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Chapter 2

Generalised Linear Models

2.1 Generalised Linear Models

2.1.1 Introduction

In this chapter of the course we are going to look at models which are more general than the normal
linear model. There is not generally a conjugate form for the prior distribution so, except in simple
cases where there are few parameters, we usually use Markov chain Monte Carlo (MCMC) methods
to evaluate posterior distributions. In this course we shall use a R package called rjags which is
an implementation of the “JAGS” (“Just Another Gibbs Sampler”) system.

Consider the normal linear model. The ith observation Yi has a systematic component µi and
a random component εi :

Yi = µi + εi.

We assume

• that εi has a normal distribution,

• that εi has variance σ2,

• that εi is independent of εj for i 6= j.

In generalised linear models we relax the first two of these assumptions to allow a much wider
class of models.

2.1.2 Linear predictors and link functions

In the normal linear model

µi =

p∑
j=1

xi,jβj

where β1, . . . , βp are parameters and xi,j is the value of covariate j for observation i. Now we
introduce a quantity called the linear predictor:

ηi =

p∑
j=1

xi,jβj .

In the normal linear model µi = ηi. In a generalised linear model ηi = g(µi) where g is a known
function called the link function. The link function must be monotonic and differentiable.
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2.1.3 Error functions and the exponential family of distributions

In a generalised linear model the distribution of Yi need not be normal. The mean is E(Yi) = µi,
where ηi = g(µi) =

∑p
j=1 xijβj , but the distribution may be chosen from a family of distributions,

called the exponential family, which includes normal, binomial, Poisson and gamma. In some cases
the variance of Yi will depend on µi. E.g.

Normal N(µ, σ2) var(Yi) = σ2

Binomial Bin(n, p) var(Yi) = µ(1− µ/n) (µ = np)
Poisson Po(µ) var(Yi) = µ

In fact we could define models where the error distribution did not come from the exponential
family but certain properties can be derived from the fact that the distribution does belong to the
exponential family and so this is usually required for a model to qualify as a generalised linear
model.

If a continuous random variable has an exponential family distribution then its density function
has the form

f(y | θ, φ) = exp

{
θy − b(θ)
a(φ)

+ c(y, φ)

}
.

If the variable is discrete rather than continuous then its probability function takes this form. The
parameter θ is called the canonical parameter. The parameter φ is called the scale parameter and
φ ≥ 0.

Normal distribution : Y ∼ N(µ, σ2).

fY (y) = (2πσ2)−1/2 exp

{
− 1

2σ2
(y − µ)2

}
= exp

{
−1

2

[
y2 − 2µy + µ2

σ2
+ log(2πσ2)

]}
= exp

{
µy − µ2/2

σ2
− 1

2

[
y2

σ2
+ log(2πσ2)

]}
Hence θ = µ, φ = σ2, b(θ) = µ2/2, a(φ) = φ = σ2, c(y, φ) = −(1/2)[y2/σ2 + log(2πσ2)].
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Binomial distribution : Y ∼ Bin(n, p).

fY (y) =

(
n
y

)
py(1− p)n−y

=

(
n
y

)(
p

1− p

)y
(1− p)n

= exp

{
log

(
n
y

)
+ y log

(
p

1− p

)
+ n log(1− p)

}
= exp

{
log

(
n
y

)
+ yθ − n log(1 + eθ)

}
= exp

{
yθ − n log(1 + eθ)

1
+ log

(
n
y

)}
So

θ = log

(
p

1− p

)
eθ =

p

1− p

1 + eθ = 1 +
p

1− p
=

1

1− p
log(1 + eθ) = − log(1− p)

b(θ) = n log(1 + eθ)

φ = 1, a(φ) = 1

c(y, φ) = log

((
n
y

))
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2.1.4 Example

Consider the emission of α-particles by a radioactive source. We suppose that the emission rate
at time t is βe−γt. Count the α-particles emitted in a short period of time, of length δt (short
enough for the emission rate to be approximately constant) at each of t1, t2, . . . , tn (equal periods
at each). The mean number in a period of length δt at time t is δtβe−γt. Write this as exp(β0+β1t),
where β0 = ln(δtβ) and β1 = −γ. Suppose the actual number Yi observed at time ti has a Poisson
distribution with mean µi = exp(β0 + β1ti).

