005879935

The posterior means are exactly the same as in the known-τ case. This is a property of the
conjugate prior when it is specified in this way, with everything unchanged and v0 equal to the
previous “known” value. It seems though that the error variance may be a little greater than our
“known” value.

Example 2

The data in table 1.1 are from Snedecor and Cochran (1967) and are also given by Hand et al.
(1994). They give the gains in weight of rats fed on four different diets. The diets differ in terms
of the amount of protein (“low” or “high”) and the source of the protein (“beef” or “cereal”).

Suppose that our prior beliefs are as follows. Given parameters µ = (µ1, . . . , µ4)T , τ, the

weight gains Y1,1, . . . , Y10,4 are independent with Yi,j ∼ N(µj , τ
−1). Our prior distribution for τ

is gamma Ga(d0/2, d0v0/2) with d0 = 2 and v0 = 60. Our conditional prior distribution for µ is

N4(M0, (τC0)−1) with M0 = (80, 80, 80, 80)T and

C0 =
1

8


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


−1

=
1

40


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 .

Consider an alternative way of formulating this example. Instead of working directly in terms
of the four means µ1, . . . , µ4, we can use different parameters. We can write

µ1 = µ− βa − βs + γ,

µ2 = µ+ βa − βs − γ,
µ3 = µ− βa + βs − γ,
µ4 = µ+ βa + βs + γ.

Here µ is an overall mean, βa is an effect due to the amount of protein, βs is an effect due to the
source of protein. The interaction effect allows the treatment means to be unrestricted. It allows
for the mean for, eg., “cereal high” not to be obtained simply by adding the source effect and the
amount effect to the overall mean. It is easily seen that

β = (µ, βa, βs, γ)T = Hµ
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where

H =
1

4


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

 .

So, if our prior mean and conditional prior variance for µ were M0 and (τC0,µ)−1 respectively,
then our prior mean and prior variance for β are

b0 = HM0 =


80
0
0
0

 and (τC0)−1 = H(τC0,µ)−1HT = τ−1


10 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 .

Hence

C0 =


0.1 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 .

In practice we might assess the prior distribution for β directly rather than through a prior dis-
tribution for µ. Also we might well wish to give γ a smaller prior variance than βa or βs since we
might judge that such an interaction effect is likely to be less important than the main effects of
amount and source of protein.

Here is the calculation of the posterior distribution using the R function linmod. The vector
ratgain contains the weight gains (90, 76, 90, . . . , 86, 92).

> x1<-rep(1,40)

> x2<-rep(c(-1,1,-1,1),c(10,10,10,10))

> x3<-rep(c(-1,-1,1,1),c(10,10,10,10))

> x4<-rep(c(1,-1,-1,1),c(10,10,10,10))

> Xrat<-cbind(x1,x2,x3,x4)

> d0rat<-2

> v0rat<-60

> b0rat<-matrix(c(80,0,0,0),ncol=1)

> V0rat<-60*diag(c(10,2,2,2))

> priorrat<-list(d=d0rat,v=v0rat,b=b0rat,V=V0rat)

> postrat<-linmod(priorrat,Xrat,ratgain)

> postrat

$d

[1] 42

$v

[1] 195.3410

$b

[,1]

x1 87.231920

x2 5.629630

x3 -2.320988

x4 -4.641975

$V

x1 x2 x3 x4

x1 4.871347 0.000000 0.000000 0.000000

x2 0.000000 4.823235 0.000000 0.000000

x3 0.000000 0.000000 4.823235 0.000000

x4 0.000000 0.000000 0.000000 4.823235
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To find a posterior credible interval for the jth element of β we can use b1,j ± t
√
v1/c1,j,j where

b1,j is the jth element of b1, t is an appropriate quantile of the Student’s t-distribution on d1

degrees of freedom and c−1
1,j,j is the jth diagonal element of C−1

1 . In this example V1 and C1

are diagonal so the jth diagonal element of V1 is, in fact, v1/c1,j,j . The 97.5% point of the t42

distribution is 2.018 so, for example, a 95% interval for µ is 87.23192± 2.018×
√

4.871347. The
following table gives the posterior means and 95% posterior intervals for the elements of β.

Parameter Mean 95% Interval
µ Overall mean 87.2319 82.7776 91.6862
βa Amount effect 5.6296 1.1975 10.0617
βs Source effect -2.3210 -6.7531 2.1111
γ Interaction effect -4.6420 -9.0741 -0.2099

It looks as though the most important effect may be amount of protein but, because of the
interaction effect, the difference in weight gain between “low” and “high” amounts may be less
when the source is cereal than when it is beef.

1.3.2 Linear functions of coefficients

In our posterior distribution τ ∼ Ga(d1/2, d1v1/2) and β | τ ∼ Np(b1, (τC1)−1).

Suppose that we are interested in some linear function of β. For example, with β = (β1, β2, β3)T ,
we might be interested in δ = xβ = 4β1 + 3β2 − 5β3. This is, of course, the mean of Y when
x = (4, 3,−5).

Then

δ | τ ∼ N(xb1, x(τC1)−1xT ).

That is

δ | τ ∼ N(xb1, (τcδ,1)−1)

where c−1
δ,1 = xC−1

1 xT .

So the marginal posterior for δ is such that

δ − xb1√
v1/cδ,1

=
δ − xb1√
xV1xT

∼ td1 ,

where V1 = v1C
−1
1 .



1.3. INFERENCE WITH A CONJUGATE PRIOR 35

1.3.3 Prediction

Very often our purpose in using a regression is to be able to make predictions. That is, we want
to find the distribution of a future observation on the dependent variables, or perhaps a collection
of future observations. In the case of the normal linear model this is usually straightforward.

Suppose that we are going to make a new observation on Y and the covariate values will be
x0,1, . . . , x0,p. We arrange these covariate values into a vector x0. For convenience, we regard this
as a row vector rather than the more usual column vector. That is, its dimension is (1× p) rather
than (p× 1). Then we can write

Y = x0β + ε,

where ε is a new error which is conditionally independent of any data which we have observed,
given τ, and therefore also conditionally independent of the unknown value of β, given τ. Given

τ, the distribution of ε is N(0, τ−1). Let us assume that our distribution for β is normal. Then,
given τ, the distribution of Y is normal with mean given by the mean of x0β and variance given
by the sum of the variance of x0β and the variance of ε.

Suppose that we are making a posterior prediction. That is, we are making our prediction after
we have observed some data and our conditional posterior distribution for β | τ is N(b1, τ

−1C−1
1 ).

Then we can write

Y | τ ∼ N(x0b1, x0[C1τ ]−1xT0 + τ−1)

∼ N(x0b1, [cpτ ]−1),

where

cp = {1 + x0C
−1
1 xT0 }−1.

In the conjugate case, where our posterior distribution for τ is τ ∼ Ga(d1/2, d1v1/2), it follows
that the marginal distribution for Y is given by

Y − x0b1√
v1/cp

=
Y − x0b1√
v1 + x0V1xT0

∼ td1 . (1.8)

This is our predictive distribution for the new observation Y. It includes both the uncertainty due
to our lack of knowledge of the model parameters and our uncertainty associated with the new
error.

More generally we might want a joint predictive distribution for a vector Y of new observations
with sampling distribution Nm(X0β, τ

−1I), where I is an identity matrix and the covariate values

for the ith element of Y give the ith row of X0. Then

Y | τ ∼ Nm(X0b1, X0[C1τ ]−1XT
0 + τ−1I)

∼ Nm(X0b1, [Cpτ ]−1),

where

Cp = {I +X0C
−1
1 XT

0 }−1.
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Example

Consider Example 1 of section 1.3.1. Suppose that we want to predict the height of a student
with shoe size 10. Then x0 = (1, 10) and the mean of our predictive distribution is x0b1 =
56.189352 + 10 × 1.561022 = 71.799572. Now C−1

1 = V1/v1 so cp = {1 + x0C
−1
1 xT0 }−1 =

v1{v1 + x0V1x
T
0 }−1. Hence

v1

cp
= v1 + x0V1x

T
0 = 3.515502 + 0.04775197 = 3.563254

and
Y − 71.799572√

3.563254
∼ t154.

The upper 95% point of the t154 distribution is 1.654808 so a 90% predictive interval for Y is
given by 71.799572± 1.654808×

√
3.563254. That is 68.7 < Y < 74.9.

1.3.4 Other cases

We have looked in detail at the conjugate case. We can also analyse linear models with a semi-
conjugate prior or with a non-conjugate prior. In the semi-conjugate case we need numerical
integration in one dimension, that of τ. In the non-conjugate case we usually need more difficult
numerical integration and it is usually easier to use MCMC.

1.4 Practical 1

1.4.1 Abrasion Loss

The data in Table 1.2 are taken from Davies and Goldsmith (1972). They come from an experiment
to investigate how the resistance of rubber to abrasion is affected by other properties. These are X1,
its hardness, in degrees Shore, and X2, its tensile strength (in kg per square cm). The dependent
variable Y is abrasion loss in g per hour. This is the weight loss due to abrasion which was
measured over a fixed time.

You are to fit a linear regression of Y on X1 and X2. The model is

Yi = β0 + β1xi,1 + β2xi,2 + εi

where, given τ, the errors εi are independent with εi ∼ N(0, τ−1).

1. Install the function linmod. It is available from the Web page at
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Abrasion loss Hardness Tensile strength
Y X1 X2

372 45 162
206 55 233
175 61 232
154 66 231
136 71 231
112 71 237
55 81 224
45 86 219

221 53 203
166 60 189
164 64 210
113 68 210
82 79 196
32 81 180

228 56 200
196 68 173
128 75 188
97 83 161
64 88 119

249 59 161
219 71 151
186 80 165
155 82 151
114 89 128
341 51 161
340 59 146
283 65 148
267 74 144
215 81 134
148 86 127

Table 1.2: Abrasion loss data
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http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/

You can install it by copying and pasting or by

source("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/linmod.txt")

2. The data are available in the file abrasion.txt which is available from the Web page.

You can read the data using commands such as the following.

abrasion<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/abrasion.txt")

loss<-abrasion[,1]

hard<-abrasion[,2]

tens<-abrasion[,3]

3. Construct a design matrix X as follows.

X<-matrix(c(rep(1,30),hard,tens),ncol=3)

4. Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with d0 = 4
and v0 = 1600. Conditional on τ we give β = (β0, β1, β2)T a multivariate normal prior distri-

bution with mean vector b0 = (150, 0, 0)T and precision matrix τC0 where C0 = (V0/v0)−1

and we construct V0 as follows. Consider first a reference value with x1 = 60 and x2 = 200. If
we consider the model E(Y ) = β̃0 + β1(x1− 60) + β2(x2− 200) we obtain for the parameters
β̃ = (β̃0, β1, β2)T the matrix

Ṽ0 = 1600

 1 0 0
0 0.25 0
0 0 0.25

 .

Now, since β = Hβ̃ where

H =

 1 −60 −200
0 1 0
0 0 1

 ,

we can construct V0 = HṼ0H
T as follows.

V0tilde<-matrix(c(1600,0,0,0,400,0,0,0,400),ncol=3)

H<-matrix(c(1,0,0,-60,1,0,-200,0,1),ncol=3)

V0<-H%*%V0tilde%*%t(H)

Put all of the elements of the prior together.

d0<-4

v0<-1600

b0<-matrix(c(150,0,0),ncol=1)

priorabloss<-list(d=d0,v=v0,b=b0,V=V0)

5. Find the posterior.

postabloss<-linmod(priorabloss,X,loss)

6. Find a 95% posterior predictive interval for the abrasion loss in a new observation with
x1 = 80 and x2 = 150.
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Ayrshire Canadian
Mature 2-yr-old Mature 2-yr-old

3.74 4.44 3.92 4.29
4.01 4.37 4.95 5.24
3.77 4.25 4.47 4.43
3.78 3.71 4.28 4.00
4.10 4.08 4.07 4.62
4.06 3.90 4.10 4.29
4.27 4.41 4.38 4.85
3.94 4.11 3.98 4.66
4.11 4.37 4.46 4.40
4.25 3.53 5.05 4.33

Table 1.3: Butterfat percentages in milk

v1<-postabloss$v

V1<-postabloss$V

x0<-matrix(c(1,80,150),nrow=1)

mean<-x0%*%postabloss$b

var<-v1+x0%*%V1%*%t(x0)

tval<-qt(0.975,postabloss$d)

mean-tval*sqrt(var)

mean+tval*sqrt(var)

1.4.2 Butterfat

Table 1.3 shows part of a set of data taken from Sokal and Rohlf (1981). The table shows average
butterfat percentages in the milk of forty cows. Twenty of the cows belong to each of two breeds,
Ayrshire and Canadian. Within each breed, ten of the cows are mature (i.e. at least five years old)
and ten are two-year-olds.

We adopt the following model.

Yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + εi

where Yi is the butterfat percentage for cow i. We make the usual assumptions about ε1, . . . , x40.
That is, given τ, they are independent and εi ∼ N(0, τ−1). The explanatory variables are as follows.

• Breed, where xi,1 = −1 if the breed of cow i is Ayrshire and xi,1 = 1 if the breed of cow i is
Canadian.

• Age, where xi,2 = −1 if cow i is mature and xi,2 = 1 if cow i is a 2-year-old.

• Breed by age interaction, xi,3 = xi,1xi,2.

1. If you have not already done so, install the function linmod . (See above).

source("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/linmod.txt")

2. The data are available in the file butter.txt which is available from the Web page.

You can read the data using commands such as the following.

butter<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/butter.txt")

butter<-c(butter[,1],butter[,2],butter[,3],butter[,4])

3. Construct a design matrix X as follows.
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z<-rep(10,4)

x0<-rep(1,40)

x1<-rep(c(-1,-1,1,1),z)

x2<-rep(c(-1,1,-1,1),z)

x3<-x1*x2

X<-cbind(x0,x1,x2,x3)

4. Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with d0 = 6
and v0 = 0.1. Conditional on τ we give β = (β0, β1, β2, β3)T a multivariate normal prior dis-

tribution with mean vector b0 = (4, 0, 0, 0)T and precision matrix τC0 where C0 = (V0/v0)−1

and

V0 =


40 0 0 0
0 10 0 0
0 0 10 0
0 0 0 2.5

 .

We can construct V0 as follows.

V0<-diag(c(40,10,10,2.5))

Put all of the elements of the prior together.

d0<-6

v0<-0.1

b0<-matrix(c(4,0,0,0),ncol=1)

priorbutter<-list(d=d0,v=v0,b=b0,V=V0)

5. Find the posterior.

postbutter<-linmod(priorbutter,X,butter)

6. Find a 90% posterior interval for the mean butterfat percentage for 2-yr-old Ayrshire cows.

v1<-postbutter$v

V1<-postbutter$V

x0<-matrix(c(1,-1,1,-1),nrow=1)

mean<-x0%*%postbutter$b

var<-x0%*%V1%*%t(x0)

tval<-qt(0.95,postbutter$d)

mean-tval*sqrt(var)

mean+tval*sqrt(var)

1.5 Exercises

1. Table 1.4 shows the heights and weights of thirty eleven-year-old girls attending Heaton
Middle School, Bradford. The data are taken from Open University (1983).

The data are available in the file height.txt on the Web page.

You can read the data using commands such as the following.

eleven<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/height.txt")

height<-eleven[,1]

weight<-eleven[,2]
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Height (cm) Weight (kg) Height (cm) Weight (kg)
135 26 133 31
146 33 149 34
153 55 141 32
154 50 164 47
139 32 146 37
131 25 149 46
149 44 147 36
137 31 152 47
143 36 140 33
146 35 143 42
141 28 148 32
136 28 149 32
154 36 141 29
151 48 137 34
155 36 135 30

Table 1.4: Heights and weights of eleven-year-old girls

(a) You should work in terms of the logarithms of both height and weight. So, let Y be the
natural logarithm of the weight and X be the natural logarithm of the height. Calculate
these and plot a graph to show the data.

Our model is

Yi = α+ βxi + εi

where, given the value of τ, the errors εi are independent and εi ∼ N(0, τ−1).

(b) Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with
d0 = 6 and v0 = 0.02. Conditional on τ we give β = (α, β)T a bivariate normal prior

distribution with mean vector b0 = (−10, 3)T and precision matrix τC0 where C0 =
(V0/v0)−1 and

V0 =

(
25 0
0 1

)
.

Find the posterior distribution. (I.e. explain it as I have explained the prior distribution
but with the appropriate parameter values).

(c) Find a 95% posterior predictive interval for the natural logarithm of the weight of an
eleven-year-old girl who is 145 cm tall and, convert this into a 95% posterior predictive
interval for the actual weight of such a girl.

2. Table 1.5 gives some data from Till (1974). They give measured salinity values (parts per
thousand) for three separate water masses in the Bimini Lagoon in the Bahamas.

The data are available in the file salinity.txt on the Web page.

You can read the data using commands such as the following.

bimini<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/salinity.txt")

salinity<-bimini[,1]

location<-bimini[,2]

mass1<-ifelse((location==1),1,0)

mass2<-ifelse((location==2),1,0)

mass3<-ifelse((location==3),1,0)

(a) Our model is
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I II III
37.54 40.17 39.04
37.01 40.80 39.21
36.71 39.76 39.05
37.03 39.70 38.24
37.32 40.79 38.53
37.01 40.44 38.71
37.03 39.79 38.89
37.70 39.38 38.66
37.36 38.51
36.75 40.08
37.45
38.85

Table 1.5: Salinity measurements (parts per thousand)

Yi = β1xi,1 + β2xi,2 + β3xi,3 + εi

where, given the value of τ, the errors εi are independent and εi ∼ N(0, τ−1) and
xi,j = 1 if observation i is from location j with xi,j = 0 otherwise.

(b) Our prior distribution is as follows. We give τ a Ga(d0/2, d0v0/2) distribution with
d0 = 4 and v0 = 0.3. Conditional on τ we give β = (β1, β2, β3)T a multivariate normal

prior distribution with mean vector b0 = (40, 40, 40)T and precision matrix τC0 where
C0 = (V0/v0)−1 and

V0 = HṼ0H
T

where

Ṽ0 =


40 0 0 0
0 25 0 0
0 0 25 0
0 0 0 25


and

H =

 1 1 0 0
1 0 1 0
1 0 0 1

 .

Find the posterior distribution. (I.e. explain it as I have explained the prior distribution
but with the appropriate parameter values).

(c) Find a 95% posterior interval for the difference in mean salinity between water mass I
and water mass II.

Note that, as an alternative to using the function linmod in this question, you could use
the function oneway which is also available from the Web page.
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1.6 Problems 3

Solutions to all questions are to be submitted in the Homework Letterbox no later than 4.00pm on
Wednesday November 28th. Please note that you should give some attention to the presentation
of your work. Describe the data, model, prior etc. and explain what you have done. Comment on
your conclusions. A listing of the output from a R session with one or two things written on it will
not get a very good mark on its own.

In questions 2 and 3, each student is given different data. For this purpose each student is
given a reference number according to the table below. Please use the correct data and write your
reference number on your work. In these questions you may, of course, use R functions such as
linmod for calculations.

Reference numbers

Problems

1. Prior Elicitation

Some household contents insurance policies require an estimate to be made of what it would
cost to replace the existing contents. Suppose that a person has a large collection of books.
We might attempt to predict the replacement cost of all of the books by looking at a sample.
We might improve this prediction by taking into account an auxiliary variable such as the
width of the spine of the book. (We might also distinguish between hardback and paperback
books so suppose that we are only considering hardback books). Let Ci be the replacement
cost, in £, of book i, and let wi be its spine width in mm.

Let

Yi = loge(Ci) and xi = loge(wi).

It is believed that Y is related to X by

Yi = α+ βxi + εi

where Yi and xi refer to book i for i = 1, . . . , n, εi ∼ N(0, τ−1) and ε1, . . . , εn are conditionally
independent given τ.

We give α and β a bivariate normal prior distribution. Find the parameters of this distribu-
tion based on the following prior judgments.

Suppose that we could observe a very large number of books, each of which has a spine
w = 20mm wide, and a very large number of books, each of which has a spine w = 30mm wide.
Let the median replacement costs at these two spine widths be M20 and M30 respectively.
Our prior median for M20 is 25 and our prior median for M30 is 35. Our prior upper quartile
for M20 is 40 and our prior upper quartile for M30 is 55.

Let

m20 = loge(M20) and m30 = loge(M30).

