
Dynamic Linear Models and the Kalman Filter

Introduction

Dynamic linear models (DLM) are a class of models for time series, including multivariate time
series. They are particularly popular among Bayesians although there is no particular reason why
Bayesians could not use autoregressive integrated moving average (ARIMA) models, for example.

The idea is that the observation yt (which may be a vector) at time t depends on an underlying
unobserved state vector (or system vector) βt. The state vector changes randomly over time and
the dependence between yt and ys, where s 6= t, is modelled only by the dependence between βt

and βs.
This is a Gaussian process where the joint distribution of . . . βt−2, βt−1, βt, βt+1, βt+2, . . . , yt−2, yt−1, yt, yt+1, yt+2 . . .

is multivariate normal. Of course people have invented extensions to this where assumptions, for
examp[le of normality, are relaxed but we will not concern ourselves with these here.

We have an observation vector at time t :

Yt = Xtβt + εt

where Xt is a known matrix and εt is a vector of “errors” with mean 0 and (known) variance
matrix Pt. The vector Yt could, for example, be the sales of several products in month t.

We have an underlying state vector

βt = Ttβt−1 + ut

where ut is a random vector with mean 0 and (known) variance matrix Qt.
Associated with a DLM there is an algorithm called a Kalman filter which allows us to update

our beliefs about the current value of the state vector each time we make a new observation.

The “generation step”

At time t we can calculate a “prior” mean and variance for the quantities at time t.
The expectation of βt at time t is bt so the expectation of βt at time t − 1 is bt|t−1 = Ttbt−1.

We can not observe the value of the state vector but at any time we will have a mean vector and
a variance matrix for it.

The variance of βt at time t is St so the variance of βt at time t− 1 is St|t−1 = TtSt−1T
′
t +Qt.

At time t− 1 the expectation of Yt is

Ft = Xtbt|t−1,

the variance of Yt is
Dt = XtSt|t−1X

′
t + Pt

and the covariance of βt and Yt is
Ct = St|t−1X

′
t.

So, at time t− 1,

E
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βt

Yt

)
=
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)
and

var
(
βt

Yt

)
=

(
St|t−1 Ct

C ′t Dt

)
.
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The “observation step”

At time t we observe Yt. This means that we update our beliefs about βt. (If we are assuming that
everything is normally distributed then formally this is done by applying Bayes’ rule. If we are
using Bayes linear methods then we use Bayes linear updating. The formulae and results are the
same in both cases).

The updated mean for βt is

bt = bt|t−1 + CtD
−1
t (Yt − Ft)

and the updated variance matrix for βt is

St = St|t−1 − CtD
−1
t C ′t.

Note that the variance matrices Pt and Qt are known/given. Although I have put t subscripts
on P,Q,X, T, often these would remain constant.

Updating

When we observe some new data, e.g. a new month’s sales figure, we carry out first a generation
step then an observation step to update our beliefs about the system vector.

Forecasting

A generation step on its own gives a one-step-ahead forecast. We can generate forecasts further
into the future by a sequence of generation steps without observation steps. For example, suppose
we have observed the data at time t. We can find the one-step-ahead forecasts. (Here I am dropping
the t subscripts on P,Q,X, T ).
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)
.

Now we can calculate the two-step-ahead forecasts.
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.

Then we can calculate the three-step-ahead forecasts and so on.

Trend, seasonals etc.

Trend, seasonals etc. are modelled by special forms of the system vector and the matrices T and
Q.

Further reading

See West, M. and Harrison, J., 1997, Bayesian Forecasting and Dynamic Models (2nd ed.), New
York: Springer-Verlag.
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