Hence the link function is log. The linear predictor is ηi = ln(µi) = β0 + β1ti. The error
distribution is Poisson. So we have a generalised linear model.

2.1.5 Poisson Regression

Example 1

This example is based on a student project from some years ago. The project was conducted in
collaboration with the Sunderland and South Shields Water Company. (It was many years ago!).

A water company has many kilometres of water pipe. Much of this lies under roads etc. Some
of the pipes may be very old. From time to time bursts, fractures and leaks of various sorts
occur. The company wants to investigate how the rate of failures depends on various factors and
covariates. These might include age, diameter, material, depth below surface, number of customers
supplied, whether the pipe is in a residential or industrial area etc. Some sections of pipe have
been observed for longer than others.

We assume that, for a given section of pipe, the rate at which failures occur is proportional
to the length of the section. We also assume that, over relatively short periods compared to the
lifetime of a pipe, e.g. a year, the rate remains more or less constant and the actual number of
failures has a Poisson distribution with mean proportional to the length of the period. So, for
a particular section of pipe, of length ki, observed over a period of length ti, the mean number
of failures would be µi = λikiti. The parameter λi depends on the covariates for that pipe (age,
diameter etc.) in the period in question. The mean of a Poisson distribution has to be positive.
This can be ensured if we use a log link function so that ln(µi) = ln(λi) + ln(ki) + ln(ti). Now
we apply a linear model for ηi = ln(λi). We could include the terms in ln(ki) and ln(ti) in the
linear model but we know the values of the coefficients of these (i.e. 1). The other covariates have
unknown coefficients and we need to give these a prior distribution. Thus

ηi = β0 +

k∑
j=1

βjxi,j

or, in matrix notation,

η = Xβ.

This is thus a generalised linear model with Poisson errors and log link. We might well give a
multivariate normal prior distribution to the unknown β coefficients.

Example 2

Patients in four groups are observed for various lengths of time. During this time tumours may
develop. The dependent variable is the number of tumours observed for each patient. The mean
number of tumours for a patient in group g is λgt = exp(βg + ln t) where t is the time observed in
weeks. Thus the parameters are β1, . . . , β4 where βg = ln(λg). There is no intercept here and the
coefficient of ln t is known to be 1. If we included an intercept then we would have to drop one of
the group parameters, exactly as in linear models.

Using BRugs

We will be using rjags to do practical work. This is a R package which implements a Gibbs sam-
pler. Models and priors are specified using the a model specification language which is essentially
the BUGS (“Bayesian inference Using Gibbs Sampling”) language. We will need to make a model
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model

{

for (i in 1:N)

{y[i]~dpois(mean[i])

mean[i]<-lambda[group[i]]*t[i]

}

for (g in 1:4)

{lambda[g]<-exp(beta[g])

beta[g]~dnorm(mu,10)

}

mu~dnorm(0,5)

}

Figure 2.1: BUGS code for the tumours example

specification file using the BUGS language. As an example, consider Example 2 above. Suppose
that we observe n patients (written as N in the BUGS code). For each patient we have a group
number g ( group), the time t for which the patient was observed ( t ) and the number y of
tumours observed ( y ).

Figure 2.1 shows some suitable BUGS code. Note that this is not a program with commands
to be executed. It is a model specification. We are defining the joint distribution of the unknowns
and the data, mostly by specifying conditional distributions. For example

y[i]~dpois(mean[i])

might be written in standard mathematical notation as

Yi | mi ∼ Po(mi).

The code dpois represents the Poisson distribution and the symbol ~ has its usual meaning of
“has the following distribution.” Similarly dnorm stands for a normal distribution. Note however
that the parameters are mean and precision, not mean and variance. So we are saying that

βg | µ ∼ N(µ, 0.1).

Notice that we are giving β1, . . . , β4 a hierarchical normal prior. Since

µ ∼ N(0, 0.2),

the prior mean of βg is 0, the prior variance of βg is 0.2 + 0.1 = 0.3 but β1, . . . , β4 are not
independent in the prior. We have covar(βg, βg′) = var(µ) = 0.2 when g 6= g′.
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2.2 Binomial Regression

2.2.1 Introduction

Just as we can have a regression where the error distribution is Poisson we can have a regression
where the error distribution is binomial.

The term “logistic regression” is often used. Strictly this should refer to cases where the logistic
link function is used. There are other suitable link functions.

