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1 Introduction

1.1 Introduction

The software BUGS (Bayesian Inference Using Gibbs Sampling) was developed to allow users
to specify models and priors, connect these with data and compute samples of unknowns from
the posterior distribution using a Gibbs sampler (Spiegelhalter et al, 1995). Later a menu-driven
version to run under MS Windows, called WinBUGS (Lunn et al, 2000) was developed. This
eventually incorporated new features not found in the original, or ‘Classic”, BUGS. There is now
also OpenBUGS, developed at the University of Helsinki, and various other implementations of the
basic “BUGS” idea. In particular we will be using BRugs which is a R package which implements
OpenBUGS within R. All of these use (apart from a few small differences) the same Model Speci-
fication Language and, in this part of this week’s course, it is this language which is of particular
interest.

Various resources are available at the following Web page.

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8303/

This is the Web page for a module taught at Newcastle in which similar material is covered.
References to the “Module Web Page” in what follows refer to this page.

The WinBUGS manual is available from the Module Web Page. The details of how you tell
BRugs to do things are different from WinBUGS but the model specification language and many
other features are the same.

A good overview is given by Lunn et al (2009).

1.1.1 Potted history

1989 BUGS Project starts at MRC Biostatistics Unit, Cambridge.

1993 Unix version available. At first it used only Gibbs sampling (with adaptive rejection sampling
where necessary) – hence the name. Metropolis-Hastings was added later.

1996 Project moved to Imperial College.

1997 Windows version: WinBUGS.

2004 Work began at Helsinki University on the open-source version, OpenBUGS. This led to
BRugs – interface which allows BUGS to run from R. (There are also interfaces to other
statistical software now).

2007 WinBUGS development work stopped. The future lies with OpenBUGS.

2008 Competition: JAGS (“Just Another Gibbs Sampler”).
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Figure 1: DAG: Repeated measures example.

1.2 Graphical models and the BUGS model specification language

We will be using BRugs to do practical work. This is a R package which implements OpenBUGS.
Models and priors are specified using the BUGS language. We will need to make a model specifi-
cation file using the BUGS language. The BUGS language is closely linked to the idea of directed
acyclic graphs (DAG). At each node, we only need to specify the conditional distribution of the
variable given the variables at the parent nodes (direct predecessors).

Example 1 (Adapted from Gelfand et al, 1990).

Suppose we have k samples of observations and observation j in sample i is Yij where, given
the values of θi and τε,

Yij ∼ N(θi, τ−1
ε )

for j = 1, . . . , J, and, given the values of µ and τ−1
θ ),

θi ∼ N(µ, τ−1
θ )

(all independent).

(This could be a repeated measure model, for example).

Suppose we have independent priors for the three parameters:

µ ∼ N(µ0, τ
−1
0 )

τθ ∼ Ga(a1, b1)
τε ∼ Ga(a2, b2)

where Ga(a, b) stands for a gamma distribution.

Figure 1 shows the model with k = 2 and J = 3.

The BUGS model specification is shown in Figure 2.

Example 2 Patients in four groups are observed for various lengths of time. During this time
tumours may develop. The dependent variable is the number of tumours observed for each
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model Gelfand

{for (i in 1:k)
{for (j in 1:J)

{ y[i,j]~dnorm(theta[i],p.eps)
}

theta[i]~dnorm(mu,p.theta)
}

mu~dnorm(mu0,p0)
p.theta~dgamma(a1,b1)
p.eps~dgamma(a2,b2)

sigmasq.theta<-1/p.theta
sigmasq.eps<-1/p.eps

}

Figure 2: BUGS model specification, repeated measures example.

patient. The mean number of tumours for a patient in group g is λgt = exp(βg+ln t) where t
is the time observed in weeks. Thus the parameters are β1, . . . , β4 where βg = ln(λg). There
is no intercept here and the coefficient of ln t is known to be 1.

Suppose that we observe n patients (written as N in the BUGS code). For each patient we
have a group number g ( group), the time t for which the patient was observed ( t ) and
the number y of tumours observed ( y ).

Figure 3 shows some suitable BUGS code.

Note that the code in Figures 2 and 3 are not programs with commands to be executed. They
are model specifications. We are defining the joint distribution of the unknowns and the data,
mostly by specifying conditional distributions. For example

y[i]~dpois(mean[i])

might be written in standard mathematical notation as

Yi | mi ∼ Po(mi).

The code dpois represents the Poisson distribution and the symbol ~ has its usual meaning of
“has the following distribution.” Similarly dnorm stands for a normal distribution. Note however
that the parameters are mean and precision, not mean and variance. So, in the example, we are
saying that

βg | µ ∼ N(µ, 0.1).
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model tumours

{
for (i in i:N)

{y[i]~dpois(mean[i])
mean[i]<-lambda[group[i]]*t[i]
}

for (g in 1:4)
{lambda[g]<-exp(beta[g])
beta[g]~dnorm(mu,10)
}

mu~dnorm(0,5)
}

Figure 3: BUGS code for the tumours example

2 BUGS functions

Function Usage Definition
Complementary cloglog(p)<-a+b*x log[− log(1− p)] = a+ bx

log log y<-cloglog(p) y = log[− log(1− p)]
Logical equals y<-equals(x,z) y = 1 if x = z

y = 0 if x 6= z
Exponential y<-exp(x) y = ex

Inner product y<-inprod(a[],b[]) y =
∑
i aibi

Matrix inverse y[,]<-inverse(x[,]) y = x−1

y, x both n× n matrices
Natural logarithm log(lambda)<-a+b*x log(λ) = a+ bx

y<-log(x) y = log x
Log determinant y<-logdet(x[,]) y = log |x|

x is a n× n matrix
Log factorial y<-logfact(x) y = log(x!)
Log(gamma function) y<-loggam(x) y = log[Γ(x)]
Logit y<-logit(p) y = log[p/(1− p)]

logit(p)<-a+b*x log[p/(1− p)] = a+ bx
Maximum c<-max(a,b) c = max(a, b)
Mean x.bar<-mean(x[]) x̄ =