Our prior correlation for m20 and m30 is 0.75.

Find the prior means, prior variances and prior covariance of α, β.

(10 marks)
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2. Lowering blood pressure during surgery

It is sometimes necessary to lower a patient’s blood pressure during surgery, using a hy-
potensive drug. The length of time over which the drug is administered varies and therefore
so does the total dose. This, in turn, might affect the time it takes for the patient’s blood
pressure to return to normal.

The data provided are as follows, for n = 53 patients.

• The natural logarithm of the recovery time, T, in minutes.

• The natural logarithm of the dose, d, in milligrams.

• The average systolic blood pressure, b, in millimetres of mercury, during administration.

Let Y = ln(T ), x1 = ln(d)− 5 and x2 = b− 60. We will use a regression model with

y = β0 + β1x1 + β2x2 + ε

where β0, β1, β2 are unknown parameters and, conditional on the values of the parameters,
ε1, . . . , ε53 are independent with εi ∼ N(0, τ−1).

Our prior distribution is as follows.

We give τ a gamma prior, τ ∼ Ga(1.5, 0.6). Conditional on τ we give β = (β0, β1, β2)T a

multivariate normal prior distribution with mean vector b0 = (3.0,−0.03, 0.5)T and precision
matrix τC0 where C0 = (V0/v0)−1 and

V0 =

 1 0 0
0 10−4 0
0 0 0.04

 .

You can read the data using a command such as the following.

surgery<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/surgerydata.txt")

There are thirty columns.

• The log doses ln(d) are in column 1.

• The blood pressures b are in column 2.

• Your log recovery times t are in the column corresponding to your reference number.
For example, if your reference number is 20 then your data are in column 20.

(a) Find the posterior distribution of β0, β1, β2, τ (in the same form as the prior distribu-
tion).

(4 marks)

(b) Find and plot the posterior predictive probability density of the logarithm of the recovery
time for a patient with log dose 4.0 and blood pressure 70 during administration.

(4 marks)

(c) Find and plot the posterior predictive probability density of the recovery time for a
patient with log dose 4.0 and blood pressure 70 during administration.

(4 marks)

(d) Present, explain and comment on your findings clearly.

(8 marks)

Hint: You can use the following R commands to build the design matrix.

x1<-surgery[,1]-5

x2<-surgery[,2]-60

x0<-rep(1,53)

X<-cbind(x0,x1,x2)
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3. Yields of barley

An experiment was conducted to investigate the effect of manure on the yield of barley. Four
different levels of manure were compared: 1: no manure, 2: 0.01 tons per acre, 3: 0.02
tons per acre, 4: 0.04 tons per acre. Three different varieties of barley were used. The
experimental plots were arranged in six blocks. (A “block” is an area of land).

You can read the data using a command such as the following.

barley<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/splitdata.txt")

There are thirty columns. Your barley yields y are in the column corresponding to your
reference number. For example, if your reference number is 20 then your data are in column
20. Columns 1, 2 and 3 contain the block, variety and manure level respectively.

You can construct a suitable design matrix using the following R commands.

block<-barley[,1]

variety<-barley[,2]

manure<-barley[,3]

X<-matrix(nrow=72,ncol=11)

for (col in 1:4)

{X[,col]<-ifelse(manure==col,1,0)

}

b<-rep(12,6)

X[,5]<-rep(c(1, 1, 1,-1,-1,-1),b)

X[,6]<-rep(c(2,-1,-1, 0, 0, 0),b)

X[,7]<-rep(c(0, 1,-1, 0, 0, 0),b)

X[,8]<-rep(c(0, 0, 0, 2,-1,-1),b)

X[,9]<-rep(c(0, 0, 0, 0, 1,-1),b)

v<-rep(4,3)

x<-rep(c(2,-1,-1),v)

X[,10]<-rep(x,6)

x<-rep(c(0, 1,-1),v)

X[,11]<-rep(x,6)

The first four columns of X correspond to the four levels of manure. Columns 5-9 are for the
block effects. (There are five degrees of freedom between the six blocks). Columns 10-11 are
for the variety effects. (There are two degrees of freedom between the three varieties). (We
could also fit interaction effects but we will leave that for now).

Let the parameters corresponding to the eleven columns of X be β1, . . . , β11. Then the mean
yield, µm,b,v, for manure level m in block b with variety v is defined as follows.

µm,b,v = βm +

9∑
j=5

βjwb,j +

11∑
j=10

βjzv,j

Here wb,j and zv,j are defined as follows.

wb,j j = 5 j = 6 j = 7 j = 8 j = 9
b = 1 1 2 0 0 0
b = 2 1 −1 1 0 0
b = 3 1 −1 −1 0 0
b = 4 −1 0 0 2 0
b = 5 −1 0 0 −1 1
b = 6 −1 0 0 −1 −1
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zv,j j = 10 j = 11
v = 1 2 0
v = 2 −1 1
v = 3 −1 −1

The actual yield for for manure level m in block b with variety v is

ym,b,v = µm,b,v + εm,b,v

where εm,b,v ∼ N(0, τ−1) and εm,b,v is independent of εm′,b′,v′ unless (m, b, v) = (m′, b′, v′).

Our prior distribution is as follows.

We give τ a gamma prior, τ ∼ Ga(d0/2, d0v0/2) with d0 = 2.1 and v0 = 250. Conditional
on τ we give β = (β0, . . . , β11)T a multivariate normal prior distribution with mean vector

b0 = 100(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T

and precision matrix τC0 where C0 = (V0/v0)−1 and

V0 =
1

6



24 12 12 12 0 0 0 0 0 0 0
12 24 12 12 0 0 0 0 0 0 0
12 12 24 12 0 0 0 0 0 0 0
12 12 12 24 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 3


.

You can construct V0 in R, for example using the following commands.

V0<-matrix(0,nrow=11,ncol=11)

V0[1:4,1:4]<-matrix(2,nrow=4,ncol=4)+diag(2,4)

V0[5:11,5:11]<-diag(c(2,2,6,2,6,1,3))/6

(a) Find the posterior distribution of β0, . . . , β11, τ (in the same form as the prior distribu-
tion).

(6 marks)

(b) Find a symmetric 95% posterior interval for the mean yield for Manure level 1 in Block
1 with Variety 1.

(6 marks)

(c) Present, explain and comment on your findings clearly.

(8 marks)



Chapter 2

Generalised Linear Models

2.1 Generalised Linear Models

2.1.1 Introduction

In this chapter of the course we are going to look at models which are more general than the normal
linear model. There is not generally a conjugate form for the prior distribution so, except in simple
cases where there are few parameters, we usually use Markov chain Monte Carlo (MCMC) methods
to evaluate posterior distributions. In this course we shall use a R package called rjags which is
an implementation of the “JAGS” (“Just Another Gibbs Sampler”) system.

Consider the normal linear model. The ith observation Yi has a systematic component µi and
a random component εi :

Yi = µi + εi.

We assume

• that εi has a normal distribution,

• that εi has variance σ2,

• that εi is independent of εj for i 6= j.

In generalised linear models we relax the first two of these assumptions to allow a much wider
class of models.

2.1.2 Linear predictors and link functions

In the normal linear model

µi =

p∑
j=1

xi,jβj

where β1, . . . , βp are parameters and xi,j is the value of covariate j for observation i. Now we
introduce a quantity called the linear predictor:

ηi =

p∑
j=1

xi,jβj .

In the normal linear model µi = ηi. In a generalised linear model ηi = g(µi) where g is a known
function called the link function. The link function must be monotonic and differentiable.

47
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2.1.3 Error functions and the exponential family of distributions

In a generalised linear model the distribution of Yi need not be normal. The mean is E(Yi) = µi,
where ηi = g(µi) =

∑p
j=1 xijβj , but the distribution may be chosen from a family of distributions,

called the exponential family, which includes normal, binomial, Poisson and gamma. In some cases
the variance of Yi will depend on µi. E.g.

Normal N(µ, σ2) var(Yi) = σ2

Binomial Bin(n, p) var(Yi) = µ(1− µ/n) (µ = np)
Poisson Po(µ) var(Yi) = µ

In fact we could define models where the error distribution did not come from the exponential
family but certain properties can be derived from the fact that the distribution does belong to the
exponential family and so this is usually required for a model to qualify as a generalised linear
model.

If a continuous random variable has an exponential family distribution then its density function
has the form

f(y | θ, φ) = exp

{
θy − b(θ)
a(φ)

+ c(y, φ)

}
.

If the variable is discrete rather than continuous then its probability function takes this form. The
parameter θ is called the canonical parameter. The parameter φ is called the scale parameter and
φ ≥ 0.

Normal distribution : Y ∼ N(µ, σ2).

fY (y) = (2πσ2)−1/2 exp

{
− 1

2σ2
(y − µ)2

}
= exp

{
−1

2

[
y2 − 2µy + µ2

σ2
+ log(2πσ2)

]}
= exp

{
µy − µ2/2

σ2
− 1

2

[
y2

σ2
+ log(2πσ2)

]}
Hence θ = µ, φ = σ2, b(θ) = µ2/2, a(φ) = φ = σ2, c(y, φ) = −(1/2)[y2/σ2 + log(2πσ2)].
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Binomial distribution : Y ∼ Bin(n, p).

fY (y) =

(
n
y

)
py(1− p)n−y

=

(
n
y

)(
p

1− p

)y
(1− p)n

= exp

{
log

(
n
y

)
+ y log

(
p

1− p

)
+ n log(1− p)

}
= exp

{
log

(
n
y

)
+ yθ − n log(1 + eθ)

}
= exp

{
yθ − n log(1 + eθ)

1
+ log

(
n
y

)}
So

θ = log

(
p

1− p

)
eθ =

p

1− p

1 + eθ = 1 +
p

1− p
=

1

1− p
log(1 + eθ) = − log(1− p)

b(θ) = n log(1 + eθ)

φ = 1, a(φ) = 1

c(y, φ) = log

((
n
y

))
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2.1.4 Example

Consider the emission of α-particles by a radioactive source. We suppose that the emission rate
at time t is βe−γt. Count the α-particles emitted in a short period of time, of length δt (short
enough for the emission rate to be approximately constant) at each of t1, t2, . . . , tn (equal periods
at each). The mean number in a period of length δt at time t is δtβe−γt. Write this as exp(β0+β1t),
where β0 = ln(δtβ) and β1 = −γ. Suppose the actual number Yi observed at time ti has a Poisson
distribution with mean µi = exp(β0 + β1ti).

Hence the link function is log. The linear predictor is ηi = ln(µi) = β0 + β1ti. The error
distribution is Poisson. So we have a generalised linear model.

2.1.5 Poisson Regression

Example 1

This example is based on a student project from some years ago. The project was conducted in
collaboration with the Sunderland and South Shields Water Company. (It was many years ago!).

A water company has many kilometres of water pipe. Much of this lies under roads etc. Some
of the pipes may be very old. From time to time bursts, fractures and leaks of various sorts
occur. The company wants to investigate how the rate of failures depends on various factors and
covariates. These might include age, diameter, material, depth below surface, number of customers
supplied, whether the pipe is in a residential or industrial area etc. Some sections of pipe have
been observed for longer than others.

We assume that, for a given section of pipe, the rate at which failures occur is proportional
to the length of the section. We also assume that, over relatively short periods compared to the
lifetime of a pipe, e.g. a year, the rate remains more or less constant and the actual number of
failures has a Poisson distribution with mean proportional to the length of the period. So, for
a particular section of pipe, of length ki, observed over a period of length ti, the mean number
of failures would be µi = λikiti. The parameter λi depends on the covariates for that pipe (age,
diameter etc.) in the period in question. The mean of a Poisson distribution has to be positive.
This can be ensured if we use a log link function so that ln(µi) = ln(λi) + ln(ki) + ln(ti). Now
we apply a linear model for ηi = ln(λi). We could include the terms in ln(ki) and ln(ti) in the
linear model but we know the values of the coefficients of these (i.e. 1). The other covariates have
unknown coefficients and we need to give these a prior distribution. Thus

ηi = β0 +

k∑
j=1

βjxi,j

or, in matrix notation,

η = Xβ.

This is thus a generalised linear model with Poisson errors and log link. We might well give a
multivariate normal prior distribution to the unknown β coefficients.

Example 2

Patients in four groups are observed for various lengths of time. During this time tumours may
develop. The dependent variable is the number of tumours observed for each patient. The mean
number of tumours for a patient in group g is λgt = exp(βg + ln t) where t is the time observed in
weeks. Thus the parameters are β1, . . . , β4 where βg = ln(λg). There is no intercept here and the
coefficient of ln t is known to be 1. If we included an intercept then we would have to drop one of
the group parameters, exactly as in linear models.

Using BRugs

We will be using rjags to do practical work. This is a R package which implements a Gibbs sam-
pler. Models and priors are specified using the a model specification language which is essentially
the BUGS (“Bayesian inference Using Gibbs Sampling”) language. We will need to make a model
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model

{

for (i in 1:N)

{y[i]~dpois(mean[i])

mean[i]<-lambda[group[i]]*t[i]

}

for (g in 1:4)

{lambda[g]<-exp(beta[g])

beta[g]~dnorm(mu,10)

}

mu~dnorm(0,5)

}

Figure 2.1: BUGS code for the tumours example

specification file using the BUGS language. As an example, consider Example 2 above. Suppose
that we observe n patients (written as N in the BUGS code). For each patient we have a group
number g ( group), the time t for which the patient was observed ( t ) and the number y of
tumours observed ( y ).

Figure 2.1 shows some suitable BUGS code. Note that this is not a program with commands
to be executed. It is a model specification. We are defining the joint distribution of the unknowns
and the data, mostly by specifying conditional distributions. For example

y[i]~dpois(mean[i])

might be written in standard mathematical notation as

Yi | mi ∼ Po(mi).

The code dpois represents the Poisson distribution and the symbol ~ has its usual meaning of
“has the following distribution.” Similarly dnorm stands for a normal distribution. Note however
that the parameters are mean and precision, not mean and variance. So we are saying that

βg | µ ∼ N(µ, 0.1).

Notice that we are giving β1, . . . , β4 a hierarchical normal prior. Since

µ ∼ N(0, 0.2),

the prior mean of βg is 0, the prior variance of βg is 0.2 + 0.1 = 0.3 but β1, . . . , β4 are not
independent in the prior. We have covar(βg, βg′) = var(µ) = 0.2 when g 6= g′.
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2.2 Binomial Regression

2.2.1 Introduction

Just as we can have a regression where the error distribution is Poisson we can have a regression
where the error distribution is binomial.

The term “logistic regression” is often used. Strictly this should refer to cases where the logistic
link function is used. There are other suitable link functions.

Suppose, for example, we want to know what factors influence whether or not a person will
buy a particular product. We might have data on a number of variables, such as age, sex, marital
status, income, etc. and, of course, whether or not they buy the product, for each of a sample of
individuals. The response variable here is binary. That is yi = 1 if person i buys the product and
otherwise yi = 0. We can think of the mean of yi as pi, the probability that an individual with the
same covariate values as individual i would buy the product. A regression model would relate pi
to the values of the explanatory variables. Clearly a linear model pi =

∑
βjxij is inappropriate

since large values of
∑
βjxij would lead to fitted values of pi greater than 1 and small values of∑

βjxij would lead to fitted values of pi less than 0. Instead we transform pi from a (0, 1) scale to
a (−∞,∞) scale. This is usually done using a sigmoid, i.e. S-shaped function. The transformation
which gives logistic regression its name is the logistic transformation. The transformed proportions
are sometimes called logits.

ηi = ln

{
pi

1− pi

}
.

Notice that if pi → 1 then ηi →∞ and if pi → 0 then ηi → −∞.
The inverse transformation is

pi =
exp(ηi)

1 + exp(ηi)
.

Another popular transformation is “probits”

ηi = Φ−1(pi),

pi = Φ(ηi),

where Φ() is the standard normal distribution function and Φ−1() is its inverse.
Yet another is the complementary log-log link,

η = ln[− ln(1− p)],
p = 1− exp(−eη).
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model

{

for (i in 1:7)

{effects[i]~dbin(p[i],n[i])

logit(p[i])<-beta2+beta*(dose[i]-2)

}

alpha<-beta2-2*beta

beta2~dnorm(-0.27, 2.17)

beta~dnorm(0.81, 8.61)

}

Figure 2.2: BUGS code for the side-effect example.

2.2.2 Example

The proportion of people, given a drug to treat a medical condition, who contract a particular side
effect depends on the dose of the drug. If p is the proportion suffering the side effect at dose x,
then

ln

(
p

1− p

)
= α+ βx

where α and β are parameters with unknown values.
At each of a number of doses, xi, a number, ni, of patients were given the drug and the number,

ri, with the side effect was recorded.

Dose xi 0.9 1.1 1.8 2.3 3.0 3.3 4.0
No. patients ni 46 72 118 96 84 53 38
No. with side effect ri 17 22 52 58 56 43 30

2.2.3 Using JAGS

Figure 2.2 shows some BUGS code for the example above.
Notice that effects[i]~dbin(p[i],n[i]) says that

ri | pi ∼ binomial(ni, pi).

That is, the BUGS notation for binomial distributions is the other way round to the usual conven-
tion in this case. Notice also that we are allowed to put the function logit(p[i]) on the left
of <- . On the right of this statement we have β2 + β(xi − 2). This is to illustrate what we can
do in a regression when the intercept is not a convenient quantity for prior specification. Here it
is supposed to be more convenient to think about the rate of side effects when the dose is 2 rather
than when it is zero. See below.

2.2.4 Prior specification

In the example above we suppose that we are prepared to consider the probability of a side effect
when the dose is 2. Denote this probability π2. The Bayesian statistics literature includes the
results of careful research into how best to elicit a prior distribution for a probability such as this.
Unfortunately we do not have time to go into detail. Suppose that, in our prior beliefs, we assess
Pr(π2 < 0.2) = Pr(π2 > 0.7) = 0.05. Let β2 = log(π2/(1− π2). Then we believe that

Pr

[
β2 < log

(
0.2

1− 0.2

)
= −1.3863

]
= 0.05,

Pr

[
β2 > log

(
0.7

1− 0.7

)
= 0.8473

]
= 0.05
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Now suppose that we give β2 a normal N(µ, σ2) prior distribution. From the properties of the
normal distribution we deduce that

µ− 1.645σ = −1.3863,

µ+ 1.645σ = 0.8473.

this leads to µ = (−1.3863 + 0.8473)/2 = −0.2695 and σ = (0.8473− [−1.3863])/(2× 1.645) =
0.6789 and therefore σ2 = 0.4609.
This gives us a prior distribution for β2. It is normal with mean −0.2695 and precision
1/0.4609 = 2.1696. It does not seem unreasonable to round these to −0.27 and 2.17 in this
case. So, we have a prior for one point on the regression line. We need a prior for the gradient.
Suppose that we are willing to give γ = β4 − β2 a normal prior, independently of β2, where
β4 = log[π4/(1−π4)] and π4 is the probability of a side effect when the dose is 4. Suppose that,
by a process similar to that for β2 we assign a N(0.6750, 0.8563) distribution to β4. (Start with
Pr(π4 < 0.3) = Pr(π4 > 0.9) = 0.05). Then, since β4 = β2 +γ and β2 and γ are independent, we
can deduce that γ ∼ N(0.9445, 0.3954). However γ = β(4−2) = 2β so our prior distribution for
β becomes N(0.4723, 0.0989) or, after rounding, normal with mean 0.47 and precision 10.12.
(Many people might prefer a weaker prior distribution).
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2.3 Log-linear Models for Categorical Data

2.3.1 Introduction

In this section we give a brief introduction to the analysis of categorical data using log-linear
models. This is a large and complicated topic and we only scratch the surface here. An important
special case is the analysis of contingency tables.

Suppose we have a single sample where each individual is classified into one of K categories.
Associated with each individual is a vector of covariates and the probability of the individual being
in each category depends on the covariates. For example, the categories might be the possible
parties for which an individual will vote in an election. The covariates might be things like sex,
age-group, occupation, usual newspaper. It may be that we can observe more than one individual
with exactly the same covariates (e.g. women aged 20-29 who are students and read the Guardian).
So, in this case, we can think of an “observation” as refering to a group of individuals who have
the same covariate values. Let group i refer to the individuals with covariate pattern xi. Suppose
that there are I such groups. Let the number in group i be Ni (which might be 1, of course) and
let the number of these who are observed to be in category k (e.g. vote for party k) be ni,k. Let
ni = (ni,1, . . . , ni,K)T . The appropriate distribution for ni is the multinomial distribution and the
likelihood is as follows where the probability for category k given covariate pattern xi is pi,k,

K∑
k=1

ni,k = Ni and

K∑
k=1

pi,k = 1.