Suppose, for example, we want to know what factors influence whether or not a person will
buy a particular product. We might have data on a number of variables, such as age, sex, marital
status, income, etc. and, of course, whether or not they buy the product, for each of a sample of
individuals. The response variable here is binary. That is yi = 1 if person i buys the product and
otherwise yi = 0. We can think of the mean of yi as pi, the probability that an individual with the
same covariate values as individual i would buy the product. A regression model would relate pi
to the values of the explanatory variables. Clearly a linear model pi =

∑
βjxij is inappropriate

since large values of
∑
βjxij would lead to fitted values of pi greater than 1 and small values of∑

βjxij would lead to fitted values of pi less than 0. Instead we transform pi from a (0, 1) scale to
a (−∞,∞) scale. This is usually done using a sigmoid, i.e. S-shaped function. The transformation
which gives logistic regression its name is the logistic transformation. The transformed proportions
are sometimes called logits.

ηi = ln

{
pi

1− pi

}
.

Notice that if pi → 1 then ηi →∞ and if pi → 0 then ηi → −∞.
The inverse transformation is

pi =
exp(ηi)

1 + exp(ηi)
.

Another popular transformation is “probits”

ηi = Φ−1(pi),

pi = Φ(ηi),

where Φ() is the standard normal distribution function and Φ−1() is its inverse.
Yet another is the complementary log-log link,

η = ln[− ln(1− p)],
p = 1− exp(−eη).
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model

{

for (i in 1:7)

{effects[i]~dbin(p[i],n[i])

logit(p[i])<-beta2+beta*(dose[i]-2)

}

alpha<-beta2-2*beta

beta2~dnorm(-0.27, 2.17)

beta~dnorm(0.81, 8.61)

}

Figure 2.2: BUGS code for the side-effect example.

2.2.2 Example

The proportion of people, given a drug to treat a medical condition, who contract a particular side
effect depends on the dose of the drug. If p is the proportion suffering the side effect at dose x,
then

ln

(
p

1− p

)
= α+ βx

where α and β are parameters with unknown values.
At each of a number of doses, xi, a number, ni, of patients were given the drug and the number,

ri, with the side effect was recorded.

Dose xi 0.9 1.1 1.8 2.3 3.0 3.3 4.0
No. patients ni 46 72 118 96 84 53 38
No. with side effect ri 17 22 52 58 56 43 30

2.2.3 Using JAGS

Figure 2.2 shows some BUGS code for the example above.
Notice that effects[i]~dbin(p[i],n[i]) says that

ri | pi ∼ binomial(ni, pi).

That is, the BUGS notation for binomial distributions is the other way round to the usual conven-
tion in this case. Notice also that we are allowed to put the function logit(p[i]) on the left
of <- . On the right of this statement we have β2 + β(xi − 2). This is to illustrate what we can
do in a regression when the intercept is not a convenient quantity for prior specification. Here it
is supposed to be more convenient to think about the rate of side effects when the dose is 2 rather
than when it is zero. See below.

2.2.4 Prior specification

In the example above we suppose that we are prepared to consider the probability of a side effect
when the dose is 2. Denote this probability π2. The Bayesian statistics literature includes the
results of careful research into how best to elicit a prior distribution for a probability such as this.
Unfortunately we do not have time to go into detail. Suppose that, in our prior beliefs, we assess
Pr(π2 < 0.2) = Pr(π2 > 0.7) = 0.05. Let β2 = log(π2/(1− π2). Then we believe that

Pr

[
β2 < log

(
0.2

1− 0.2

)
= −1.3863

]
= 0.05,

Pr

[
β2 > log

(
0.7

1− 0.7

)
= 0.8473

]
= 0.05
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Now suppose that we give β2 a normal N(µ, σ2) prior distribution. From the properties of the
normal distribution we deduce that

µ− 1.645σ = −1.3863,

µ+ 1.645σ = 0.8473.