∑
i xi/n

Minimum c<-min(a,b) c = min(a, b)
Standard Gaussian p<-phi(x) p =

∫ x
−∞(2π)−1/2e−t

2/2 dt

distribution function i.e. p = Φ(x)
Power z<-pow(x,y) z = xy

Probit y<-probit(p) y = Φ−1(p)
probit(p)<-a+b*x Φ−1(p) = a+ bx

Standard deviation s<-sd(x[]) s =
√∑

i(xi − x̄)2/n
Square root sigma<-sqrt(tau) σ =

√
τ

Unit step y<-step(x) y = 0 if x < 0
y = 1 if x ≥ 0

Sum x.sum<-sum(x[]) xsum =
∑
i xi
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3 BUGS distributions

Distribution Usage Definition
Bernoulli r~dbern(p) f(r | p) = pr(1− p)1−r;

r = 0, 1
beta p~dbeta(a,b) f(p | a, b) = Γ(a+b)

Γ(a)Γ(b)p
a−1(1− p)b−1;

0 < p < 1
binomial r~dbin(p,n) f(r | p, n) = n!

r!(n−r)!p
r(1− p)n−r;

r = 0, . . . , n
categorical r~dcat(p[]) f(r | p1, . . . , pR) = pr;

r = 1, 2, . . . , R where R = dim(p)
chi-squared x~dchisq(k) f(x | k) = 2−k/2xk/2−1e−x/2/Γ(k2 );

x > 0
double x~ddexp(mu,tau) f(x | µ, τ) = τ

2 e
−τ |x−µ|;

exponential −∞ < x <∞

Dirichlet p[]~ddirch(alpha[]) f(p | α) =
Γ(

∑
i
αi)∏

i
Γ(αi)

∏
i p
αi−1
i ;

0 < pi < 1,
∑
i pi = 1

exponential x~dexp(lambda) f(x | λ) = λe−λx;
x > 0

gamma x~dgamma(r,mu) f(x | r, µ) = µrxr−1e−µx/Γ(r);
x > 0

lognormal x~dlnorm(mu,tau)
f(x | µ, τ) =

√
τ
2πx
−1 exp[− τ2 (log x− µ)2]; x > 0

logistic x~dlogis(mu,tau)
f(x | µ, τ) = τeτ(x−µ)/(1 + eτ(x−µ))2; −∞ < x <∞

multivariate x[]~dmnorm(mu[],T[,])
normal f(x | µ,T) = (2π)−N/2|T|1/2 exp[− 1

2 (x− µ)′T(x− µ)];
−∞ < xi <∞

multinomial x[]~dmulti(p[],N) f(x | p, N) =
(
∑

i
xi)!∏

i
xi!

∏
i p
xi
i ;

0 < pi < 1,
∑
i pi = 1

∑
i xi = N

negative x~dnegbin(p,r) f(x | p, r) = (x+r−1)!
x!(r−1)! p

r(1− p)x;
binomial x = 0, 1, 2, . . .

normal x~dnorm(mu,tau)
f(x | µ, τ) =

√
τ
2π exp[− τ2 (x− µ)2]; −∞ < x <∞

Pareto x~dpar(alpha,c) f(x | α, c) = αcαx−(α+1);
x > c

Poisson r~dpois(lambda) f(r | λ) = e−λ λ
r

r! ;
r = 0, 1, . . .

Student’s t x~dt(mu,tau,k)

f(x | µ, τ, k) = Γ([k+1]/2)
Γ(k/2)

√
τ
kπ [1 + τ

k (x− µ)2]−(k+1)/2;
−∞ < x <∞

uniform x~dunif(a,b) f(x | a, b) = 1/(b− a);
a < x < b

Weibull x~dweib(v,lambda)
f(x | v, λ) = vλxv−1 exp(−λxv);

x > 0
Wishart x[,]~dwish(R[,],k)

f(x | R, k) ∝ |R|k/2|x|(k−p−1)/2 exp(− 1
2 tr[Rx]);

x symmetric and positive definite

5



4 Some BRugs (and other) Commands

library(BRugs)

modelCheck("modelfile.txt")

modelData("datafile.txt")

modelCompile()
modelCompile(2)

modelInits("initsfile.txt")

modelGenInits()

modelUpdate(5000)

samplesSet("theta")
samplesSet(c("alpha","beta","gamma"))

samplesHistory("theta")

samplesDensity("theta")

samplesStats("theta")
samplesStats(c("alpha","beta","gamma"))

thetavalues<-samplesSample("theta")

iter<-1:length(thetavalues)
plot(iter,thetavalues,type="l",xlab="Iteration",ylab=expression(theta))

thetadens<-density(theta,adjust=1.5)
plot(thetadens$x,thetadens$y,type="l",xlab=expression(theta),ylab="Density")
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