The likelihood is

L =

I∏
i=1

Ni!p
ni,1
i,1 p

ni,2
i,2 · · · p

ni,K
i,K

ni,1!ni,2! · · ·ni,K !
.

Let µi,k = Nipi,k. Since
∑
k pi,k = 1 we have

∑
k µi,k = Ni. Now we can write the likelihood as

follows.

L =

I∏
i=1

Ni!(µi,1/Ni)
ni,1(µi,2/Ni)

ni,2 · · · (µi,K/Ni)ni,K
ni,1!ni,2! · · ·ni,K !

=

I∏
i=1

Ni!

NNi
i

K∏
k=1

µ
ni,k
i,k

ni,k!

=

I∏
i=1

Ni!

NNi
i

exp

(
K∑
k=1

µi,k

)
K∏
k=1

e−µi,kµ
ni,k
i,k

ni,k!

=

I∏
i=1

Ni!

NNi
i

eNi
K∏
k=1

e−µi,kµ
ni,k
i,k

ni,k!

Thus the likelihood is proportional to that for Poisson data.
To complete the generalised linear model we need an appropriate link function. One way to do

this is to set

pi,k =
eηi,k∑
k′ e

ηi,k′
(2.1)

and

ηi,k =

J∑
j=1

βj,kxi,j

where xi,j is the value of covariate j in pattern i.
However, looking at (2.1) we see that the parameters are not identifiable. This is because we

can write
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ηi,k =

J∑
j=1

βj,kxi,j =

J∑
j=1

(βj,k − βj,1)xi,j +

J∑
j=1

βj,1xi,j .

Now write β̃j,k = βj,k − βj,1 and

η̃i,k =

J∑
j=1

β̃j,kxi,j = ηi,k −
J∑
j=1

βj,1xi,j .

If we substitute η̃i,k for ηi,k in (2.1) we get exactly the same value for pi,k. Therefore, without loss
of generality in terms of the likelihood we can set β1,1 = · · · = βJ,1 = 0 and therefore ηi,1 = 0 and
exp(ηi,1) = 1. Then (2.1) is equivalent to

ln

(
pi,k
pi,1

)
= ln

(
µi,k
µi,1

)
=
∑

βj,kxi,j

for k = 2, . . . ,K. We do not need to apply this model to pi,1 since we know that
∑
pi,k = 1.

Of course we need not pick the first category as the baseline. We could pick any. Also, although
this constraint makes no difference to the likelihood, it may make specification of the prior a little
awkward. An alternative constraint is to set

K∑
k=1

βj,k = 0.

2.3.2 Example

The following data are taken from Freeman (1987). Babies were categorised as follows.

1 Full term, alive at end of year 1.

2 Full term, died in first year.

3 Premature, alive at end of year 1.

4 Premature, died in first year.

The mothers were categorised as either “Young” or “Older” as as either “Smokers” or “Non-
smokers.” Interest lies in the effects of the mother’s age and smoking on the outcome.

Mother Outcome
Age Smoking 1 2 3 4 Total
Young Non-smoker 4012 24 315 50 4401
Young Smoker 459 6 40 9 514
Older Non-smoker 1594 14 147 41 1796
Older Smoker 124 1 11 4 140

In this case it is natural to use Category 1 as a baseline since this is the “normal” outcome and
we are interested in the risks of the other outcomes. For the other three categories, k = 2, 3, 4, we
can model ηi,k as follows.

Young, Non-smoker η1,k = β0,k − βa,k − βs,k + βas,k
Young, Smoker η2,k = β0,k − βa,k + βs,k − βas,k
Older, Non-smoker η3,k = β0,k + βa,k − βs,k − βas,k
Older, Smoker η4,k = β0,k + βa,k + βs,k + βas,k
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Here βa,k is an age effect, βs,k is a smoking effect and βas,k is an interaction effect between age
and smoking. In effect we have a covariate “age” which takes the values (−1,−1, 1, 1) in the four
groups and so on.

Now we need a prior distribution for these β coefficients. We could spend more time looking
at this in detail but here is something fairly simple.

β0,k | µ0 ∼ N(µ0, 1.0) µ0 ∼ N(−2, 1.0)
βa,k | µa ∼ N(µa, 0.1) µa ∼ N(0, 0.1)
βs,k | µs ∼ N(µs, 0.1) µs ∼ N(0, 0.1)

βas,k | µas ∼ N(µas, 0.05) µas ∼ N(0, 0.05)

In each case we have used a “hierarchical” prior so that, e.g., β0,2, β0,3, β0,4 are correlated in
the prior.

Figure 2.3 shows some suitable BUGS code.

2.3.3 Contingency tables

Suppose we have a (2-dimensional) contingency table with R rows and C columns. This could
arise in two quite different ways:

1. It could be the result of taking a single sample of individuals and categorising them in two
ways (e.g. by occupation and by which newspaper they read).

2. Each row might be a separate sample and the individuals are categorised according to the
column classification (e.g. we take a sample from each of several occupations and ask which
newspaper each person reads).

Although, in non-Bayesian statistics, the same χ2 test is applied in both cases, the two situations
are really quite different and the Bayesian analyses of them are different. In this section we will
be looking at case 1 only. This is really a special case of the loglinear models already discussed
where there are no covariates but we parameterise the multinomial distribution in terms of the
row and column factors. So the probability of an observation falling into the row r, column c cell
may depend on a row effect, a column effect and, possibly, a row-column interaction effect. If we
include both the main effects and the interaction effect then we have a saturated model with the
maximum number of parameters. We may be interested in looking at the posterior distribution of
the interaction effect to see whether there is evidence of dependence between the row and column
categorisations.

2.3.4 Example

The following data are taken from Krzanowski (1988). Schoolchildren were examined and classified
according to the size of their tonsils and whether or not they were carriers of the bacterium
Streptococcus pyogenes. In total 1398 children were examined.
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model

{

for (i in 1:4)

{y[i,1:4]~dmulti(p[i,],n[i])

for (k in 1:4)

{p[i,k]<-phi[i,k]/sum(phi[i,])

phi[i,k]<-exp(eta[i,k])

}

for (k in 1:4)

{eta[i,k]<-beta0[k]+betaa[k]*age[i]+betas[k]*smoke[i]+betaas[k]*age[i]*smoke[i]

}

}

beta0[1]<-0

betaa[1]<-0

betas[1]<-0

betaas[1]<-0

for (k in 2:4)

{beta0[k]~dnorm(mu0,1.0)

betaa[k]~dnorm(mua,10.0)

betas[k]~dnorm(mus,10.0)

betaas[k]~dnorm(muas,20.0)

}

mu0~dnorm(-2,1.0)

mua~dnorm(0,10.0)

mus~dnorm(0,10.0)

muas~dnorm(0,20.0)

}

Figure 2.3: BUGS code for Example 2.3.2
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Carrier status
Tonsil size Carrier Non-carrier
Normal 19 497
Large 29 560
Very large 24 269

Of course we could just give the six probabilities a Dirichlet prior but another possibility is to
parameterise the model as follows.

Carrier Normal η1,1 = β1 −2β2 −2β4

Carrier Large η2,1 = β1 +β2 −β3 +β4 −β5

Carrier Very large η3,1 = β1 +β2 +β3 +β4 +β5

Non-carrier Normal η1,2 = −β1 −2β2 +2β4

Non-carrier Large η2,2 = −β1 +β2 −β3 −β4 +β5

Non-carrier Very large η3,2 = −β1 +β2 +β3 −β4 −β5

Notice that, whatever the values of β1, . . . , β5, if we sum η1,1, . . . , η3,2, we always get zero.
Notice also that

• β1 is a carrier effect

• β2 is a large-tonsil effect

• β3 is a very-large-tonsil effect

• β4 and β5 are interaction effects. The coefficients of β4 are obtained by multiplying those of
β1 and β2. The coefficients of β5 are obtained by multiplying those of β1 and β3.

The particular structure which we have here reflects the fact that “Normal”, “Large”, “Very
large” are ordered categories.

Slightly adapting (2.1), we now set

pi,j =
eηi,j∑∑
eηi,j

.

To find a suitable prior distribution for each of the β parameters we need to think about log
odds, for example the log of the probability of being a carrier divided by the probability of being
a non-carrier. We will omit the details and use the following independent priors.

β1 ∼ N(−1.5, 2.5) β2 ∼ N(0, 1.6)
β3 ∼ N(0, 1.6) β4 ∼ N(0, 1.0)
β5 ∼ N(0, 1.0)

Figure 2.4 shows some suitable BUGS code.
Notice that we have arranged the ηs into a single vector for convenience. Notice also that some

extra quantities are calculated at the end. This is simply so that we can easily find the posterior
distributions of these quantities. Let Rnormal be the conditional probability of being a carrier
given normal-sized tonsils, and similarly Rlarge and Rvlarge for large and very large tonsils. Then
we calculate two log relative risks: log(Rlarge/Rnormal) and log(Rvlarge/Rnormal) to see how much
enlarged tonsils affects the probability of a child being a carrier.
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model

{

y[1:6]~dmulti(p[],1398)

for (k in 1:6)

{p[k]<-phi[k]/sum(phi[])

phi[k]<-exp(eta[k])

}

eta[1]<- beta[1]-2*beta[2] -2*beta[4]

eta[2]<- beta[1]+ beta[2]-beta[3]+ beta[4]-beta[5]

eta[3]<- beta[1]+ beta[2]+beta[3]+ beta[4]+beta[5]

eta[4]<- -beta[1]-2*beta[2] +2*beta[4]

eta[5]<- -beta[1]+ beta[2]-beta[3]- beta[4]+beta[5]

eta[6]<- -beta[1]+ beta[2]+beta[3]- beta[4]-beta[5]

beta[1]~dnorm(-1.5,0.4)

beta[2]~dnorm(0,0.625)

beta[3]~dnorm(0,0.625)

beta[4]~dnorm(0,1.0)

beta[5]~dnorm(0,1.0)

rnormal<-p[1]/(p[1]+p[4])

rlarge<-p[2]/(p[2]+p[5])

rvlarge<-p[3]/(p[3]+p[6])

lrrlarge<-log(rlarge/rnormal)

lrrvlarge<-log(rvlarge/rnormal)

}

Figure 2.4: BUGS code for tonsils example
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2.4 Practical 2

2.4.1 Introduction

In this practical we will start to use the R package rjags to do MCMC evaluation of posterior
distributions. We will do some examples involving generalised linear models.

The software BUGS (Bayesian Inference Using Gibbs Sampling) was developed to allow users
to specify models and priors, connect these with data and compute samples of unknowns from
the posterior distribution using a Gibbs sampler (Spiegelhalter et al, 1995). Later a menu-driven
version to run under MS Windows, called WinBUGS (Lunn et al, 2000) was developed. This
eventually incorporated new features not found in the original, or ‘Classic”, BUGS. There are now
also OpenBUGS, developed at the University of Helsinki, JAGS (Just Another Gibbs Sampler)
(Plummer, 2012) and various other implementations of the basic “BUGS” idea. In particular we
will be using rjags which is a R package which implements JAGS within R. All of these use
(apart from a few small differences) the same Model Specification Language and, in this part of the
module, it is this language, and model specification generally, which are of particular interest.

The WinBUGS manual is available from the MAS8303 Web Page. The details of how you
tell rjags to do things are different from WinBUGS but the model specification language and
many other features are the same.The JAGS and rjags manuals are available from Dr Farrow’s
MAS8391 Web page at

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8391/

Henceforth we will refer to this Web page as “MF’s Web Page”.

2.4.2 Loading rjags

Start R. You may well wish to change the working directory, for example to a MAS8303 folder.
This can be done via the File Menu.

Type:

library(rjags)

2.4.3 Poisson regression: Aircraft fatalities

This example has only two parameters so we do not really need MCMC but it will serve as a first
example.

The data in table 2.1 come from Phillips (1978). People sometimes commit “murder-suicide”
by deliberately crashing private aircraft. It was thought that newspaper coverage of such an event
might trigger other incidents. The data give the number of “multi-fatality crashes” in the week
following each of 17 known cases of murder-suicide, together with an index of newspaper coverage.
The idea is to investigate whether the number of crashes is related to the newspaper coverage.

We adopt the following model.

Yi | β0, β1 ∼ Po(µi)

ηi = log(µi) = β0 + β1xi

We give the two parameters independent priors as follows.

β0 ∼ N(1, 4)

β1 ∼ N(0, 0.0001)

1. Obtain the data file from MF’s Web Page. Save the file as aircraftdata.txt.

2. Create a file called aircraftbug.txt containing the model specification as follows. You can
use Notepad to do this.
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model

{

for (i in 1:17)

{y[i]~dpois(mu[i])

log(mu[i])<-beta0+beta1*x[i]

}

beta0~dnorm(1,0.25)

beta1~dnorm(0,10000)

}

3. Read the data into R and put them in a suitable format.

aircraft<-read.table("aircraftdata.txt",header=TRUE)

aircraftdata<-list(x=aircraft$x,y=aircraft$y)

4. Create a JAGS model object.

aircraftjags<-jags.model("aircraftbug.txt",data=aircraftdata,n.chains=2)

Note that there is an argument which is the number of parallel chains which we want to use.
Using parallel chains can be useful for checking convergence. Here we are using two chains.
We can also specify initial values if we so wish.

5. Run the sampler for a burn-in period (of 5000 iterations here).

update(aircraftjags,5000)

6. Run the sampler for 10000 more iterations, recording the samples.

aircraftsamples<-coda.samples(aircraftjags,c(’beta0’,’beta1’),10000)

7. At this stage we can check convergence of the chain by looking at a trace plot. Before we ask
for the plots, it is advisable to change one of the R graphics parameters. We then have to
click on the graphics window to move to the next plot.

par(ask=TRUE)

traceplot(aircraftsamples)

8. If we are satisfied that the chains had reached convergence (close enough) when we started
to record samples, we can now look at some summaries of the posterior distribution.

summary(aircraftsamples)

9. We can also find approximations to the marginal posterior densities of the parameters.

densplot(aircraftsamples)

We might want to do more sophisticated things such as change the way the density estimate
is calculated or make a contour plot of the joint posterior distribution of the two parameters.
To do these things we can extract the MCMC samples themselves and then do whatever we
like with them. For example

aircraftsamplesout<-as.matrix(aircraftsamples,iters=TRUE)

puts all of the recorded sampled values of β0 and β1 into the matrix aircraftsamplesout,
along with the iteration numbers.
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x y x y x y
376 8 96 8 5 3
347 5 85 6 5 2
322 8 82 4 0 4
104 4 63 2 0 3
103 6 44 7 0 2
98 4 40 4

Table 2.1: Index of newspaper coverage x and number of multi-fatality crashes y in weeks following
incidenst of murder-suicide.

2.4.4 Binomial regression

This is the example in section 2.2.2. Use a similar procedure to that for the Poisson regression
above. You will need to put the model specification into a file. You can also put the data into a
file which should look like this.

dose n effects

0.9 46 17

1.1 72 22

1.8 118 52

2.3 96 58

3.0 84 56

3.3 53 43

4.0 38 30

Alternatively you can simply define the variables directly in R, eg

dose<-c(0.9,1.1,1.8,2.3,3.0,3.3,4.0)

and then, eg

sideeffect<-list(dose=dose,n=n,effects=effects)

2.4.5 Loglinear models: Babies

This is the example in section 2.3.2. Use a similar procedure to that for the Poisson regression
above. The model specification is available from MF’s Web page. It is a good idea to put the data
into a file. The data file might look like this.

y1 y2 y3 y4 n age smoke

4012 24 315 50 4401 -1 1

459 6 40 9 514 -1 -1

1594 14 147 41 1796 1 -1

124 1 11 4 140 1 1

You could then use something like

babies<-read.table("babies.txt",header=TRUE)

y<-with(babies,cbind(y1,y2,y3,y4))

babies<-list(y=y,n=babies$n,age=babies$age,smoke=babies$smoke)

Which quantities do you think that you should monitor (ie. record samples)? We could use,
for example,

babysamples<-coda.samples(babyjags,c("beta0","betaa","betas","betaas"),10000)

and then, later,

traceplot(babysamples)

etc.Note that, in order for this coda.samples command to work, it was necessary to define
beta0[1], betaa[1], betas[1] and betaas[1] in the model specification even though we do
not really need them.
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2.4.6 Loglinear models: Tonsils

This is the example in section 2.3.4. Use a similar procedure to that for the Poisson regression
above. The model specification is available from MF’s Web page. You can easily specify the data
directly in R as follows.

tonsilsdata<-list(y=c(19,29,24,497,560,269))

Which quantities do you think that you should monitor?

2.5 Exercises

1. Observations are made on the numbers of caterpillars on commercially grown cabbages in J
plots. The number of observations in plot j is nij . Let the number of caterpillars on the ith

cabbage in plot j be Yij . Given the values of λ1, . . . , λJ , we have

Yij | λj ∼ Po(λj),

a Poisson distribution with mean λj , and Y11, . . . , YnJJ are conditionally independent.

Let ηj = log(λj). Given the values of µ and τ, we have

ηj | µ, τ ∼ N(µ, τ−1),

a normal distribution with mean µ and precision τ, and η1, . . . , ηJ are conditionally indepen-
dent.

We have independent prior distributions for µ and τ with µ ∼ N(m, v) and τ ∼ gamma(a, b).

We make observations Yij = yij and wish to use a Gibbs sampler to evaluate the posterior
distribution.

Find a function proportional to the density of the full conditional distribution of ηj .

2. A particular surgical operation performed on patients with a serious condition is hazardous
and a proportion of the patients die during surgery. Researchers wish to investigate the
relationship between the death rate and the age of the patient. We have the following model.
Let θx be the death rate for patients aged x years. That is, given θx, the probability of death
is θx. Let

ηx = log

(
θx

1− θx

)
.

We suppose that

ηx = a+ bx

for some unknown parameters a, b.

We develop a prior distribution as follows. Consider two ages, x = 50 and x = 70. Our
marginal prior distributions for η50 and η70 are η50 ∼ N(m50, v50) and η70 ∼ N(m70, v70).
The prior correlation of η50 and η70 is 0.8. We assess

Pr(θ50 < 0.05) = Pr(θ50 > 0.20) = Pr(θ70 < 0.1) = Pr(θ70 > 0.4) = 0.025.

(a) Find the values of m50, v50, m70, v70 and the covariance of η50, η70.

(b) Find the joint prior distribution of a, b.
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3. In an experiment on student learning, randomly selected students are assigned to groups
which are given different amounts of tuition. Suppose group i has ni students who are given
ti + 30 hours of tuition.

At the end of the experiment the students are given a test. Suppose that a student’s per-
centage mark is Z. Let X = ln(Z). Suppose that, for a student in group i, we assume
X ∼ N(α + βti, σ

2), where σ = 0.1. Instead of the actual percentage marks, all that is
recorded is whether each student passes or fails the test. A student passes if Z ≥ 40, that is
X ≥ ln 40.

Let yi be the number of students in group i who pass the test.

(a) Express this model as a generalised linear model.

(b) State the link function and error function.

(c) Find the linear predictor.

(d) Use BRugs to evaluate the posterior distributions of α and β. You may use independent
priors for α and β with

α∗ ∼ N(0.1, 0.01), α = α∗ + ln 40 and β ∼ N(0.0, 0.0004).

The data are as follows.

ti ni yi
-10 30 19

0 40 30
10 30 27

(e) What happens if we do not assume that σ = 0.1 but allow σ2 to be unknown?
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Chapter 3

Missing Data and Data
Augmentation

3.1 Introduction to Graphical Models

In the rest of the module it will sometimes be useful to use graphical representations of models.
We will look at a particular type of graph called a directed acyclic graph or dag.

Suppose that we are going to observe a number of animals of the same species. Each animal
might or might not have a particular gene. Suppose that all animals in the population are con-
sidered to be exchangeable with respect to having this gene. Let Ti = 1 if animal i has the gene.
Otherwise Ti = 0. Because of the exchangeability, we can represent the relationships in our beliefs
about T1, T2, . . . by introducing θ to represent the unknown overall proportion of animals in the
population which have the gene. The graph for two animals is shown in Figure 3.1.