this leads to µ = (−1.3863 + 0.8473)/2 = −0.2695 and σ = (0.8473− [−1.3863])/(2× 1.645) =
0.6789 and therefore σ2 = 0.4609.
This gives us a prior distribution for β2. It is normal with mean −0.2695 and precision
1/0.4609 = 2.1696. It does not seem unreasonable to round these to −0.27 and 2.17 in this
case. So, we have a prior for one point on the regression line. We need a prior for the gradient.
Suppose that we are willing to give γ = β4 − β2 a normal prior, independently of β2, where
β4 = log[π4/(1−π4)] and π4 is the probability of a side effect when the dose is 4. Suppose that,
by a process similar to that for β2 we assign a N(0.6750, 0.8563) distribution to β4. (Start with
Pr(π4 < 0.3) = Pr(π4 > 0.9) = 0.05). Then, since β4 = β2+γ and β2 and γ are independent, we
can deduce that γ ∼ N(0.9445, 0.3954). However γ = β(4−2) = 2β so our prior distribution for
β becomes N(0.4723, 0.0989) or, after rounding, normal with mean 0.47 and precision 10.12.
(Many people might prefer a weaker prior distribution).
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2.3 Log-linear Models for Categorical Data

2.3.1 Introduction

In this section we give a brief introduction to the analysis of categorical data using log-linear
models. This is a large and complicated topic and we only scratch the surface here. An important
special case is the analysis of contingency tables.

Suppose we have a single sample where each individual is classified into one of K categories.
Associated with each individual is a vector of covariates and the probability of the individual being
in each category depends on the covariates. For example, the categories might be the possible
parties for which an individual will vote in an election. The covariates might be things like sex,
age-group, occupation, usual newspaper. It may be that we can observe more than one individual
with exactly the same covariates (e.g. women aged 20-29 who are students and read the Guardian).
So, in this case, we can think of an “observation” as refering to a group of individuals who have
the same covariate values. Let group i refer to the individuals with covariate pattern xi. Suppose
that there are I such groups. Let the number in group i be Ni (which might be 1, of course) and
let the number of these who are observed to be in category k (e.g. vote for party k) be ni,k. Let
ni = (ni,1, . . . , ni,K)T . The appropriate distribution for ni is the multinomial distribution and the
likelihood is as follows where the probability for category k given covariate pattern xi is pi,k,

K∑
k=1

ni,k = Ni and

K∑
k=1

pi,k = 1.

The likelihood is

L =

I∏
i=1

Ni!p
ni,1

i,1 p
ni,2

i,2 · · · p
ni,K

i,K

ni,1!ni,2! · · ·ni,K !
.

Let µi,k = Nipi,k. Since
∑
k pi,k = 1 we have

∑
k µi,k = Ni. Now we can write the likelihood as

follows.

L =

I∏
i=1

Ni!(µi,1/Ni)
ni,1(µi,2/Ni)

ni,2 · · · (µi,K/Ni)ni,K

ni,1!ni,2! · · ·ni,K !

=

I∏
i=1

Ni!

NNi
i

K∏
k=1

µ
ni,k

i,k

ni,k!

=

I∏
i=1

Ni!

NNi
i

exp

(
K∑
k=1

µi,k

)
K∏
k=1

e−µi,kµ
ni,k

i,k

ni,k!

=

I∏
i=1

Ni!

NNi
i

eNi

K∏
k=1

e−µi,kµ
ni,k

i,k

ni,k!

Thus the likelihood is proportional to that for Poisson data.
To complete the generalised linear model we need an appropriate link function. One way to do

this is to set

pi,k =
eηi,k∑
k′ e

ηi,k′ (2.1)

and

ηi,k =

J∑
j=1

βj,kxi,j

where xi,j is the value of covariate j in pattern i.
However, looking at (2.1) we see that the parameters are not identifiable. This is because we

can write
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ηi,k =

J∑
j=1

βj,kxi,j =

J∑
j=1

(βj,k − βj,1)xi,j +

J∑
j=1

βj,1xi,j .

Now write β̃j,k = βj,k − βj,1 and

η̃i,k =

J∑
j=1

β̃j,kxi,j = ηi,k −
J∑
j=1

βj,1xi,j .

If we substitute η̃i,k for ηi,k in (2.1) we get exactly the same value for pi,k. Therefore, without loss
of generality in terms of the likelihood we can set β1,1 = · · · = βJ,1 = 0 and therefore ηi,1 = 0 and
exp(ηi,1) = 1. Then (2.1) is equivalent to

ln

(
pi,k
pi,1

)
= ln

(
µi,k
µi,1

)
=
∑

βj,kxi,j

for k = 2, . . . ,K. We do not need to apply this model to pi,1 since we know that
∑
pi,k = 1.