With three unknowns, A,B,C, we can always write the joint probability as

Pr(A,B,C) = Pr(A) Pr(B|A) Pr(C|A,B).

In the example this might have led us to write

Pr(θ, T1, T2) = Pr(θ) Pr(T1|θ) Pr(T2|θ, T1).

In fact the last term is just Pr(T2|θ) since T2 is conditionally independent of T1 given θ. In other
words we do not draw an arrow (or arc) from T1 to T2 in figure 3.1. We can build up the joint
probability as a product of one marginal probability and a sequence of conditional probabilities.
The direction of the arcs denotes the order in which we are doing this and the arcs leading into a
node indicate on which other unknowns we need to condition at each step. In a way, the important
feature, therefore, is which possible arcs are missing. Note that we can not have a directed cycle
in such a graph. The graphs are sometimes called directed acyclic graphs or DAGs. They are also
sometimes called influence diagrams.

Figure 3.2 gives another example of a DAG. Here A and D are independent, B and E are
conditionally independent given C and each of B,E is conditionally independent of each of A,D
given C. The joint probability can be written

Pr(A,B,C,D,E) = Pr(A) Pr(D) Pr(C|A,D) Pr(B|C) Pr(E|C). (3.1)

There is no unique graph for a group of random variables.

Suppose, in the example of figure 3.2, we wanted A to be the only node with no parents. This
means reversing the direction of the arc between D and C. It is not quite as simple as this though.
The joint probability is given by (3.1). By Bayes theorem,

Pr(C | A,D) =
Pr(C | A) Pr(D | A,C)

Pr(D | A)

67
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Figure 3.1: Graphical model for animals example
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Figure 3.2: Directed acyclic graph
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Figure 3.3: Arc reversal

but Pr(D | A) = Pr(D) so

Pr(D) Pr(C | A,D) = Pr(C | A) Pr(D | A,C).

Hence we replace (3.1) with

Pr(A,B,C,D,E) = Pr(A) Pr(C|A) Pr(D|A,C) Pr(B|C) Pr(E|C).

So (unless D is conditionally independent of A given C, which would not be true in general)
we need to add an arc from A to D, as in figure 3.3. The general rule is that we can reverse the
direction of an arc between two nodes, N1 and N2, provided that

1. we do not create a directed cycle by doing so and

2. any node which is a parent of either N1 or N2 is made a parent of both.

See Figure 3.3.
Going back to figure 3.2, suppose we wished to eliminate C. Then we could replace (3.1) with

Pr(A,B,D,E) = Pr(A) Pr(D) Pr(B|A,D) Pr(E|A,B,D)

which gives the diagram in figure 3.4. To see this, first note that we can always remove a node
which has no children without having to make any other changes. This is obvious since we are just
dropping a term from the end of the joint probability factorisation. So, we can arrange for the
node which we want to delete to have no children by suitable arc reversals. For example, starting
with figure 3.2, we could reverse the arc between B and C and then reverse the arc between C and
E. This would leave us with figure 3.4. If we did the reversals in the other order we would get a
slightly different result.

The procedure using arc reversals to eliminate a node will work but we might end with a graph
which has more arcs than are necessary. There is a general rule which can be used which avoids
this problem. (You need not memorise this rule). The general rule is as follows. If a node N is
eliminated then:

• every child of N inherits all parents of N,

• every pair of the children of N is connected by an arc,

• every child that receives an arrow from another child inherits all parents of the latter.

See Pearl, Geiger and Verma (1990) p82.
Figure 3.5 shows a simple repeated measures model with three observations on each of two

individuals. The model is as follows.
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Figure 3.4: Node deletion

Suppose we have k samples of observations and observation j in sample i is

Yij = θi + εij

for j = 1, . . . , J, where εij ∼ N(0, σ2
ε) and θi ∼ N(µ, σ2

θ) (all independent).
Suppose we have independent priors for the three parameters:

µ ∼ N(µ0, σ
2
0)

σ2
θ ∼ IG(a1, b1)

σ2
ε ∼ IG(a2, b2)

where IG stands for “inverse gamma” (i.e. (σ2)−1 has a gamma distribution).
The diagram shows the model with k = 2 and J = 3.
We will see similar models in a later lecture.
Figure 3.6 shows an example of how we might represent relationships in our prior beliefs about

quantities. Here M1,M2,M3 are all related because they share a common parent, U3. Thus, if we
learn something about M1 this will affect our beliefs about M2 and M3. Furthermore M1 is more
strongly related to M2 than to M3 because M1 and M2 share a common parent, U1, which is not
a parent of M3.
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Figure 3.5: Repeated measures model
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3.2 Missing Data

3.2.1 Motivation

Consider a regression model with a dependent variable Y and explanatory variables X1, . . . , Xp.
This could be a linear model, a generalised linear model or some other kind of model such as a
survival model. In some cases the values of X1, . . . , Xp will be deliberately chosen in a designed
experiment. In other cases the data will arise from an observational study in which we observe
the variables for each of a sample of individuals from some population. In the latter case it is
possible that, for some reason, the values of one or more of the explanatory variables are missing.
In fact this is not particularly unusual. Regression is not the only situation where this might be a
problem. It might apply in other cases wher we make multivariate observations.

What can we do? We can not simply make inferences about the model parameters in the
ordinary way when observations on some variables are missing. One possibility would be simply
to delete any obervation where there are missing data. This is not satisfactory for two reasons as
follow.

1. We would be losing information which could be used.

2. We might make misleading inferences as a result. It could be that the cases where data are
missing are also different in some other way from the complete cases.

From the Bayesian viewpoint the missing values are simply “unknowns” in the same way as
other unknowns such as model parameters. We can therefore extend our model to include a model
for the variables which may be missing. If a variable X is sometimes, but not always, missing
then we can (subject to certain assumptions – see below) use the cases where it is present to
learn about its relationship with other variables. Therefore we can obtain a posterior distribution
for the missing values. In fact we obtain a joint posterior distribution for the model parameters
and the missing values. We can then “integrate out” the missing values to obtain the marginal
posterior distribution of the model parameters. In effect, our inferences about model parameters
are “averaged” over the distribution of possible values of the missing data. MCMC methods
are well suited to handling problems of this type and it is often quite straightforward to handle
missing-data problems using software such as BUGS.

We need to do two things:

1. We need to consider the nature of the “missingness” to see what it makes sense to do.

2. If it does make sense to proceed then we need a “missing data model”. That is a model
which shows how the variables which are sometimes missing are related to other variables.

3.2.2 Different kinds of missingness

Suppose that we make a multivariate observation Y on each of a number of individuals. In the
regression example above, Y would contain both the dependent variable Y and the explanatory
variable X1, . . . , Xp. For an individual i the vector of values of the variables is y

i
= (yi,1, . . . , yi,J)T .

However some of the values yi,1, . . . , yi,J might be missing and therefore not observed. We introduce
the inclusion indicator Ii = (Ii,1, . . . , Ii,J)T where Ii,j = 1 if yi,j is observed and Ii,j = 0 if yi,j is
missing.

We introduce (vector) parameters θ, φ such that, given θ and φ, we can write the joint proba-
bility (density) of y

i
, Ii as

fy,I(yi, Ii | θ, φ) = fy(y
i
| θ)pI(Ii | y, φ).

Let us consider all of the data (for all individuals) together. We write y for the complete data
on all individuals, I for the inclusion indicator for all individuals, which is now a matrix, and so
on. Then we write

fy,I(y, I | θ, φ) = fy(y | θ)pI(I | y, φ).

(The meaning of f and p has, of course, changed here).
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Missing data mechanism :

The conditional distribution pI(I | y, φ) of I, given the complete data y and the parameters φ,
is called the missing data mechanism.

Observed data and likelihood :

We divide y into y
obs
, the part which we observe, and y

miss
, the part which is missing. All that

we actually observe is y
obs

and I. The likelihood from this is therefore

L(θ, φ) = fyobs,I(yobs
, I | θ, φ)

=

∫
fy(y

obs
, y

miss
| θ)p(I | y

obs
, y

miss
, φ) dy

miss
.

Missingness at random :

We say that the missing data are missing at random (MAR) if I is conditionally independent
of the missing values given the observed values. That is

p(I | y
obs
, y

miss
, φ) = p(I | y

obs
, φ).

Then

L(θ, φ) = fyobs,I(yobs
, I | θ, φ)

= p(I | y
obs
, φ)

∫
fy(y

obs
, y

miss
| θ) dy

miss

= p(I | y
obs
, φ)fyobs(yobs

| θ)
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Ignorable missing-data mechanism :

Suppose that the missing data are missing at random and, in addition, the two sets of parameters
θ, φ are independent in our prior, so that the joint prior density is

fθ,φ(θ, φ) = fθ(θ)fφ(φ).

Then the joint posterior density of θ, φ is proportional to

fθ(θ)fyobs(yobs
| θ)× fφ(φ)p(I | y

obs
, φ).

Therefore we can base our Bayesian inference about θ simply on the observed data y
obs
.

In this case the missing data mechanism is said to be ignorable.

Missingness completely at random :

Sometimes a stronger assumption than MAR is made. We say that the missing data are missing
completely at random (MCAR) if the distribution of I does not depend on either the missing
or observed values. That is

p(I | y
obs
, y

miss
, φ) = p(I | φ).

Notice that it is not usually necessary to assume MCAR for Bayesian inference. It is usually
sufficient to have MAR - ignorable.

The MAR assumption is more plausible when we observe a large number of variables since the
observed values are then more likely to convey enough information to make missingness condition-
ally independent of the missing values.

3.2.3 Missing data models

Consider the abrasion loss example in Practical 1 (Section 1.4.1). Suppose that some of the
hardness (X1) and tensile strength (X2) measurements are missing.

We need a model for the joint distribution of X1 and X2. The existing regression model is just
a model for the conditional distribution of Y given X1 and X2. For example, we could say

X1 | µ1, τ1 ∼ N(µ1, τ
−1
1 )

µ1 ∼ N(60, 400)

τ1 ∼ Ga(1, 100)

X2 | x1, δ1, δ2, τ2 ∼ N(δ1 + δ2[x1 − 60], τ−1
2 )
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δ1 ∼ N(200, 2500)

δ2 ∼ N(0, 1)

τ2 ∼ Ga(1, 2000)

Notice that we have done this by giving X1 a distribution and then giving X2 a conditional
distribution given X1. (Of course we could have done it the other way round). There are many
possibilities for the way we build a “missing data model” depending on what the variables are. For
example, we might have a binary variable which we could relate to a continuous variable through a
logistic regression (or we could give the continuous variable two different conditional distributions
depending on the value of the binary variable).

Figure 3.7 shows a BUGS model specification in the abrasion loss example. (Note that we are
not using the fully conjugate prior here). The data file would simply contain NA where a value is
missing.

model

{for (i in 1:30)

{loss[i]~dnorm(lossmean[i],tau)

lossmean[i]<-alpha+beta[1]*(hard[i]-60)+beta[2]*(tens[i]-200)

hard[i]~dnorm(muhard,tau.hard)

tens[i]~dnorm(tensmean[i],tau.tens)

tensmean[i]<-delta[1]+delta[2]*(hard[i]-60)

}

alpha~dnorm(150,0.000625)

beta[1]~dnorm(0,0.0025)

beta[2]~dnorm(0,0.0025)

beta0<-alpha+60*beta[1]+200*beta[2]

muhard~dnorm(60,0.0025)

delta[1]~dnorm(200,0.0004)

delta[2]~dnorm(0,1)

tau.tens~dgamma(1,2000)

tau.hard~dgamma(1,100)

tau~dgamma(2,3200)

}

Figure 3.7: BUGS model specification for abrasion loss example with missing data
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3.3 Data augmentation

3.3.1 Introduction

Some models have rather complicated likelihood functions which, if handled directly, would lead
to difficult calculations. Sometimes it is possible to make things much simpler by introducing
extra variables, known as auxiliary variables, which are not observed but, which, if they were
observed, would make the likelihood simpler. These auxiliary variables are then treated as if they
were missing data. This is known as data augmentation. MCMC methods are well suited to this
approach.

3.3.2 Example 1: Mixture models

In MAS3301 we looked at the use of mixture distributions as priors. We can also use mixtures as
sampling distributions. The likelihood can be complicated and difficult to calculate but we can
make things much simpler by introducing a group-membership variable which is unobserved. We
will look at the case of mixtures in Chapter 4.

3.3.3 Example 2: Student t-model

In a normal linear model we have

Yi | µi, σ2 ∼ N(µi, σ
2)

where µi =

J∑
j=1

βjxi,j

Suppose instead we want to use a Student’s t-distribution for the errors so

Yi − µi
σ

| µi, τ ∼ td,

where td represents the Student’s t distribution on d degrees of freedom. We assume that d is
chosen. A small value of d makes the error distribution “heavy-tailed.”

The likelihood in this model is such that sampling for a Gibbs sampler would be difficult.
However we can overcome this problem by introducing auxiliary variables Xi where

dσ2Xi ∼ χ2
d.

Then we let

Yi | µi, Xi ∼ N(µi, X
−1
i ).

Now we get the following properties.

• Yi has the required error distribution.

Proof: Since dσ2Xi ∼ χ2
d we have Xi ∼ Ga(d/2, dσ2/2). Therefore the joint density of Xi

and Yi given µi and σ2 is

fX,Y (xi, yi | µi, σ2) = (2π)−1/2x
1/2
i exp

{
−xi

2
(yi − µi)2

} (dσ2/2)d/2x
d/2−1
i e−dσ

2xi/2

Γ(d/2)

= (2π)−1/2 (dσ2/2)d/2

Γ(d/2)
x

(d+1)/2−1
i e−xi[dσ

2+(yi−µi)2]/2

=
(2π)−1/2(dσ2/2)d/2Γ([d+ 1]/2)

Γ(d/2)([dσ2 + (yi − µi)2]/2)(d+1)/2

× ([dσ2 + (yi − µi)2]/2)(d+1)/2

Γ([d+ 1]/2)
x

(d+1)/2−1
i e−xi[dσ

2+(yi−µi)2]/2
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Now integrate with respect to xi and the second term, which is a gamma density, integrates
to 1. So the density of Yi is

fY (Yi) =
(2π)−1/2(dσ2/2)d/2Γ([d+ 1]/2)

Γ(d/2)([dσ2 + (yi − µi)2]/2)(d+1)/2

= π−1/2dd/2σd
Γ([d+ 1]/2)

Γ(d/2)
[dσ2 + (yi − µi)2]−(d+1)/2

= (πd)−1/2σ−1 Γ([d+ 1]/2)

Γ(d/2)

[
1 + d−1

(
yi − µi
σ

)2
]−(d+1)/2

Now let Ti = (Yi − µi)/σ. Then dt/dy = 1/σ so the density of Ti is

fT (ti) = (πd)−1/2 Γ([d+ 1]/2)

Γ(d/2)

[
1 +

t2

d

]−(d+1)/2

.

This is the density of a td distribution, as required.

• Given a multivariate normal prior for β1, . . . , βJ , the full conditional distribution of β1, . . . , βJ
(conditioning on values for X1, . . . , XJ) is also multivariate normal and therefore easy to
sample.

• Given a value for σ2 and values for µ1, . . . , µn, the full conditional distribution for each Xi

is a gamma distribution and therefore easy to sample.

• Given values for X1, . . . , Xn and a gamma prior for σ2 (Note: σ2 in this case, not τ = σ−2),
the full conditional distribution of σ2 is also a gamma distribution and easy to sample.

3.3.4 Example 3: Integrated moving average processes

Integrated moving average processes are commonly used as models for nonstationary time series.
The integrated first order moving average process, denoted IMA (0,1,1), is especially useful.

Let the observation at time t be yt. Let zt = yt − yt−1. Then we model zt using a first order
moving average, MA(1), process

zt = εt + θεt−1

where . . . , εt−2, εt−1, εt, εt+1, . . . are independent and each has distribution εj ∼ N(0, σ2), given
σ2.

This is a stationary process. For reasons of identifiability we restrict θ to −1 ≤ θ ≤ 1. Given
the parameters, the moments of the process are as follows.

E(zt) = 0,

γ0 = var(zt) = σ2(1 + θ2),

γ1 = covar(zt, zt−1) = σ2θ,

γk = covar(zt, zt−k) = 0 (k > 1).

(Note that the mean is zero because we have not added a nonzero “drift” into the model).
If we observe y = (y1, . . . , yn)T then, we can transform this to the equivalent observation

y1, z2, . . . , zn where z2, . . . , zn is a realisation of a MA(1) process. Given the parameters, this is an
observation from a multivariate normal distribution in which the variance matrix is a function of
the unknown parameters σ2 and θ.

Things take on a simpler form if we observe that, conditional on εt−1 and the model parameters,
the distribution of zt is normal with mean

E(zt | εt−1, θ) = θεt−1

and variance σ2. This now looks like a straightforward normal linear regression (with no intervept
because we are not fitting a nonzero mean). However, we need to know the values of εt−1. Apart
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from one catch, this problem is easily solved since, if we know εt−1 and zt and the parameters, we
can calculate

εt = zt − θεt−1.

Therefore we can calculate the ε values recursively through the time series. The catch is that we
need a starting value at the beginning of the series and we do not have it. That is, we do not
have ε1 which we need to calculate ε2. The solution is to augment the data by including ε1 as an
auxiliary variable. Since y1 and ε1 are not independent and we have the observation y1, we really
ought to use this information. One way to do this is to write y1 = µ + ε1 and specify a (normal)
prior for µ.

There is another approach which is actually more popular among Bayesian statisticians (prob-
ably for historical reasons).
Suppose we write

yt = xt + et,

xt = xt−1 + at,

where . . . , at−2, at−1, at, at+1, at+2, . . . and . . . , et−2, et−1, et, et+1, et+2, . . . are all independent,
given the parameters, and

aj ∼ N(0, σ2
a),

ej ∼ N(0, σ2
e).
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This is an example of a dynamic linear model.
Now, as before, let zt = yt − yt−1. So

zt = xt + et − xt−1 − et−1

but xt − xt−1 = at so
zt = et − et−1 + at.

Now we can see that, given the parameters, the moments of the zt process are as follows.

E(zt) = 0,

γ0 = var(zt) = σ2
a + 2σ2

e ,

γ1 = covar(zt, zt−1) = −σ2
e ,

γk = covar(zt, zt−k) = 0 (k > 1).

Therefore the two models are the same if

θσ2 = −σ2
e ,

σ2(1 + θ2) = σ2
a + 2σ2

e .

Note that this only works provided that we are willing to restrict θ to −1 ≤ θ ≤ 0 but this is
often a reasonable assumption.

Figure 3.8 shows a possible BUGS model specification using this second approach. We can
regard x1, . . . , xn as auxiliary data. In fact, in this model specification I have also introduced x0

to help to construct the prior. There are different ways to construct priors for models of this sort
but a method like that shown here is often used if we wish to use the model for forecasting.
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model

{

for (i in 1:n)

{y[i]~dnorm(x[i],tau.y)

}

x0~dnorm(400,0.0001)

x[1]~dnorm(x0,tau.x)

for (i in 2:n)

{x[i]~dnorm(x[i-1],tau.x)

}

tau.x~dgamma(1,10)

tau.y~dgamma(1,10)

k<- -(tau.y/tau.x+2)

theta1<-k+sqrt(pow(k,2)-4)

theta2<-k-sqrt(pow(k,2)-4)

theta<-max(theta1,theta2)

sigmasq<- -1/(theta*tau.y)

}

Figure 3.8: BUGS model specification for integrated moving average IMA (0,1,1) process

3.4 Practical 3

3.4.1 Abrasion Loss

Consider the abrasion loss example in Practical 1 (Section 1.4.1). Suppose that some of the
hardness (X1) and tensile strength (X2) measurements are missing.

1. Obtain a copy of the data file abrasion.txt used in Practical 1. Edit the file by changing
the first two hardness values to NA and the third and fourth tensile strength values to NA.
Add headings for the columns as shown below. The first few lines of the file should now look
like this.

loss hard tens

372 NA 162

206 NA 233

175 61 NA

154 66 NA

136 71 231

112 71 237

We now have four missing values in the file.

Save the file with the name abmiss.txt .

2. Obtain a copy of the BUGS model file abmissbug.txt from the module Web page.

3. Read the data into R and put them in a suitable format.

abmiss<-read.table("abmiss.txt",header=TRUE)

abmissdata<-list(loss=abmiss$loss,hard=abmiss$hard,tens=abmiss$tens)

4. Create a JAGS model object.
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model

{for (i in 1:30)

{loss[i]~dnorm(lossmean[i],x[i])

lossmean[i]<-alpha+beta[1]*(hard[i]-60)+beta[2]*(tens[i]-200)

x[i]~dgamma(5,w)

}

alpha~dnorm(150,0.000625)

beta[1]~dnorm(0,0.0025)

beta[2]~dnorm(0,0.0025)

beta0<-alpha+60*beta[1]+200*beta[2]

w<-5*v

v~dgamma(2,0.00125)

}

Figure 3.9: BUGS model specification for abrasion loss example with Student t errors.

abmissjags<-jags.model("abmissbug.txt",data=abmissdata,n.chains=2)

5. Run the sampler for a burn-in period.

update(abmissjags,5000)

6. Start recording samples. You do not have to record everything, of course, but, in this case,
it might be interesting to see the sampled values of the missing data as well as the model
parameters.

abmisssamples<-coda.samples(abmissjags,c(’beta0’,’beta’,’tau’,

’muhard’,’tau.hard’,’delta’,’tau.tens’,’hard’,’tens’),10000)

7. Look at the results in the various ways which you have seen and compare the posterior
summaries with those obtained in Practical 1 when no observations were missing.

8. Try running this model again but this time with no burn-in, to see how convergence happens.

abmissjags<-jags.model("abmissbug.txt",data=abmissdata,n.chains=2)

abmisssamples<-coda.samples(abmissjags,c(’beta0’,’beta’,’tau’,

’muhard’,’tau.hard’,’delta’,’tau.tens’,’hard’,’tens’),10000)

par(ask=TRUE)

traceplot(abmisssamples)

Etc.

3.4.2 Abrasion loss with t errors

Let us analyse the abrasion loss data again, this time with no missing data but with Student t
errors.

1. Create a new model file, perhaps by editing abmissbug.txt. Save the file as abtbug.txt.
The file should look like Figure 3.9. We set the degrees of freedom to 10. We will use data
augmentation (although, in fact, rjags is probably clever enough to handle the problem even
without this).
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460 457 452 459 462 459 463 479 493 490 492 498 499 497 496 490
489 478 487 491 487 482 479 478 479 477 479 475 479 476 476 478
479 477 476 475 475 473 474 474 474 465 466 467 471 471 467 473
481 488 490 489 489 485 491 492 494 499 498 500 497 494 495 500
504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541
545 549 545 549 547 543 540 539 532 517 527 540 542 538 541 541
547 553 559 557 557 560 571 571 569 575 580 584 585 590 599 603
599 596 585 587 585 581 583 592 592 596 596 595 598 598 595 595
592 588 582 576 578 589 585 580 579 584 581 581 577 577 578 580
586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560

Table 3.1: One hundred and sixty consecutive daily IBM common stock closing prices. The data
are to be read along the rows.

2. Create a data file, called abrasion.txt, like abmiss.txt but with none of the observations
missing.

3. Try the analysis.

abrasion<-read.table("abrasion.txt",header=TRUE)

abdata<-list(loss=abrasion$loss,hard=abrasion$hard,tens=abrasion$tens)

abtjags<-jags.model("abtbug.txt",data=abdata,n.chains=2)

update(abtjags,(5000)

abtsamples<-coda.samples(abmissjag,c(’beta0’,’beta’,’v’),10000)

par(ask=TRUE)

traceplot(abtsamples)

Etc.

4. Compare the results with the results in Practical 1. What do you think is the effect of using
t rather than normal errors?

3.4.3 IBM Stock Prices

Table 3.1 shows 160 consecutive daily IBM common stock closing prices. The data may be obtained
from the Module Web Page. They were obtained from Box and Jenkins (1976). Box and Jenkins
suggest fitting an IMA (0,1,1) model to these data.

1. Use the model file shown in Figure 3.8 to analyse these data. You can obtain the model file
from the Module Web Page.

2. We can calculate forecasts in a straightforward way. Edit the data file. Change n=160 to
n=164. Add NA four times at the end of the list of y values, separated by commas. Repeat
the analysis but this time you can record the values of the “missing” Y values, by monitoring
y, and thus obtain a forecast distribution.

3.5 Exercise

Table 3.2 shows the numbers of patients undergoing surgery and the numbers who died in the
hospital following surgery in two areas of the USA, broken down by age-group and sex. The data
are taken from Mosteller and Tukey (1977).

We propose the following model. There are four area-sex groups:

Group 1 : Males in Area 1.

Group 2 : Females in Area 1.
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Group 3 : Males in Area 2.

Group 4 : Females in Area 2.

Given the model parameters, the number of deaths in Area-Sex Group j and Age-group k has a
binomial Bin(nj,k, pj,k) distribution where nj,k is the number of patients undergoing surgery and

log

(
pj,k

1− pj,k

)
= αj + βj(xk − 50)

where xk is the mid-point of the age-range for age-group k.
We need to make inferences about the eight model parameters, α1, . . . , α4, β1, . . . , β4.

1. Suppose that we consider “typical” patients aged 50. Suppose that for such patients, the
probability p0 of death is α0 and we give α0 a normal prior distribution. Suppose that, in
our prior beliefs, Pr(p0 < 0.02) = Pr(p0 > 0.10) = 0.025. Find the mean and variance of our
normal prior distribution for α0.

2. Our joint prior distribution for α1, . . . , α4 can be represented as follows. We write

αj | ᾱ ∼ N(ᾱ, Vα,1) for j = 1, . . . , 4.

ᾱ ∼ N(mα, Vα,0).

Here α1, . . . , α4 are conditionally independent given ᾱ. We choose to make Vα,0 = Vα,1 and
Vα,0 + Vα,1 gives the prior variance of α0. Find the values of Vα,0 and Vα,1.

3. We propose a matching structure for β1, . . . , β4 with β1, . . . , β4 independent of α1, . . . , α4 in
the prior.

βj | β̄ ∼ N(β̄, Vβ,1) for j = 1, . . . , 4.

β̄ ∼ N(mβ , Vα,0).

Here β1, . . . , β4 are conditionally independent given β̄. We choose to make Vβ,0 = Vβ,1 and
Vβ,0 + Vβ,1 = 0.0004. Find the values of Vβ,0 and Vβ,1. The value of mβ is 0.0.

4. Construct a suitable BRugs model file. Hint: You can use a construction such as alpha[group[i]]
to denote αj where observation i belongs to group j.

5. The data are available from the Module Web Page in a file called surgicaldata.txt. The
data have been arranged into four columns as follows.

• group: the area-sex group number as above.

• age: the midpoint of the age range for the age-group.

• patients: the number of patients undergoing surgery.

• deaths: the number of deaths.

Use BRugs to find the posterior distribution of the model parameters. Check convergence of
the sampler.

6. Present summaries of the inference, including posterior means and standard deviations of
the parameters.

7. Find the posterior mean and standard deviation of log(p∗1/p
∗
3) where p∗1 is the probability of

death for a fifty-year-old male in area 1 and p∗3 is the probability of death for a fifty-year-old
male in area 2. Plot the psoterior probability density function of this quantity and comment.
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Area 1 Area 2
Total undergoing Total undergoing

surgery Number dying surgery Number dying
Age Males Females Males Females Males Females Males Females
5-14 4272 3911 9 11 1739 1758 5 2

15-24 2835 2989 23 5 1233 1244 14 1
25-34 2785 2606 19 8 989 1004 8 3
35-44 1930 1886 16 15 897 922 9 13
45-54 1497 1524 59 40 921 961 28 15
55-64 960 1013 101 52 686 739 68 37
65-75 652 855 185 118 611 784 159 73
76-83 186 287 97 108 189 290 86 88

Table 3.2: Deaths following surgery in two areas of the USA

3.6 Problems 4

Solutions to all questions are to be submitted in the Homework Letterbox no later than 4.00pm on
Wednesday December 12th. Please note that you should give some attention to the presentation
of your work. Describe the data, model, prior etc. and explain what you have done. Comment on
your conclusions. A listing of the output from a R session with one or two things written on it will
not get a very good mark on its own.

In questions 2 and 3, each student is given different data. For this purpose each student is
given a reference number according to the table below. Please use the correct data and write your
reference number on your work.

Reference numbers

Problems

1. Full conditional distribution

Certain components are manufactured in batches. Each batch contains n components. The
components in N batches are then tested and some are found to be defective. Let the number
of defective components in batch i be xi. We suppose that, given the value of πi, where
0 < πi < 1, the value of xi is an observation from a binomial distribution Xi ∼ Bin(n, πi)
and Xi and Xj are independent given πi and πj when i 6= j. Let ηi = loge{πi/(1− πi)}. We
suppose that, given the values of µ and τ, ηi is an observation from the normal N(µ, τ−1)
distribution and ηi and ηj are independent, when i 6= j, given the values of µ and τ. Finally we
have independent prior distributions for µ and τ with µ having a normal prior, µ ∼ N(m, v),
and τ having a gamma prior, τ ∼ Ga(a, b).

Find a function proportional to the density of the full conditional distribution (fcd) of ηi,
that is the distribution of ηi given xi and values for µ and τ.

(10 marks)
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2. Piston rings

Four compressors are located in the same building. Each has three “legs”. The compressors
are of the same design and are oriented the same way. The three legs of each are labelled
“North”, “Centre” and “South.” Over a certain period of time the number of failures of
piston rings in each leg of each compressor is counted. These numbers are your data.

The model is as follows. Let the number of failures in leg i of compressor j be yi,j (where
i = 1 for North, i = 2 for Centre and i = 3 for South). Given the value of a quantity λi,j > 0,
we assume that yi,j is an observation from a Poisson distribution Yi,j ∼ Po(λi,j), with Yi,j
independent of Yi′,j′ unless (i, j) = (i′, j′), given the values of λi,j and λi′,j′ .

The prior distribution is as follows. Let ηi,j = loge(λi,j). Then

ηi,j = µ+ αi + βj + γi,j

where, α1, . . . , α3, β1, . . . , β4, γ1,1, . . . , γ3,4 and µ are mutually independent and

µ ∼ N(3, 4),

αi ∼ N(0, 1), i = 1, . . . , 3,

βj ∼ N(0, 1), j = 1, . . . , 4,

γi,j ∼ N(0, 0.25), i = 1, . . . , 3, j = 1, . . . , 4.

Data.

To obtain your data, first install the R function pistonread. This function may be obtained
from the Module Web Page, under “Data”, or directly from

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/pistonreadR.txt

or simply by typing the following into R.

pistonread<-function(refno)

{data<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/pistondata.txt")

out<-cbind(data[,1],data[,2],data[,refno])

write.table(format(out),row.names=FALSE,col.names=FALSE,quote=FALSE,file="mypistondata.txt")

}

Then, use the function with your reference number as the argument. For example, if your
reference number is 20, type

pistonread(20)

You will then have a file (in your working directory) called mypistondata.txt.There will be
three columns of data, as follows.

• The leg numbers (1 for North etc) are in column 1.

• The compressor numbers are in column 2.

• Your failure numbers are in column 3.

• Use MCMC to take samples from the posterior distribution of the unknowns in the
model.

(5 marks)

• Display your results appropriately.

(4 marks)

• Explain your method and show your BUGS model specification and the commands
which you have used.
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(4 marks)

• Show how you have checked convergence.

(3 marks)

• Give summaries of the posterior distributions of the model unknowns. In particular,
compare the failure rates in the twelve legs using the posterior distribution. What can
you conclude?

(4 marks)

3. Fraud

Banks and credit card companies attempt to detect fraud by looking for unusual observations
in the withdrawal data for customers. This potentially involves quite complicated models.
The model in this question is a somewhat simplified version but the principal is the same.

You will each be supplied with data for five customers. For each of these customers you will
be given the total withdrawals from the customer’s account for each of twenty weeks. The
value for customer j in week i is yi,j .

For each customer in each week there is a small probability π that a fraud takes place. We
therefore use a mixture model with two components. The component indicator for customer
j in week i is ci,j .

If ci,j = 1 then a fraud against customer j takes place in week i.

If ci,j = 2 then no fraud takes place against customer j in week i.

We assume that, given the model parameters, ci,j is independent of ci′,j′ for (i, j) 6= (i′, j′).
Given π, we have Pr(ci,j = 1) = π. Our prior distribution for π is Beta(1, 99).

If ci,j = 1 then yi,j ∼ Ga(2, 0.0002). If ci,j = 2 then, given α, βj , we have yi,j ∼ Ga(α, βj).
We assume that yi,j is independent of yi′,j′ for (i, j) 6= (i′, j′), given α, βj and βj′ . Our prior
distribution for α is Ga(2, 0.5).

Let βj = α/λj and λj = exp(µj). Given µ0, τ, we have µj ∼ N(µ0, τ
−1) with µj independent

of µj′ for j 6= j′. Our prior distribution for µ0 is µ0 ∼ N(5.3, 1.4). Our prior distribution for
τ is Ga(3, 4).

Unless otherwise stated, the prior distributions are independent.

Data. To obtain your data, first install the R function fraudread. This function may be
obtained from the Module Web Page, under “Data”, or directly from

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/fraudreadR.txt

or simply by typing the following into R.

fraudread<-function(refno)

{data<-read.table("http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/frauddata.txt")

no1<-5*(refno-11)+1

no5<-no1+4

out<-data[,no1:no5]

write.table(format(out),row.names=FALSE,col.names=FALSE,quote=FALSE,file="myfrauddata.txt")

}

Then, use the function with your reference number as the argument. For example, if your
reference number is 20, type

fraudread(20)

You will then have a file (in your working directory) called myfrauddata.txt.There will be
five columns of data, one for each customer, and twenty rows, one for each week. The file
will then be ready to use as a data file with BRugs.
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• Use MCMC to find the posterior means for pi,j = 2− ci,j and hence find the posterior
probabilities of fraud for each customer in each week and identify any cases where fraud
is likely to have occurred.

(5 marks)

• Display your results appropriately.

(4 marks)

• Explain your method and show your BUGS model specification and the commands
which you have used.

(4 marks)

• Show how you have checked convergence.

(3 marks)

• Give summaries of the posterior distributions of the model parameters.

(4 marks)
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Chapter 4

Mixture Models

4.1 Mixtures

4.1.1 Finite mixtures as sampling distributions

In MAS3301 we looked at the use of mixture distributions as priors. We can also use mixtures as
sampling distributions.

There are two reasons why we might want to do this:

1. We might believe that there really are two or more sub-populations and it makes sense to
represent each by a component of the mixture. For example, the amount of a compound
found in blood samples taken from animals might depend on whether or not the animal
carries a particular infection. There are thus two sub-populations, one of infected animals
and one of non-infected animals. We might not know which animals are infected but it might
make sense to allow for these two sub-populations in a model. The distribution of the amount
of the substance might be bimodal.

2. Even when there is no “physical” interpretation of the mixture components, using a mixture
distribution allows more flexibility in the sampling model. We can relax the assumption that
the data are “normally distributed”, for example.

Consider a simple two-component mixture model. Our sampling model for observation Yi has
pdf

f(yi; π, θ1, θ2) = πf1(yi; θ1) + (1− π)f2(yi; θ2).

Here fj(y; θj) is the pdf for component j and depends on parameters θj . The component member-
ship probabilities are π and 1− π, with 0 ≤ π ≤ 1.

Suppose that we have n independent (given the parameters) observations y1, . . . , yn. The like-
lihood is

L =

n∏
i=1

{πf1(yi; θ1) + (1− π)f2(yi; θ2)} . (4.1)

This has a rather complicated form. For example, it is a polynomial of degree n in π.
More generally we could have J components with

f(yi; π,Θ) =

J∑
j=1

πjfj(yi; θj), (4.2)

where
∑J
j=1 πj = 1 and πj ≥ 0 for j = 1, . . . , J. In this case the likelihood is

L =

n∏
i=1


J∑
j=1

πjfj(yi; θj)

 . (4.3)

89
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This could be very complicated.
We can make things much simpler by introducing a group-membership variable which is unob-

served. The values form auxiliary data so this is an example of data augmentation.
We introduce, for observation i, an auxiliary variable ci, which can take the values 1, . . . , J.

Then, given that ci = j, the conditional pdf for observation i is simply fj(yi; θj). The corresponding
conditional likelihood is then just

Lc =

n∏
i=1

πcifci(yi; θci).

Now we give ci a multinomial (or “categorical”) distribution, in which Pr(ci = j) = πj . We
give the parameters π = (π1, . . . , πJ)T and Θ = {θ1, . . . , θJ} a suitable prior distribution. Then,
by “integrating out”, i.e. “averaging over”, c1, . . . , cn, we obtain the correct posterior distribution.

The joint probability (density) that ci = j and Yi = yi is

f(yi, ci = j; π,Θ) = πjfj(yi; θj).

To find the marginal probability density of yi we sum over j and obtain (4.2) as required.

4.1.2 MCMC and label-switching

MCMC

Once we have the model set up with the auxiliary variables c1, . . . , cn as above, we have a prior
distribution with density f0(Θ, π) for the parameters and we have initial values for the unknowns,
Θ, π, c1, . . . , cn, then we can proceed with MCMC as follows.

1. Sample a new value for Θ.

The fcd density is proportional to

f0(Θ, π)

J∏
j=1

Lc,j

where
Lc,j =

∏
i∈Cj

fj(yi; θj)

and i ∈ Cj if ci = j. That is Cj is the set of observations currently assigned to component j.
We might well have f0(Θ, π) = f0,θ(Θ)f0,π(π) in which case the fcd density is proportional to

f0(Θ)

J∏
j=1

Lc,j
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2. Sample a new value for π.

The fcd density is proportional to

f0(Θ, π)

J∏
j=1

π
nj
j

where nj is the number of observations currently assigned to component j. If f0(Θ, π) =
f0,θ(Θ)f0,π(π) then the fcd density is proportional to

f0,π(π)

J∏
j=1

π
nj
j .

A popular choice for f0,π(π) would be a Dirichlet density. In this case the fcd is also a Dirichlet
distribution. Sampling from a Dirichlet distribution is quite easy.

3. Sample a new value for each of c1, . . . , cn.

The fcd is a categorical distribution with

Pr(ci = j) ∝ πjfj(yi; θj).

4. Repeat.
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Label-switching

Consider the likelihood (4.1).
Suppose that both component distributions are of the same family so that the likelihood is

L =

n∏
i=1

{πfy(yi; θ1) + (1− π)fy(yi; θ2)} .

Suppose that we “switch the labels” and write

L̃ =

n∏
i=1

{
π̃fy(yi; θ̃1) + (1− π̃)fy(yi; θ̃2)

}
where π̃ = 1− π, θ̃1 = θ2 and θ̃2 = θ1.

Clearly L = L̃. The likelihood is therefore bimodal and, in fact, the modes match each other.
If the prior does not strongly favour one mode over the other then the posterior distribution will
also be bimodal.

In the more general case of (4.3) we can also permute the component labels and get the same
likelihood (provided that the distributions are all of the same family). This time the posterior will
be multimodal unless the prior strongly favours one mode.

Unless we do something about this, it can cause difficulties in MCMC sampling using the data-
augmentation method. If the posterior is multimodal then, eventually, the sampler will jump from
one mode to another. The auxiliary variables ci will suddenly change values so that observations
move from one component to another and the parameters “go with them.” This might only happen
after thousands of iterations. Therefore we might need a very large number of iterations before
the sampler has stayed in each mode the correct proportion of the time.

Clearly this behaviour is undesirable. If θj is a scalar parameter we can (usually) avoid the
problem by imposing an order constraint on the parameters. That is by requiring that θ1 < θ2 <
· · · < θJ .

I say “usually” because we can encounter another problem It may be that our mixture model
has J components but the data, through the likelihood, suggest only J − 1 components. Then we
might encounter switching between different possibilities for which label is the absent component.
There are more advanced methods, beyond the scope of this module, which can deal with this
problem.

When θj is a vector parameter we may need more ingenuity to devise suitable constraints.
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4.1.3 Multivariate mixtures

It is, of course, possible to make a mixture model where the observation y is multivariate. For
example, we might make several measurements on each of a sample of birds belonging to one
species with the idea that there might be two or more subspecies. In two dimensions we might
expect a plot of observations y1 against y2 to reveal “clusters” of observations.