Of course we need not pick the first category as the baseline. We could pick any. Also, although
this constraint makes no difference to the likelihood, it may make specification of the prior a little
awkward. An alternative constraint is to set

K∑
k=1

βj,k = 0.

2.3.2 Example

The following data are taken from Freeman (1987). Babies were categorised as follows.

1 Full term, alive at end of year 1.

2 Full term, died in first year.

3 Premature, alive at end of year 1.

4 Premature, died in first year.

The mothers were categorised as either “Young” or “Older” as as either “Smokers” or “Non-
smokers.” Interest lies in the effects of the mother’s age and smoking on the outcome.

Mother Outcome
Age Smoking 1 2 3 4 Total
Young Non-smoker 4012 24 315 50 4401
Young Smoker 459 6 40 9 514
Older Non-smoker 1594 14 147 41 1796
Older Smoker 124 1 11 4 140

In this case it is natural to use Category 1 as a baseline since this is the “normal” outcome and
we are interested in the risks of the other outcomes. For the other three categories, k = 2, 3, 4, we
can model ηi,k as follows.

Young, Non-smoker η1,k = β0,k − βa,k − βs,k + βas,k
Young, Smoker η2,k = β0,k − βa,k + βs,k − βas,k
Older, Non-smoker η3,k = β0,k + βa,k − βs,k − βas,k
Older, Smoker η4,k = β0,k + βa,k + βs,k + βas,k
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Here βa,k is an age effect, βs,k is a smoking effect and βas,k is an interaction effect between age
and smoking. In effect we have a covariate “age” which takes the values (−1,−1, 1, 1) in the four
groups and so on.

Now we need a prior distribution for these β coefficients. We could spend more time looking
at this in detail but here is something fairly simple.

β0,k | µ0 ∼ N(µ0, 1.0) µ0 ∼ N(−2, 1.0)
βa,k | µa ∼ N(µa, 0.1) µa ∼ N(0, 0.1)
βs,k | µs ∼ N(µs, 0.1) µs ∼ N(0, 0.1)

βas,k | µas ∼ N(µas, 0.05) µas ∼ N(0, 0.05)

In each case we have used a “hierarchical” prior so that, e.g., β0,2, β0,3, β0,4 are correlated in
the prior.

Figure 2.3 shows some suitable BUGS code.

2.3.3 Contingency tables

Suppose we have a (2-dimensional) contingency table with R rows and C columns. This could
arise in two quite different ways:

1. It could be the result of taking a single sample of individuals and categorising them in two
ways (e.g. by occupation and by which newspaper they read).

2. Each row might be a separate sample and the individuals are categorised according to the
column classification (e.g. we take a sample from each of several occupations and ask which
newspaper each person reads).

Although, in non-Bayesian statistics, the same χ2 test is applied in both cases, the two situations
are really quite different and the Bayesian analyses of them are different. In this section we will
be looking at case 1 only. This is really a special case of the loglinear models already discussed
where there are no covariates but we parameterise the multinomial distribution in terms of the
row and column factors. So the probability of an observation falling into the row r, column c cell
may depend on a row effect, a column effect and, possibly, a row-column interaction effect. If we
include both the main effects and the interaction effect then we have a saturated model with the
maximum number of parameters. We may be interested in looking at the posterior distribution of
the interaction effect to see whether there is evidence of dependence between the row and column
categorisations.

2.3.4 Example

The following data are taken from Krzanowski (1988). Schoolchildren were examined and classified
according to the size of their tonsils and whether or not they were carriers of the bacterium
Streptococcus pyogenes. In total 1398 children were examined.
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model

{

for (i in 1:4)

{y[i,1:4]~dmulti(p[i,],n[i])

for (k in 1:4)

{p[i,k]<-phi[i,k]/sum(phi[i,])

phi[i,k]<-exp(eta[i,k])

}

for (k in 1:4)

{eta[i,k]<-beta0[k]+betaa[k]*age[i]+betas[k]*smoke[i]+betaas[k]*age[i]*smoke[i]

}

}

beta0[1]<-0

betaa[1]<-0

betas[1]<-0

betaas[1]<-0

for (k in 2:4)

{beta0[k]~dnorm(mu0,1.0)

betaa[k]~dnorm(mua,10.0)

betas[k]~dnorm(mus,10.0)

betaas[k]~dnorm(muas,20.0)

}

mu0~dnorm(-2,1.0)

mua~dnorm(0,10.0)

mus~dnorm(0,10.0)

muas~dnorm(0,20.0)

}

Figure 2.3: BUGS code for Example 2.3.2
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Carrier status
Tonsil size Carrier Non-carrier
Normal 19 497
Large 29 560
Very large 24 269

Of course we could just give the six probabilities a Dirichlet prior but another possibility is to
parameterise the model as follows.