4.1.4 Continuous mixtures

As well as the finite mixtures described above it is possible to have a mixture model with an infinite
number of components. It is also possible to have a continuous mixture. In a continuous mixture
model, instead of (4.2), we have, for example,

f(yi) =

∫
Ω

fθ(θ)fy(yi; θ, λi) dθ. (4.4)

Here θ is a parameter with a continuous distribution specified by the mixing density fθ(θ).
The range of values of θ is denoted by Ω. There may be other parameters which do not vary in
this way and these are denoted by λi.

We saw an example of this in Section 3.3.3 where we used Student-t errors in a regression. The
model was

Yi | µi, Xi ∼ N(µi, X
−1
i ),

dσ2Xi ∼ χ2
d.

Here µi corresponds to λi in (4.4) and X corresponds to θ in (4.4). The mixing density is that

of a scaled χ2 distribution and fy(yi; θ, λi) in (4.4) corresponds to φ(X
1/2
i [yi − µi]) where φ() is

the standard normal pdf.
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4.2 Mixture Examples

4.2.1 “Old Faithful”

Table 4.1 shows 299 successive waiting times, in minutes, between the starts of eruptions of the
“Old Faithful” geyser in the Yellowstone National Park, Wyoming, USA. The data are taken from
Azzalini and Bowman (1990).

Figure 4.1 shows histograms of the data and the logs of the data. In each case we appear to
see two distinct modes. However the human brain is very good at spotting patterns, even when
they are not there. The evidence in the data migh not be as strong as we imagine. Each of
the two-component mixture models below has five parameters, compared to two parameters for a
simple normal or gamma model. The likelihood might not distinguish very strongly between all
possible values of these five parameters. Therefore careful choice of a prior distribution might be
important. If we really believe that there are two sub-populations then our prior may need to
reflect this.

Normal mixture

Let us try using a two-component normal mixture model for the log intervals. So

Pr(ci = 1) = π

Pr(ci = 2) = 1− π
π ∼ Beta(aπ, bπ)

yi | µj , τj , ci = j ∼ N(µj , τ
−1
j )

µj | µ0 ∼ N(µ0 + δj , τ
−1
µ )

µ0 ∼ N(Mµ, Vµ)

τj ∼ Ga(aτ , bτ )

Notice that we have given µ1, µ2 a “hierarchical prior.” Each depends on µ0 which then has a
prior of its own. In order to avoid label switching we can impose the restriction µ1 < µ2. We also
push the conditional prior means of µ1, µ2 apart by making them µ0 + δ1 and µ0 + δ2 respectively,
where δ1 = −δ and δ2 = δ.

We could also use a hierarchical prior for τ1 and τ2 although this is not quite as straightforward
with gamma distributions as it is with normal distributions. I have just given them independent
priors here. There is no need to impose an order constraint on τ1, τ2.

The specification of the prior is completed by giving numerical values to aπ, bπ, aτ , bτ ,Mµ, Vµ, τµ, δ.
We will use the following values.

aπ = 3, bπ = 3, aτ = 4, bτ = 0.04,

Mµ = 4.0 ≈ log(60), Vµ = 0.30 ≈ (log(3)/2)2, τµ = 3.3 ≈ (log(3)/2)−2, δ = 0.2.

Figure 4.2 shows a BUGS model specification for this example.
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80 71 57 80 75 77 60 86 77 56 81 50 89 54 90
73 60 83 65 82 84 54 85 58 79 57 88 68 76 78
74 85 75 65 76 58 91 50 87 48 93 54 86 53 78
52 83 60 87 49 80 60 92 43 89 60 84 69 74 71

108 50 77 57 80 61 82 48 81 73 62 79 54 80 73
81 62 81 71 79 81 74 59 81 66 87 53 80 50 87
51 82 58 81 49 92 50 88 62 93 56 89 51 79 58
82 52 88 52 78 69 75 77 53 80 55 87 53 85 61
93 54 76 80 81 59 86 78 71 77 76 94 75 50 83
82 72 77 75 65 79 72 78 77 79 75 78 64 80 49
88 54 85 51 96 50 80 78 81 72 75 78 87 69 55
83 49 82 57 84 57 84 73 78 57 79 57 90 62 87
78 52 98 48 78 79 65 84 50 83 60 80 50 88 50
84 74 76 65 89 49 88 51 78 85 65 75 77 69 92
68 87 61 81 55 93 53 84 70 73 93 50 87 77 74
72 82 74 80 49 91 53 86 49 79 89 87 76 59 80
89 45 93 72 71 54 79 74 65 78 57 87 72 84 47
84 57 87 68 86 75 73 53 82 93 77 54 96 48 89
63 84 76 62 83 50 85 78 78 81 78 76 74 81 66
84 48 93 47 87 51 78 54 87 52 85 58 88 79

Table 4.1: Waiting times, in minutes, between eruptions of the “Old Faithful” geyser. Data are to
be read along the rows.
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Figure 4.1: Histograms of time intervals between eruptions of “Old Faithful” and logs of the
intervals.



96 CHAPTER 4. MIXTURE MODELS

model

{for (i in 1:n)

{c[i]~dcat(q[])

y[i]~dnorm(mu[c[i]],tau[c[i]])

}

for (j in 1:2)

{tau[j]~dgamma(4,0.04)

}

mumean[1]<-mu0-0.2

mumean[2]<-mu0+0.2

for (j in 1:2)

{mudash[j]~dnorm(mumean[j],3.3)

}

mu[1:2]<-sort(mudash) # This imposes the order constraint.

mu0~dnorm(4.0,p.mu)

p.mu<-1/0.3

pi~dbeta(3,3)

q[1]<-pi

q[2]<-1-pi

}

Figure 4.2: BUGS model specification for “Old Faithful” normal mixture model.

Gamma mixture

As an alternative to the normal mixture for the log intervals, which is, of course, equivalent to a
lognormal mixture for the intervals, we could try a gamma mixture for the intervals themselves.

Pr(ci = 1) = π

Pr(ci = 2) = 1− π
π ∼ Beta(aπ, bπ)

ti | αj , βj , ci = j ∼ Ga(αj , βj)

βj = αj/λj

λj = exp(µj)

µj | µ0 ∼ N(µ0 + δj , τ
−1
µ )

µ0 ∼ N(Mµ, Vµ)

αj ∼ Ga(aα, bα)

Since the mean of a gamma(αj , βj) distribution is αj/βj and we set βj = αj/λj , the mean
interval, in component j, is λj . We then treat µj = log(λj) in the same way as we treated µj in the
lognormal mixture. Of course the log of the mean is not the same as the mean of the logs but, in
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model

{for (i in 1:n)

{c[i]<-dcat(q[])

t[i]~dgamma(alpha[c[i]],beta[c[i]])

}

for (j in 1:2)

{alpha[j]~dgamma(3,0.1)

beta[j]<-alpha[j]/lambda[j]

lambda[j]<-exp(mu[j])

}

mumean[1]<-mu0-0.2

mumean[2]<-mu0+0.2

for (j in 1:2)

{mudash[j]~dnorm(mumean[j],3.3)

}

mu[1:2]<-sort(mudash) # This imposes the order constraint.

mu0~dnorm(4.0,p.mu)

p.mu<-1/0.3

pi~dbeta(3,3)

q[1]<-pi

q[2]<-1-pi

}

Figure 4.3: BUGS model specification for “Old Faithful” gamma mixture model.

this case, this difference has little effect. (To avoid this slight discrepancy we would have to make
λj the median rather than the mean but this is not convenient with a gamma distribution).

I have not used a hierarchical prior for α1, α2. I have just given them independent priors here.
There is no need to impose an order constraint on α1, α2.

We will use the following values to complete the prior specification.

aπ = 3, bπ = 3, aα = 3, bα = 0.1,

Mµ = 4.0 ≈ log(60), Vµ = 0.30 ≈ (log(3)/2)2, τµ = 3.3 ≈ (log(3)/2)−2, δ = 0.2.

Figure 4.3 shows a BUGS model specification for this example.

4.2.2 Road vehicle headways

Cowburn (2003) describes the use of mixture models for the time gaps, or “headways”, between
vehicles passing along a road. See also Cowburn and Farrow (2007). The idea is that headways
fall naturally into one of two sub-populations:

1. Headways where the following vehicle is not impeded by the vehicle in front.

2. “Congested” headways where the following vehicle is impeded by the vehicle in front.

Cowburn proposed that non-congested headways would follows an exponential distribution, that
is a Ga(1, β1) distribution, and congested headways would follow a Ga(α2, β2) distribution with
α2 > 1. (A number of other mixture models have been proposed in the highway engineering
literature). Successive headways are independent (given the model parameters) in this version of
the model. We will see a version where this is not the case in the next lecture.
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model

{

for (i in 1:N)

{c[i]~dcat(q[])

t[i]~dgamma(alpha[c[i]],beta[c[i]])

}

alpha[1]<-1

alpha[2]<-1+aa

aa~dgamma(1,0.5)

rhodash[1]~dgamma(2,8)

rhodash[2]~dgamma(2,4)

rho[1:2]<-sort(rhodash)

for (j in 1:2)

{beta[j]<-alpha[j]*rho[j]

}

pi~dbeta(1,2)

q[1]<-pi

q[2]<-1-pi

}

Figure 4.4: BUGS specification for independent headways model.

A BUGS model specification is given in Figure 4.4. The constraint that α2 > 1 is imposed by
letting α2 = 1 + A where A ∼ Ga(aA, bA). In the BUGS code A is represented by aa. We have
aA = 2 and bA = 8. The mean headway in component j is µj = ρ−1

j = αj/βj where α1 = 1. We
set βj = αjρj . We ensure that µ1 > µ2 by ensuring that ρ1 < ρ2. The headways are recorded in
seconds.

4.3 Hidden Markov Models

4.3.1 Introduction

In the mixture models above, the unobserved (or latent) component memberships ci are indepen-
dent of each other, given the model parameters. Sometimes, when the data have a natural ordering,
as in a time series, we may wish to allow the component memberships to depend on each other.

Figure 4.5 shows the logarithms of the time intervals between eruptions of “Old Faithful”. The
ith log interval yi is plotted against the preceding log interval yi−1. Clearly successive intervals
are not independent. One way to model this might be to suppose that there are “short intervals”
and “long intervals” and that a short interval is always followed by a long interval but a long
interval may be followed by either a short interval or a long interval. Thus we could model the
sequence c1, . . . , cn using a two-state Markov chain with the following transition matrix, where
qj,k = Pr(ci = j | ci−1 = k). (

q1,1 q1,2

q2,1 q2,2

)
=

(
0 π
1 1− π

)
. (4.5)

Of course, before we saw the data we would not know about this pattern so it could be argued
that we should use a more general model in which we allow q1,1 > 0. In this case we would have(

q1,1 q1,2

q2,1 q2,2

)
=

(
1− π2 π1

π2 1− π1

)
. (4.6)
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Figure 4.5: Logarithms of time intervals between eruptions of “Old Faithful”. The ith log interval
yi is plotted against the preceding log interval yi−1.

This is an example of a hidden Markov model or HMM. In this case there are two hidden states.
There are many different kinds of HMM and they have many applications, in such diverse areas as
time series, DNA sequences and linguistics. In general, in a HMM, we have a sequence of (possibly
vector) observations . . . yi−1, yi, yi+1 . . . where the distribution of yi depends on the value of an
unobserved (i.e. latent) (possibly vector) variable xi and the sequence . . . xi−1, xi, xi+1, . . . forms a
Markov chain. There may, of course, be more than two hidden states.

Figure 4.6 shows a DAG for a typical HMM. There will typically also be unknown parameters
on which the distributions depend but these have been omitted. Notice that (given the model
parameters) the observations Y only depend on each other through the latent variables X. Figure
4.7 shows a DAG with the addition of the unknown parameters µ = (µ1, µ2)T , τ = (τ1, τ2)T and

π, for a case where the conditional distribution of Yi when Xi = ci is N(µci , τ
−1
ci ) for ci = 1, 2.

4.3.2 Two-state hidden Markov model

In the Old Faithful model, the latent variable Xi is the component membership ci and there are
two components. This is an example of a two-state HMM.

The transition matrix (4.6) defines the conditional distribution of ci given ci−1. To complete
the model specification we have to give a distribution to the initial state c1 (or to c0, the state
immediately before the start of the data). Very often we regard the process as stationary. That is
the properties are not changing over time. In this case the initial state should have the stationary
distribution of the Markov chain which can be found by solving
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(
1− π2 π1

π2 1− π1

)(
P1

P2

)
=

(
P1

P2

)
for P1 and P2 with the constraint that P1 + P2 = 1. The solution is

P1 = Pr(c1 = 1) =
π1

π1 + π2
, P2 = Pr(c1 = 2) =

π2

π1 + π2
. (4.7)

In the past we had two problems with this when using BRugs software. These may or may not
still apply when using rjags.

1. BUGS software can not (or could not) handle the resulting likelihood with the complication
of (4.7). We can, of course, write a Gibbs or Metropolis-Hastings algorithm of our own in
R or some other programming language. However we could also use a trick to make BUGS
work and which would give the correct result to a good approximation. The trick is to add
the states c−s, . . . , c0 as auxiliary variables for some reasonably large s (e.g. 30). We then
give c−s a convenient distribution, e.g. Pr(c−s = 1) = Pr(c−s = 2) = 0.5, or even just fix its
value. The choice of this distribution or value has little effect on the posterior distribution.
(This can be checked numerically). Figure 4.8 shows a BUGS model specification for the
“Old Faithful” model, using (4.5) and normal distributions for the log interval times.

2. The BUGS model shown in Figure 4.8 worked satisfactorily in previous years. However, this
year, it causes R to crash. This seems to be associated with a change in the version of R.
Perhaps a change needs to be made to the BRugs package and this has not been made.

Because of these problems, especially Point 2, we will not attempt to use BRugs for hidden
Markov models this year but, instead use specially-written R functions to demonstrate the use of
MCMC with these models. In many cases we can sample from most of the fcds straightforwardly.
The one exception is sampling values for π1 and π2 because of the term for the initial state. However
we can use a Metropolis-Hastings sampler for this and thus have a Metropolis-within-Gibbs scheme.

For sampling π1 and π2 we can proceed as follows.
Suppose that the current value of the state at time 1 is c1. Let

P (c1, π1, π2) =
πc1

π1 + π2
.

Let the current numbers of state transitions, according to the currently allocated states, be
n1,1, n1,2, n2,1, n2,2. That is, according to the allocation of observations to states at this itera-
tion, we have nj,k transitions from state k to state j. Let L? be the “likelihood” based just on
these transitions. Then

L? = (1− π2)n1,1π
n2,1

2 π
n1,2

1 (1− π1)n2,2 .

Suppose, for example, that we have independent beta prior distributions for π1 and π2, so that
the joint prior density for π1 and π2 is

g
(0)
1 (π1)g

(0)
2 (π2) ∝ πa1−1

1 (1− π1)b1−1πa2−1
2 (1− π2)b2−1.

Then, based just on L?, the joint “posterior” density is g
(1)
1 (π1)g

(1)
2 (π2) where g

(1)
1 (π1) is the density

of a Beta(a1 +n1,2, b1 +n2,2) distribution and g
(1)
2 (π2) is the density of a Beta(a2 +n2,1, b2 +n1,1)

distribution. As a proposal, we can sample values π1,prop and π2,prop for π1 and π2 from this joint
“posterior”. That is we take independent samples from the two beta distributions.

However the fcd has density k(n1,1, n1,2, n2,1, n2,2)P (c1, π1, π2)g
(1)
1 (π1)g

(1)
2 (π2) where the con-

stant k(n1,1, n1,2, n2,1, n2,2) does not depend on π1 or π2. Therefore, if π1,old and π2,old are the
current values, from the preceding iteration, the acceptance ratio is
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model

{p0[1]<-0.5

p0[2]<-0.5

cc[1]~dcat(p0[])

for (i in 2:30)

{cc[i]~dcat(q[,cc[i-1]]) # This is the "burn-in"section.

}

c[1]~dcat(q[,cc[30]]) # This is for the initial state.

for (i in 2:n)

{c[i]~dcat(q[,c[i-1]])

}

for (i in 1:n)

{y[i]~dnorm(mu[c[i]],tau[c[i]])

}

for (j in 1:2)

{tau[j]~dgamma(4,0.04)

}

mumean[1]<-mu0-0.2

mumean[2]<-mu0+0.2

for (j in 1:2)

{mudash[j]~dnorm(mumean[j],3.3)

}

mu[1:2]<-sort(mudash) # This imposes the order constraint.

mu0~dnorm(4.0,p.mu)

p.mu<-1/0.3

q[1,2]<-pi

pi~dbeta(1,1)

q[2,2]<-1-q[1,2]

q[1,1]<-0.0

q[2,1]<-1-q[1,1]

}

Figure 4.8: BUGS model specification for “Old Faithful” normal hidden Markov model.
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A =
k(n1,1, n1,2, n2,1, n2,2)P (c1, π1,prop, π2,prop)g

(1)
1 (π1,prop)g

(1)
2 (π2,prop)

k(n1,1, n1,2, n2,1, n2,2)P (c1, π1,old, π2,old)g
(1)
1 (π1,old)g

(1)
2 (π2,old)

× g
(1)
1 (π1,old)g

(1)
2 (π2,old)

g
(1)
1 (π1,prop)g

(1)
2 (π2,prop)

=
P (c1, π1,prop, π2,prop)

P (c1, π1,old, π2,old)
.

When sampling the component memberships ci, the fcd depends on the transition probability
from the preceding state, the transition probability to the succeeding state and the conditional
density of the observation. So, for example, suppose that the conditional distributions are normal
with means µ1 and µ2 and precisions τ1 and τ2 and the observation is yi. Then write the conditional
densities as f(yi;µ1, τ1) and f(yi;µ2, τ2). Given that the preceding state is ci−1 and the succeeding
state is ci+1 and the transition matrix is as given in (4.6), then the “prior probability” that ci = j
is proportional to

Pr(ci = j | ci−1) Pr(ci+1 | ci = j) = qj,ci−1
qci+1,j .

Multiplying “prior” by “likelihood” we find that the fcd probability that ci = j is proportional to
qj,ci−1qci+1,jf(yi;µj , τj). Therefore the fcd probability that ci = j is

qj,ci−1qci+1,jf(yi;µj , τj)∑2
c=1 qc,ci−1

qci+1,cf(yi;µc, τc)
.

Figures 4.9 and 4.10 show a R function for a two-state HMM, as developed here, with normal
conditional distributions. The conjugate normal-gamma form is used for the prior for each normal
distribution. Note that the R command table produces the transpose of the table of counts used in
these notes. Therefore, in the R function hmmnorm, the variables ns[2,1] and ns[1,2] correspond
to n1,2 and n2,1 respectively.

4.3.3 Forward-backward algorithm

Mixing can be poor when using a Gibbs sampler with a HMM if we sample the hidden state
at each time point separately. This is because there can be strong correlation in the posterior
distribution between the states at neighbouring time points. We can overcome this problem by
sampling the whole collection of hidden states as a block. This can be done using a procedure
called the forward-backward algorithm. We do not have time to cover this in this course. See, for
example, Scott (2002).

4.4 Practical 4

4.4.1 Simulated normal mixture data

Mixture models can sometimes be tricky to fit so we will start with an artificial example which is
deliberately made so that it will work well.

The data mixturedata.txt and the BUGS model file mixturenormbug.txt can both be ob-
tained from the web page. To read the data in R, type:

source("mixturedata.txt")

1. It is often necessary to help the software by providing initial values for the Gibbs sampler.
In the case of mixture models it is also particularly important to check convergence. One
way to do this is to run the sampler more than once, starting with different initial values.
Therefore we create two sets of initial values.

mixturenorminits<-list(list(mu=c(1,7),pi=0.3),list(mu=c(1,7),pi=0.7))
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hmmnorm<-function(niter,prior,y)

{n<-length(y)

cv<-ifelse(y<mean(y),1,2) # Initialise component memberships.

m<- matrix(nrow=2,ncol=2)

mu<- matrix(nrow=niter,ncol=2)

tau<-matrix(nrow=niter,ncol=2)

pi<- matrix(nrow=niter,ncol=2)

proportion<-numeric(niter)

piprop<-numeric(2)

piold <-c(0.5,0.5)

for (iter in 1:niter)

{ns<-table(cv[1:(n-1)],cv[2:n]) # Count the transitions.

piprop[1]<-rbeta(1,prior$a[1]+ns[2,1],prior$b[1]+ns[2,2]) # Proposal for pi_1.

piprop[2]<-rbeta(1,prior$a[2]+ns[1,2],prior$b[2]+ns[1,1]) # Proposal for pi_2.

Pprop<-piprop[cv[1]]/sum(piprop) # Stationary probability.

Pold <-piold[cv[1]]/sum(piold) # Stationary probability.

A<-min(1,Pprop/Pold) # Acceptance probability.

U<-runif(1)

if (U<A) # M-H sampling for pi.

{pi[iter,]<-piprop

piold<-piprop

}

else

{pi[iter,]<-piold

}

m[1,1]<-1-pi[iter,2] # Transition matrix.

m[1,2]<-pi[iter,1]

m[2,1]<-pi[iter,2]

m[2,2]<-1-pi[iter,1]

for (comp in 1:2) # Sample other parameters.

{nc<-sum(cv==comp)

if (nc>0)

{ycomp<-y[cv==comp]

ybar<-mean(ycomp)

s2n<-(sum(ycomp*ycomp)-nc*ybar*ybar)/nc

ycd<-ycomp-prior$m[comp]

r2<-sum(ycd*ycd)/nc

k1<-prior$c[comp]+nc

d1<-prior$d[comp]+nc

m1<-(prior$c[comp]*prior$m[comp]+nc*ybar)/k1

vd<-(prior$c[comp]*r2+nc*s2n)/k1

v1<-(prior$d[comp]*prior$v[comp]+nc*vd)/d1

tau[iter,comp]<-rgamma(1,(d1/2),(d1*v1/2))

sd<-sqrt(1/(k1*tau[iter,comp]))

mu[iter,comp]<-rnorm(1,m1,sd)

}

else

{tau[iter,comp]<-rgamma(1,(prior$d[comp]/2),(prior$d[comp]*prior$v[comp]/2))

sd<-sqrt(1/(prior$c[comp]*tau[iter,comp]))

mu[iter,comp]<-rnorm(1,prior$m[comp],sd)

}

}

Figure 4.9: R function for a two-state HMM with normal conditional distributions (Part 1).
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P<-pi[iter,]/sum(pi[iter,]) # Stationary probabilities.

pc<-P*m[cv[2],] # "Prior probs" for cv_1.

sd<-numeric(2)

for (comp in 1:2)

{sd[comp]<-sqrt(1/tau[iter,comp])

pc[comp]<-pc[comp]*dnorm(y[1],mu[iter,comp],sd[comp]) # "Prior times likelihood".

}

pc<-pc/sum(pc) # Normalise.

cv[1]<-2-rbinom(1,1,pc[1]) # Sample cv_1.

for (t in 2:(n-1))

{pc<-m[,cv[t-1]]*m[cv[t+1],] # "Prior probs" for cv_t.

for (comp in 1:2)

{pc[comp]<-pc[comp]*dnorm(y[t],mu[iter,comp],sd[comp]) # "Prior times likelihood".

}

pc<-pc/sum(pc) # Normalise.

cv[t]<-2-rbinom(1,1,pc[1]) # Sample cv_t.

}

pc<-m[,cv[n-1]] # "Prior probs" for cv_n.

for (comp in 1:2)

{pc[comp]<-pc[comp]*dnorm(y[n],mu[iter,comp],sd[comp]) # "Prior times likelihood".

}

pc<-pc/sum(pc) # Normalise.

cv[n]<-2-rbinom(1,1,pc[1]) # Sample cv_n.

proportion[iter]<-sum(cv==1)/n # Proportion in component 1.

}

out<-list(mu=mu,tau=tau,pi=pi,proportion=proportion)

out

}

Figure 4.10: R function for a two-state HMM with normal conditional distributions (Part 2).
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So, we will start with very different probabilities of an observation being in component 1.

2. Build the rjags model and check the convergence of pi , the probability for component
1. We will set the two different intial values in two separate chains and run them without
burn-in periods.

mixturejags<-jags.model("mixturenormbug.txt",data=mixturedata,inits=mixturenorminits,n.chains=2)

mixturesamples<-coda.samples(mixturejags,c(’pi’),1000)

par(ask=TRUE)

traceplot(mixturesamples)

Look at the resulting graph. You should see that “convergence” has been quite quick.

3. Compute the posterior distribution. This time we will use a burn-in.

mixturejags<-jags.model("mixturenormbug.txt",data=mixturedata,inits=mixturenorminits,n.chains=2)

update(mixturejags,1000)

mixturesample<-coda.samples(mixturejags,c(’pi’),2000)

4. Look at the results. For example:

summary(mixturesamples)

densplot(mixturesamples)

4.4.2 Old Faithful log-normal mixture

We will fit a two-component normal mixture to the logs of the intervals between eruptions of “Old
Faithful.”

The data geyserlogdata.txt and the BUGS model file faithnormbug.txt can both be ob-
tained from the web page. To read the data, type:

source("geyserlogdata.txt")

Create two different sets of initial value files.

geyserloginits<-list(list(mu=c(4.0,4.4),pi=0.3),list(mu=c(4.0,4.4),pi=0.7))

So, we will start with very different probabilities of an observation being in component 1.

1. Check convergence of pi , the probability for component 1. We will set the two different
intial values in two separate chains and run them without burn-in periods.

mixturelogjags<-jags.model("faithnormbug.txt",data=geyserlogdata,inits=geyserloginits,n.chains=2)

mixturelogsamples<-coda.samples(mixturelogjags,c(’pi’),1000)

par(ask=TRUE)

traceplot(mixturesamples)

Look at the resulting graph. Has “convergence” been quick?

2. Compute the posterior distribution. This time we will use a burn-in.

mixturelogjags<-jags.model("faithnormbug.txt",data=geyserdata,inits=geyserloginits,n.chains=2)

update(mixturelogjags,1000)

mixturelogsamples<-coda.samples(mixturejags,c(’pi’,’mu’,’tau’),2000)

3. Look at the results. For example:

summary(mixturelogsamples)

par(ask=TRUE)

densplot(mixturelogsamples)
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4.4.3 Old Faithful gamma mixture

We will fit a two-component gamma mixture to the intervals between eruptions of “Old Faithful.”
The data geyserdata.txt and the BUGS model file faithgammabug.txt can both be obtained

from the web page.
We can use the same initial value files as we used for the normal mixture.

1. Check convergence of pi , the probability for component 1. We will set the two different
intial values in two separate chains and run them without burn-in periods.

modelCheck("faithgammabug.txt")

modelData("geyserdata.txt")

modelCompile(2)

modelInits("faithnorminits1.txt")

modelInits("faithnorminits2.txt")

modelGenInits()

samplesSet("pi")

modelUpdate(1000)

samplesHistory("pi")

Look at the resulting graph. Has “convergence” been quick?

2. Compute the posterior distribution. This time we will use a burn-in.

modelCheck("faithgammabug.txt")

modelData("geyserdata.txt")

modelCompile(2)

modelInits("faithnorminits1.txt")

modelInits("faithnorminits2.txt")

modelGenInits()

modelUpdate(1000)

samplesSet(c("pi","alpha","beta"))

modelUpdate(3000)

3. Look at the results. For example:

samplesStats(c("pi","alpha","beta"))

samplesDensity("pi")

samplesDensity("alpha")

samplesDensity("beta")

4. The marginal posterior distributions for β1 and β2 are quite similar. Perhaps values of β1 and
β2 which are close to each other would represent the data well. Let us look at the posterior
distribution of β1/β2.

beta1<-samplesSample("beta[1]")

beta2<-samplesSample("beta[2]")

betaratio<-beta1/beta2

plot(density(betaratio))

4.4.4 Road traffic headways (independent)

We will fit an exponential/gamma mixture model to some road traffic headway data. Two files of
data are avilable on the web page. They are:

dd01data.txt

feb28peledata.txt
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The first was collected by my research student, Ged Cowburn. I collected the second. You can use
either one. They have slightly different characteristics.

The BUGS model file is also available on the Web page as headway0bug.txt.

We will need some initial value files. Create two files as follows.

headwayinits1.txt

containing

list(aa=2, bb=0.5, pi=0.1)

and

headwayinits2.txt

containing

list(aa=2, bb=0.5, pi=0.7)

1. Check convergence of pi , the probability for component 1. We will set the two differ-
ent intial values in two separate chains and run them without burn-in periods. I will use
dd01data.txt but you can use feb28peledata.txt if you wish.

modelCheck("headway0bug.txt")

modelData("dd01data.txt")

modelCompile(2)

modelInits("headwayinits1.txt")

modelInits("headwayinits2.txt")

modelGenInits()

samplesSet("pi")

modelUpdate(1000)

samplesHistory("pi")

Look at the resulting graph. You will probably see that the samplers have “converged” but
that “mixing” is not very good. Therefore we need to take a large number of samples.

2. Compute the posterior distribution. This time we will use a burn-in.

modelCheck("headway0bug.txt")

modelData("dd01data.txt")

modelCompile(2)

modelInits("headwayinits1.txt")

modelInits("headwayinits2.txt")

modelGenInits()

modelUpdate(2000)

samplesSet(c("pi","alpha","beta"))

modelUpdate(10000)

3. Look at the results. For example:

samplesStats(c("pi","alpha","beta"))

samplesDensity("pi")

samplesDensity("alpha")

samplesDensity("beta")
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4.4.5 Old Faithful (log-normal hidden Markov model)

Try fitting the log-normal hidden Markov model to the Old Faithful data. The R function shown
in Figures 4.9 and 4.10 is available on the Web page as hmmR.txt. It seems to work well despite the
fact that I have not used any defence against label-switching, other than giving the two components
different prior means and initialising the component memberships to favour the correct allocation.
The logs of the intervals, in a suitable form, are in a file geyserlogdatab.txt on the Web page.

1. Load the data:

y<-scan("geyserlogdatab.txt")

2. Set up the prior:

a<-c(1,1)

b<-c(1,1)

m<-c(3.5,4.5)

d<-c(8,8)

v<-c(0.01,0.01)

c<-c(0.01,0.01)

prior<-list(a=a,b=b,m=m,d=d,v=v,c=c)

3. Install the function:

source("hmmR.txt")

4. Try, for example, 1000 iterations:

test<-hmmnorm(1000,prior,y)

5. Have a look at the results. For example:

mu<-test$mu

Iteration<-1:1000

plot(Iteration,mu[,1],type="l",col=2,ylim=c(3.5,5))

lines(Iteration,mu[,2],col=3)

pi<-test$pi

plot(Iteration,pi[,1],type="l",col=2,ylim=c(0.0,1.0))

lines(Iteration,pi[,2],col=3)

plot(density(mu[,1]))

In particular, notice that, as expected π2 turns out to be close to 1.

6. Try anything else you like.

Note that the function gives a single chain. If you want to try multiple chains, you have to run
the function multiple times.

4.4.6 Headways (hidden Markov model)

Cowburn and Farrow (2007) discussed fitting hidden Markov models to series of road-vehicle head-
ways. The two component distributions were as in section 4.2.2. The transition matrix was as in
(4.6).

This model is complicated by the fact that both parameters are unknown in one of the con-
ditional gamma distributions and sampling the fcd for the “shape” or “index” parameter (ie the
first parameter) is not straightforward. To avoid this complication we will fix its value at 4.0.

You can download a suitable R function from the file hmmheadwayR.txt on the Web page. I
have marked with ###### the places where changes have been made from hmmR.The first set of
headway data is available in the file dd01datab.txt on the Web page. (You could also easily edit
the other set to make it usable this way if you so wished). The function seems to work well even
though, again, I have not really defended against label switching.
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1. Load the data:

t<-scan("dd01datab.txt")

2. Set up the prior:

a<-c(1,1)

b<-c(2,2)

abeta<-c(2,1)

bbeta<-c(8,0.5)

priorh<-list(a=a,b=b,abeta=abeta,bbeta=bbeta)

3. Install the function:

source("hmmheadwayR.txt")

4. Try, for example, 1000 iterations:

test<-hmmheadway(1000,priorh,t)

5. Have a look at the results. For example:

mean<-test$mean

Iteration<-1:1000

plot(Iteration,mean[,1],type="l",col=2,ylim=c(0,20),ylab="Mean headway")

lines(Iteration,mean[,2],col=3)

lrr<-log(test$pi[,2]/(1-test$pi[,1]))

plot(density(lrr))

I expect that you will see that a short burn-in might help. You can easily delete the first few
iterations from the output.

The quantity lrr is the log relative risk for being in component 2 next time comparing
being in component 1 now with being in component 2 now. As you can see, there is little
evidence that this differs much from zero. Thus there is little evidence that the component
memberships are not independent and that we need a hidden Markov model at all. At least,
this is what is suggested by this model!

6. Try anything else you like.



Chapter 5

Random Effects and Hierarchical
Models

5.1 Random Effects

5.1.1 Fixed and random effects

Consider Example 2 of Lecture 1.3.1. The data gave the gains in weight of rats fed on four different
diets. The diets differed in terms of the amount of protein (“low” or “high”) and the source of
the protein (“beef” or “cereal”). The population mean weight gains with each diet are considered
to be parameters of the model. If we were to observe very large numbers of rats with each diet
then we would gain very precise information about the values of these parameters. In the limit,
we would know the values exactly. The differences in population mean weight gains between the
diets are regarded as fixed but unknown.

We can write the four means in the form

µ1 = µ− βa − βs + γ,

µ2 = µ+ βa − βs − γ,
µ3 = µ− βa + βs − γ,
µ4 = µ+ βa + βs + γ.

Then βa, βs, γ are all regarded as fixed effects.
Now consider another example. This example comes from Davies and Goldsmith (1972). The

experiment concerned testing the strength of Portland cement. The cement was divided into small
samples. Each sample was then mixed with water and worked. This process is called “gauging.”
Each sample was then cast into a cube and allowed to set. The samples were then tested for
strength. This is known as “breaking.”

Three different people did the gauging and three different people did the breaking. There are
thus nine combinations of gauger and breaker. In each combination there were four cubes. The
data, in pounds per square inch, are given in Table 5.1.

Let yi,j,k be the ith observation made with Gauger j and breaker k, a realisation of the random
variable Yi,j,k. Then we might write

Yi,j,k | µj,k, τε ∼ N(µj,k, τ
−1
ε )

where
µj,k = µ+ αj + βk + γj,k.

Here, just as in the rats example, we have the main effects of two factors and an interaction
effect. The gauger effects are α1, α2, α3, the breaker effects are β1, β2, β3 and the interaction
effects are γ1,1, . . . , γ3,3. However these are not regarded as fixed effects. Instead they are regarded
as random effects. This is because we are not just interested in the effects of these gaugers and
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Breaker 1 Breaker 2 Breaker 3
Gauger 1 5280 5520 4340 4400 4160 5180

4760 5800 5020 6200 5320 4600
Gauger 2 4420 5280 5340 4880 4180 4800

5580 4900 4960 6200 4600 4480
Gauger 3 5360 6160 5720 4760 4460 4930

5680 5500 5620 5560 4680 5600

Table 5.1: Breaking strengths (pounds per square inch) of cement samples.

breakers but in how much variation there is between gaugers generally and between breakers
generally. We regard these gaugers as a sample from the population of gaugers and these breakers
as a sample from the population of breakers.

We do not constrain the effects to sum to zero, or fix one of them to be zero. Instead we regard
them as samples from a distribution with zero mean. The mean is zero because we include the
parameter µ which absorbs any nonzero mean.

In this example, and this is typical, we say that, given the precision parameters τα, τβ , τγ ,

αj ∼ N(0, τ−1
α ) (j = 1, . . . , 3)

βk ∼ N(0, τ−1
β ) (k = 1, . . . , 3)

γj,k ∼ N(0, τ−1
γ ) (j = 1, . . . , 3, k = 1, . . . , 3)

We then give prior distributions to the model parameters µ, τα, τβ , τγ , τε. Typically

µ ∼ N(m0, v0),

τα ∼ Ga(aα, bα),

τβ ∼ Ga(aβ , bβ),

τγ ∼ Ga(aγ , bγ),

τε ∼ Ga(aε, bε).

Inference involves using data to learn about these population parameters. The variances
τ−1
α , τ−1

β , τ−1
γ , τ−1

ε are known as variance components.

Notice two difference between this random effects model and the fixed effects model which we
used for the rats example.

1. We suppose that we might observe a new gauger or a new breaker in the future. No matter
how many observations we make with the gaugers and breakers in our sample, we will never
be able to predict exactly the mean for a new gauger-breaker combination which have not
yet observed because this will involve new realisations from the random effects distributions.
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2. Suppose that, instead of giving τα, τβ , τγ prior distributions, we simply chose values for them.
Then the model would be very similar to a fixed effects model. The only differences would be
point 1, which refers to how we interpret the results in terms of future observations, and the
fact that we do not constrain the effects to sum to zero. This latter point would mean that
the individual model effects would not be identifiable but the nine means for combinations
of gauger and breaker would still be identifiable. However, in fact, we do not choose values
for these precisions (i.e. for the variance components) but regard them as unknown and learn
about them from the data. This means that we use the data to tell us how similar we can
expect future gauger-breaker combinations to be to those which we have already seen.

5.1.2 Evaluation of posterior distribution

Given a model such as the cement-testing example, we can easily use MCMC with data aug-
mentation to sample from the posterior distribution. We regard the random effects as auxiliary
variables. I will illustrate the method in terms of the cement example. The auxiliary data are
α1, . . . , α3, β1, . . . , β3, γ1,1, . . . , γ3,3.

A possible MCMC scheme is as follows. Sketching a DAG might help to see how this works.

1 Sample τε : Given values for the fixed effect µ and the random effects we have

Yi,j,k − µ− αj − βk − γj,k ∼ N(0, τ−1
ε )

With a gamma prior for τε we get a gamma fcd for τε and it is easy to sample from this.

2 Sample µ : Given values for the error precision τε and the random effects we have

Yi,j,k − αj − βk − γj,k ∼ N(µ, τ−1
ε )

With a normal prior for µ we get a normal fcd for µ and it is easy to sample from this.

3 Sample τα : Given τα we have αj ∼ N(0, τ−1
α ). So, given values for α1, . . . , α3 and a gamma

prior for τα, the fcd for τα is a gamma distribution and it is easy to sample from this.

4 Sample τβ : Given τβ we have βk ∼ N(0, τ−1
β ). So, given values for β1, . . . , β3 and a gamma

prior for τβ , the fcd for τβ is a gamma distribution and it is easy to sample from this.

5 Sample τγ : Given τγ we have γj,k ∼ N(0, τ−1
γ ). So, given values for γ1,1, . . . , γ3,3 and a gamma

prior for τγ , the fcd for τγ is a gamma distribution and it is easy to sample from this.

6 Sample α1, . . . , α3 : Given values for the fixed effect µ, for τα and for the other random effects
we have

Yi,j,k − µ− βk − γj,k ∼ N(αj , τ
−1
ε )

The “prior” for αj here is the conditional distribution of αj given τα which is αj | τα ∼
N(0, τ−1

α ). The resulting fcd is normal and it is easy to sample from this. The fcd for αj
just involves the data through y1,j,1, . . . , y4,j,3.

7 Sample β1, . . . , β3 : Given values for the fixed effect µ, for τβ and for the other random effects
we have

Yi,j,k − µ− αj − γj,k ∼ N(βk, τ
−1
ε )

The “prior” for βk here is the conditional distribution of βk given τβ which is βk | τβ ∼
N(0, τ−1

β ). The resulting fcd is normal and it is easy to sample from this. The fcd for βk
just involves the data through y1,1,k, . . . , y4,3,k.
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8 Sample γ1,1, . . . , γ3,3 : Given values for the fixed effect µ, for τγ and for the other random
effects we have

Yi,j,k − µ− αj − βk ∼ N(γj,k, τ
−1
ε )

The “prior” for γj,k here is the conditional distribution of γj,k given τγ which is γj,k | τγ ∼
N(0, τ−1

γ ). The resulting fcd is normal and it is easy to sample from this. The fcd for γj,k
just involves the data through y1,j,k, . . . , y4,j,k.

Note that this is by no means the only way to evaluate the posterior distribution. In fact this
algorithm may be subject to poor mixing. However it is simple to implement.

5.1.3 More general models

I have explained random effects models in terms of a simple example with two factors, each with
three levels, and an interaction. Of course we could have much more complicated models with
more factors and interactions. The principles remain the same though.

We could also have models which contain non-normal distributions We will see an example of
this later.