Carrier Normal η1,1 = β1 −2β2 −2β4
Carrier Large η2,1 = β1 +β2 −β3 +β4 −β5
Carrier Very large η3,1 = β1 +β2 +β3 +β4 +β5
Non-carrier Normal η1,2 = −β1 −2β2 +2β4
Non-carrier Large η2,2 = −β1 +β2 −β3 −β4 +β5
Non-carrier Very large η3,2 = −β1 +β2 +β3 −β4 −β5

Notice that, whatever the values of β1, . . . , β5, if we sum η1,1, . . . , η3,2, we always get zero.
Notice also that

• β1 is a carrier effect

• β2 is a large-tonsil effect

• β3 is a very-large-tonsil effect

• β4 and β5 are interaction effects. The coefficients of β4 are obtained by multiplying those of
β1 and β2. The coefficients of β5 are obtained by multiplying those of β1 and β3.

The particular structure which we have here reflects the fact that “Normal”, “Large”, “Very
large” are ordered categories.

Slightly adapting (2.1), we now set

pi,j =
eηi,j∑∑
eηi,j

.

To find a suitable prior distribution for each of the β parameters we need to think about log
odds, for example the log of the probability of being a carrier divided by the probability of being
a non-carrier. We will omit the details and use the following independent priors.

β1 ∼ N(−1.5, 2.5) β2 ∼ N(0, 1.6)
β3 ∼ N(0, 1.6) β4 ∼ N(0, 1.0)
β5 ∼ N(0, 1.0)

Figure 2.4 shows some suitable BUGS code.
Notice that we have arranged the ηs into a single vector for convenience. Notice also that some

extra quantities are calculated at the end. This is simply so that we can easily find the posterior
distributions of these quantities. Let Rnormal be the conditional probability of being a carrier
given normal-sized tonsils, and similarly Rlarge and Rvlarge for large and very large tonsils. Then
we calculate two log relative risks: log(Rlarge/Rnormal) and log(Rvlarge/Rnormal) to see how much
enlarged tonsils affects the probability of a child being a carrier.
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model

{

y[1:6]~dmulti(p[],1398)

for (k in 1:6)

{p[k]<-phi[k]/sum(phi[])

phi[k]<-exp(eta[k])

}

eta[1]<- beta[1]-2*beta[2] -2*beta[4]

eta[2]<- beta[1]+ beta[2]-beta[3]+ beta[4]-beta[5]

eta[3]<- beta[1]+ beta[2]+beta[3]+ beta[4]+beta[5]

eta[4]<- -beta[1]-2*beta[2] +2*beta[4]

eta[5]<- -beta[1]+ beta[2]-beta[3]- beta[4]+beta[5]

eta[6]<- -beta[1]+ beta[2]+beta[3]- beta[4]-beta[5]

beta[1]~dnorm(-1.5,0.4)

beta[2]~dnorm(0,0.625)

beta[3]~dnorm(0,0.625)

beta[4]~dnorm(0,1.0)

beta[5]~dnorm(0,1.0)

rnormal<-p[1]/(p[1]+p[4])

rlarge<-p[2]/(p[2]+p[5])

rvlarge<-p[3]/(p[3]+p[6])

lrrlarge<-log(rlarge/rnormal)

lrrvlarge<-log(rvlarge/rnormal)

}

Figure 2.4: BUGS code for tonsils example
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2.4 Practical 2

2.4.1 Introduction

In this practical we will start to use the R package rjags to do MCMC evaluation of posterior
distributions. We will do some examples involving generalised linear models.