5.1.4 Mixed models

We can also have models in which some effects are fixed and some random. For example, in
testing two drugs for the control of high blood pressure, each patient might provide a number of
blood pressure measurements while being treated with each of the drugs (e.g. in a crossover trial).
We would normally regard the drug effects as fixed but the patient effects, and any patient-drug
interaction, as random effects. At step 2 in the algorithm above we would sample all of the fixed
effects.

A model containing both fixed and random effects is called a mixed model. A mixed model
where the random effects distributions are normal and the error distribution is normal and the
means are linear functions of the effects is a linear mixed model. We could also have, for example,
a generalised linear mixed model in which the error distribution might be, for example, Poisson or
binomial, the means are related to linear predictors by a link function and the linear predictors
are linear functions of fixed and random effects.
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5.2 Hierarchical Models

5.2.1 Hierarchical structures

We are going to look at models and priors where we have two or more “levels” of conditional
distributions.

For example we might say that, given Aj,k and σ2
Y , we have

Yi,j,k | Aj,k, σ2
Y ∼ N(Aj,k, σ

2
Y ),

then, given Bk and σ2
A, we have

Aj,k | Bk, σ2
A ∼ N(Bk, σ

2
A),

then, given µ and σ2
B , we have

Bk | µ, σ2
B ∼ N(µ, σ2

B).

We would then give priors to µ, σ2
B , σ

2
A and σ2

Y . Our prior for µ could be

µ ∼ N(m0, v0).

Notice that

• there are several levels in this structure and

• the structure is nested or hierarchical.

Here Yi,j,k is the ith obervation within sub-group j of group k. Two observations within the
same subgroup are more strongly correlated with each other than two observations within different
subgroups. Two observations in different subgroups within the same group are more strongly
correlated than two observations in different groups. The group means are themselves correlated
in the prior.

It is easy to see that we could write (conditional on all of the variances)

Yi,j,k = µ+ bk + aj,k + εi,j,k
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where

µ ∼ N(m0, v0),

bk ∼ N(0, σ2
B),

aj,k ∼ N(0, σ2
A),

εi,j,k ∼ N(0, σ2
Y ),

all independently.

Therefore, in the example above:

• All of the observations Yi,j,k have prior mean m0.

• The prior (predictive) variance for Yi,j,k is

VY = v0 + σ2
B + σ2

A + σ2
Y .

• The prior (predictive) covariance between Yi,j,k and Yi′,j,k, where i′ 6= i, is

VA = v0 + σ2
B + σ2

A.

• The prior (predictive) covariance between Yi,j,k and Yi′,j′,k, where j′ 6= j, is

VB = v0 + σ2
B .

• The prior (predictive) covariance between Yi,j,k and Yi′,j′,k′ , where k′ 6= k, is v0.

When we looked at mixture models we said that there were two different reasons why we might
use a mixture model, depending on whether or not we supposed that there really were subpopu-
lations. The distinction between a “hierarchical prior” and a “multilevel model” or “hierarchical
model” is of a similar nature.

In some cases we are really only interested in one level of unit, such as the sub-groups indexed
j, k above, and other levels, e.g. the groups indexed k above, are introduced simply to give a
covariance structure to the prior. In this case we would regard this as a “hierarchical prior.”

In other cases the levels might have “physical” interpretations. For example, Yi,j,k could be
the score obtained in a test by pupil i in school j of education authority k. Then the values of the
education-authority effects bk and the school effect aj,k might be of interest in themselves.
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5.2.2 Hierarchical priors and “borrowing strength”

We have seen hierarchical priors already. We might make observations on members of a number
of groups, e.g. weight gains of rats given different diets. So Yi,j is the ith observation in Group j.
Then, given µj and σ2

Y , we have

Yi,j | µj , σ2
Y ∼ N(µj , σ

2
Y ).

We need a prior for µ1, . . . , µJ but, if we are measuring the same thing in these groups, e.g. weight
gain, then it seems reasonable that these means will be positively correlated in our prior. So, given
µ0 and σ2

µ, we write

µj | µ0, σ
2
µ ∼ N(µ0, σ

2
µ).

Then we give a prior to µ0 with
µ0 ∼ N(m0, v0).

Thus, in our prior, given σ2
µ, each of µj and µj′ has mean m0 and variance v0 + σ2

µ but they also
have covariance v0 when j 6= j′.

Typically we would also give a prior to σ2
Y . We might simply choose a value for σ2

µ but we
might choose to give it a prior as well. Choosing to give σ2

µ a distribution has two effects.

• Because of the covariance structure, the posterior means of µ1, . . . , µJ will tend to be closer
to their common overall mean than the sample means of the data are. This is a similar effect
to the posterior mean being closer to the prior mean than the sample mean is when we have
a single sample. This effect is called shrinkage. The degree of shrinkage depends, in part, on
the relative sizes of the variances. If we choose the value of σ2

µ then we are (almost) choosing
the degree of shrinkage. (The degree of shrinkage also depends on σ2

Y and we allow this to
be unknown). If we allow σ2

µ to be unknown and give it a prior then we give the data more
influence over the degree of shrinkage.

• If we expect to observe other related groups in the future then, learning about σ2
µ from the

data allows us to change our minds about how close we expect these future group means to
be to the means for groups which we have seen. We would have to believe that, in some
sense, the future groups would be drawn from “the same population.” (Usually this means
that we would believe that groups were exchangeable).

Borrowing strength

The shrinkage effect noted above has an important benefit. Consider the following (very simplified)
example.

We are interested in the rates of a disease in different areas of the country. In area j the
population at risk is nj . (In reality we would usually also take into account age groups etc.). Our
model says that the number of cases in area j is Yj which, conditional on a rate parameter θj , has
a Poisson distribution

Yj | θj ∼ Po(njθj).

Now the mean of this distribution njθj might be a small number (e.g. 10) so that the standard
deviation of the Poisson distribution is quite large compared to its mean. If we try to make
inferences about the individual rates λj treating them independently then there is little information
in the data about each. On the other hand, if we pool all of the data and assume that λ1 = λ2 =
· · · = λJ , then we lose any possibility of detecting unusual rates in particular places. Instead we
compromise and use a hierarchical prior. Given a, b we give θj a gamma distribution

θj | a, b ∼ Ga(a, b).

we can then give a prior to a, b.
In this way the posterior distribution for θj uses information not only from Yj but also from

the observations in other areas. For example, the posterior means in cases with unusually large Y
values will be “shrunk” somewhat towards the overall average. This is called “borrowing strength.”

In spatial statistics, more complicated models are used in which the parameter in an area is
more strongly correlated with the parameters in neighbouring areas.
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5.2.3 Data augmentation and MCMC

Clearly, just as in Lecture 5.1 on random effects, hierarchical structures such as those discussed
here give rise to a straightforward application of MCMC with data augmentation, regarding the
different levels of random effects as auxiliary data. So, for example, in the first, normal, example
above we could regard {Aj,k} and {Bk} as auxiliary data. For fixed values of these the likelihood
is simple and sampling values for the parameters is simple. When the values of the parameters
and one set of auxiliary variables is fixed, it is simple to sample values for the other set of auxiliary
variables.

5.2.4 Multilevel models

As noted above, in some cases we are interested in the random effects themselves, rather than
either just the population parameters (µ, σ2

B , σ
2
A, σ

2
Y ) or just the first-level parameters ({Aj,k}).
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5.3 Repeated Measures

5.3.1 Introduction

Among the types of problem where random effects are used are repeated measures models, where
several observations are made on the same individual, and longitudinal data, where we are partic-
ularly interested in how repeated measurements taken on individuals change over time.

5.3.2 Example: Repeated measurements in two groups

A drug for lowering blood pressure is tested. A sample of patients with high blood pressure is
divided randomly into two groups. Patients in Group 1 are given the drug. Patients in Group 2
are given a placebo. After a suitable period a sequence of five blood pressure measurements, at
intervals, is made on each patient. (In this example we assume that there is no time trend).

This is really just a mixed-effects model. There is a fixed treatment effect and there are random
patient effects.

Let Yi,g,t be the observation on patient i of group g at time t for i = 1, . . . , ng, g = 1, 2, t =
1, . . . 5.

Model:

Yi,g,t | Pi,g, σ2
Y ∼ N(Pi,g, σ

2
Y )

Pi,g | µg, σ2
P ∼ N(µg, σ

2
P )

Prior:

µg | µ0, vg ∼ N(µ0, vg)

µ0 ∼ N(m0, v0)

τY = σ−2
Y ∼ Ga(aY , bY )

τP = σ−2
P ∼ Ga(aP , bP )

Notice that we are using a hierarchical prior for µ1, µ2. This gives them the same prior distribu-
tion. This might or might not seem to be a reasonable thing to do. Another possibility would
be as follows.

µ1 = µ0 + δ

µ2 = µ0 − δ
µ0 ∼ N(m0, v0)

δ ∼ N(d0, ṽg)
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model bloodpressure

{for (i in 1:N)

{for (t in 1:5)

{y[i,t]~dnorm(p_[i],tau.y)

}

p[i]~dnorm(mu[group[i]],tau.p)

}

for (g in 1:2)

{mu[g]~dnorm(mu0,0.001)

}

mu0~dnorm(150,0.0005)

tau.y~dgamma(2,100)

tau.p~dgamma(2,200)

}

Figure 5.1: BUGS code for blood pressure example.

Here the variance of µ1−µ2 is var(2δ) = 4ṽg. In the first form of prior we had var(µ1−µ2) = 2vg.
Hence, if we set ṽg = vg/2 we get the same variances and covariances. The introduction of d0 allows
us to have a nonzero prior mean for the treatment effect.

Figure 5.1 shows some suitable BUGS code. It is assumed that the data file contains six
columns. The first column contains the number of the group to which the patient belongs. The
remaining five columns contain the five blood pressure measurements, in order. (With BRugs it
would be necessary to load the overall sample size N from another file). The first form of the
prior is used.

5.3.3 Autocorrelation

In the example in 5.3.2 we have made no use of the time-ordering of the observations. The five
observation on a particular patient are treated as exchangeable. We might believe that neigh-
bouring observations are likely to be more strongly correlated than observations further apart.
We could allow for this by allowing autocorrelation of the observations. This could be done, for
example, using an autoregressive process or a moving average process. For illustration we will use
a first-order moving average process.

The model as it stands can be written

Yi,g,t = Pi,g + εi,g,t

where εi,g,t ∼ N(0, σ2
Y ).

Let us replace this with

Yi,g,t = Pi,g + εi,g,t + ηi,g,t + ηi,g,t+1

where εi,g,t ∼ N(0, σ2
ε) and ηi,g,t ∼ N(0, σ2

η). The conditional variance of Yi,g,t is now σ2
ε + 2σ2

η

so we would want this variance to correspond to the old σ2
Y . The conditional covariance between

Yi,g,t and Yi,g,t′ is now zero for |t− t′| > 1 but σ2
η for |t− t′| = 1.

Figure 5.2 shows modified BUGS code. Note that we have to allow for an extra ηi,g,6.

5.3.4 Example: growth curves

Growth curves are a special kind of longitudinal-data problem. We are often interested in how, for
example, individual children or young animals grow over time.

Here is a simple example taken from Gelfand et al. (1990). It can also be found as an example
on the BUGS Website.
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model bloodpressure

{for (i in 1:N)

{for (t in 1:5)

{y[i,t]~dnorm(ymean[i,t],tau.eps)

ymean[i,t]<-p[i]+eta[i,t]+eta[i,t+1]

}

for (t in 1:6)

{eta[i,t]~dnorm(0,tau.eta)

}

p[i]~dnorm(mu[group[i]],tau.p)

}

for (g in 1:2)

{mu[g]~dnorm(mu0,0.001)

}

mu0~dnorm(150,0.0005)

tau.eps~dgamma(1,30)

tau.eta~dgamma(1,10)

tau.p~dgamma(2,200)

}

Figure 5.2: BUGS code for blood pressure example with moving average errors.

The weights of thirty young rats are measured at weekly intervals for five weeks. A straight-line
model is used to relate weight to time. (We might well want to consider a more complicated form
of curve and possibly allow autocorrelation of deviations from the curve but, for this example, we
will stick to a straight line with independent “errors”). However the intercept and gradient of the
line are allowed to vary as random effects between rats.

The five times, in days, at which the weights are measured are t1 = 8, t2 = 15, t3 = 22, t4 =
29, t5 = 36. The weight of rat i on day tj is

Yi,j | αi, βi, τY ∼ N(αi + βi[tj − 22], τ−1
Y ).

Now we need a model for how αi, βi vary between rats. We could simply write

αi | µα, τα ∼ N(µα, τ
−1
α )

βi | µβ , τβ ∼ N(µβ , τ
−1
β ) (5.1)

with αi, βi independent given the parameters. However it might be more realistic to allow them to
have a nonzero correlation. One way to do this (though not the way that it is done on the BUGS
Website) is to specify the conditional distribution of βi given αi. So, instead of (5.1) we write

βi | µβ , τβ , αi, γ ∼ N(µβ + γ[αi − µα], τ−1
β ).

Finally we give prior distributions to the model parameters. The priors given here are based
(loosely) on those used in the example on the BUGS Website. They are meant to be “noninfor-
mative.”

µα ∼ N(0, 10000)

µβ ∼ N(0, 10000)

γ ∼ N(0, 4000)

τY ∼ Ga(0.001, 0.001)

τα ∼ Ga(0.001, 0.001)

τβ ∼ Ga(0.001, 0.001)
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model rats

{for (i in 1:N)

{for j in 1:5)

{mean[i,j]<-alpha[i]+beta[i]*(t[j]-22)

y[i,j] ~ dnorm(mean[i,j],tau.y)

}

alpha[i] ~ dnorm(mu.alpha,tau.alpha)

betamean[i]<-mu.beta+gamma*(alpha[i]-mu.alpha)

beta[i] ~ dnorm(betamean[i],tau.beta)

}

mu.alpha ~ dnorm(0,0.0001)

mu.beta ~ dnorm(0,0.0001)

gamma ~ dnorm(0,0.00025)

tau.y ~ dgamma(0.001,0.001)

tau.alpha ~ dgamma(0.001,0.001)

tau.beta ~ dgamma(0.001,0.001)

}

Figure 5.3: BUGS model specification for rats growth curves example.

Figure 5.3 shows suitable BUGS code.
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Hospital ni ri Hospital ni ri Hospital ni ri
1 47 0 5 211 8 9 207 14
2 148 18 6 196 13 10 97 8
3 119 8 7 148 9 11 256 29
4 810 46 8 215 31 12 360 25

Table 5.2: Mortality in twelve hospitals performing cardiac surgery on babies. ni : number of
operations at hospital i. ri : number of deaths at hospital i.

5.4 Practical 5

5.4.1 Hospital ranking

This example is taken from the BUGS Website. It concerns the mortality rates in twelve hospitals
performing cardiac surgery in babies. The data are shown in table 5.2.

Crude methods of comparing hospitals might be misleading. For example, the variance of the
observed proportions of deaths is large if the number of operations is smaller. Therefore a small
hospital could appear to have a very bad rate simply because of a small number of cases. Using a
random-effects model helps to smooth out such effects.

We suppose that, associated with hospital i there is a rate pi which, if it were known, would
be the probability of death at that hospital. We suppose that the number of deaths ri out of ni
operations at hospital i has a binomial distribution

ri ∼ Bin(ni, pi).

Then we write

bi = log

(
pi

1− pi

)
and

bi | µ, τ ∼ N(µ, τ).

We then gives priors to the parameters. These are the priors used on the BUGS Website. They
are so-called “noninformative” priors.

µ ∼ N(0, 106)

τ ∼ Ga(0.001, 0.001)

1. Type the following model specification into a file called hospitalbug.txt .

model hospital

{for (i in 1:N)

{r[i]~dbin(p[i],n[i])

logit(p[i])<-b[i]

b[i]~dnorm(mu,tau)

}

mu~dnorm(0.0,1.0E-6)

tau~dgamma(0.001,0.001)

}

Note that 1.0E-6 means 1.0× 10−6.

2. Type the data into a file called hospitaldata.txt as follows.

list(N=12, n=c(47,148,119,810,211,196,148,215,207,97,256,360),

r=c(0,18,8,46,8,13,9,31,14,8,29,24))
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3. Use BRugs to evaluate the posterior distribution. Monitor b1, . . . , b12 and compare the pos-
terior 95% intervals for these. Does any hospital stand out from the rest?

You will need to set some initial values. For example, to run two chains, create one file called

hospitalinits1.txt

containing the following

list(mu=-2.0, tau=2.0)

and another file called

hospitalinits2.txt

containing the following.

list(mu=-2.0, tau=20.0)

You would then need to issue commands as follows.

modelCheck("hospitalbug.txt")

modelData("hospitaldata.txt")

modelCompile(2)

modelInits("hospitalinits1.txt")

modelInits("hospitalinits2.txt")

modelGenInits()

You would then be ready to start updating (with or without setting a monitor). The final
modelGenInits() is necessary because our initial value files do not specify initial values for

all of the unknowns.

5.4.2 Rat growth

This is the “rats” example of section 5.3.4. The BUGS code is available on the Web page as
ratsbug.txt and there are two data files, also on the Web page, called ratsxdata.txt and
ratsydata.txt . Because there are two data files, you will need to start like this.

modelCheck("ratsbug.txt")

modelData("ratsxdata.txt")

modelData("ratsydata.txt")

Use BRugs to evaluate the posterior distribution. Monitor µα, µβ , γ, τy, τα and τβ . You could
also monitor the regression coefficients of individual rats, αi, βi, if you wish.

You will need to supply initial values for some of the unknowns. I suggest that you use two
chains and initialise them as follows.

modelCheck("ratsbug.txt")

modelData("ratsxdata.txt")

modelData("ratsydata.txt")

modelCompile(2)

modelInits("ratsinits1.txt")

modelInits("ratsinits2.txt")

modelGenInits()

Here is a suggestion for the contents of ratsinits1.txt

list(tau.y=1.0E-5,tau.alpha=1.0,tau.beta=10.0)

and here is a suggestion for the contents of ratsinits2.txt
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list(tau.y=5.0E-6,tau.alpha=10.0,tau.beta=100.0)

Set the sample monitors and do, say, 5000 updates. Then look at the results using samplesHistory .
You might be surprised at how poor the convergence is in this example. This is probably because
the parameters are poorly identified.

In fact things behave much better if we assume that αi and βi are conditionally independent
given µα, µβ , τα, τβ . Try this. Replace the lines

betamean[i]<-mu.beta+gamma*(alpha[i]-mu.alpha)

beta[i] ~ dnorm(betamean[i],tau.beta)

with the single line

beta[i] ~ dnorm(mu.beta,tau.beta)

in the model file and try fitting the model again.
Further investigation shows that the posteriors for τY , τα and τβ are sensitive to the choice of

priors for these parameters suggesting that the parameters are not well identified. Nevertheless,
in this case, the “noninformative” priors seem to give sensible results.

5.4.3 Vertebral fractures in older women.

Here is one for you to do yourselves.
The data come from Cooper et al. (1991). Osteoporosis is a problem for many post-menopausal

women. It can lead to bone fractures. Women were screened for evidence of vertebral fractures
according to a certain criterion. A subset of the data were as follows.

i Age group Total number Number with fracture
1 50-54 17 1
2 55-59 282 12
3 60-64 244 17
4 65-69 218 23
5 70-74 120 9
6 75-79 105 11
7 80- 18 5

Let the lower age limit of age-group i be xi. Let the number of women screened in this group
be ni and let the number classified as having vertebral fractures be yi. Then we assume

yi | ni, pi ∼ Bin(ni, pi)

with

log

(
pi

1− pi

)
= ηi = β0 + β1xi + δi.

Here β0 and β1 are parameters about which we wish to learn. We adopt the following indepen-
dent prior distributions.

β0 ∼ N(−3, 5),

β1 ∼ N(0, 1).

Because the relationship between age and logit of fracture rate might not really be a straight
line we allow some deviation by adding a random variable δi with

δi ∼ N(0, 0.001).

Use BRugs to evaluate the posterior distribution of β0, β1, η1, . . . , η7.
Convergence and mixing are poor. You will need a long burn-in. It might help if you use two

initial value files such as the following.
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list(beta0=-4.5, beta1=0.01)

list(beta0=-5.5, beta1=0.06)

Try also monitoring p1, . . . , p7. You can do this using

samplesSet("p")

The results are quite interesting.
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