The software BUGS (Bayesian Inference Using Gibbs Sampling) was developed to allow users
to specify models and priors, connect these with data and compute samples of unknowns from
the posterior distribution using a Gibbs sampler (Spiegelhalter et al, 1995). Later a menu-driven
version to run under MS Windows, called WinBUGS (Lunn et al, 2000) was developed. This
eventually incorporated new features not found in the original, or ‘Classic”, BUGS. There are now
also OpenBUGS, developed at the University of Helsinki, JAGS (Just Another Gibbs Sampler)
(Plummer, 2012) and various other implementations of the basic “BUGS” idea. In particular we
will be using rjags which is a R package which implements JAGS within R. All of these use
(apart from a few small differences) the same Model Specification Language and, in this part of the
module, it is this language, and model specification generally, which are of particular interest.

The WinBUGS manual is available from the MAS8303 Web Page. The details of how you
tell rjags to do things are different from WinBUGS but the model specification language and
many other features are the same.The JAGS and rjags manuals are available from Dr Farrow’s
MAS8391 Web page at

http://www.mas.ncl.ac.uk/~nmf16/teaching/mas8391/

Henceforth we will refer to this Web page as “MF’s Web Page”.

2.4.2 Loading rjags

Start R. You may well wish to change the working directory, for example to a MAS8303 folder.
This can be done via the File Menu.

Type:

library(rjags)

2.4.3 Poisson regression: Aircraft fatalities

This example has only two parameters so we do not really need MCMC but it will serve as a first
example.

The data in table 2.1 come from Phillips (1978). People sometimes commit “murder-suicide”
by deliberately crashing private aircraft. It was thought that newspaper coverage of such an event
might trigger other incidents. The data give the number of “multi-fatality crashes” in the week
following each of 17 known cases of murder-suicide, together with an index of newspaper coverage.
The idea is to investigate whether the number of crashes is related to the newspaper coverage.

We adopt the following model.

Yi | β0, β1 ∼ Po(µi)

ηi = log(µi) = β0 + β1xi

We give the two parameters independent priors as follows.

β0 ∼ N(1, 4)

β1 ∼ N(0, 0.0001)

1. Obtain the data file from MF’s Web Page. Save the file as aircraftdata.txt.

2. Create a file called aircraftbug.txt containing the model specification as follows. You can
use Notepad to do this.
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model

{

for (i in 1:17)

{y[i]~dpois(mu[i])

log(mu[i])<-beta0+beta1*x[i]

}

beta0~dnorm(1,0.25)

beta1~dnorm(0,10000)

}

3. Read the data into R and put them in a suitable format.

aircraft<-read.table("aircraftdata.txt",header=TRUE)

aircraftdata<-list(x=aircraft$x,y=aircraft$y)

4. Create a JAGS model object.

aircraftjags<-jags.model("aircraftbug.txt",data=aircraftdata,n.chains=2)

Note that there is an argument which is the number of parallel chains which we want to use.
Using parallel chains can be useful for checking convergence. Here we are using two chains.
We can also specify initial values if we so wish.

5. Run the sampler for a burn-in period (of 5000 iterations here).

update(aircraftjags,5000)

6. Run the sampler for 10000 more iterations, recording the samples.

aircraftsamples<-coda.samples(aircraftjags,c(’beta0’,’beta1’),10000)

7. At this stage we can check convergence of the chain by looking at a trace plot. Before we ask
for the plots, it is advisable to change one of the R graphics parameters. We then have to
click on the graphics window to move to the next plot.

par(ask=TRUE)

traceplot(aircraftsamples)

8. If we are satisfied that the chains had reached convergence (close enough) when we started
to record samples, we can now look at some summaries of the posterior distribution.

summary(aircraftsamples)

9. We can also find approximations to the marginal posterior densities of the parameters.

densplot(aircraftsamples)

We might want to do more sophisticated things such as change the way the density estimate
is calculated or make a contour plot of the joint posterior distribution of the two parameters.
To do these things we can extract the MCMC samples themselves and then do whatever we
like with them. For example

aircraftsamplesout<-as.matrix(aircraftsamples,iters=TRUE)

puts all of the recorded sampled values of β0 and β1 into the matrix aircraftsamplesout,
along with the iteration numbers.
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x y x y x y
376 8 96 8 5 3
347 5 85 6 5 2
322 8 82 4 0 4
104 4 63 2 0 3
103 6 44 7 0 2
98 4 40 4

Table 2.1: Index of newspaper coverage x and number of multi-fatality crashes y in weeks following
incidenst of murder-suicide.

2.4.4 Binomial regression

This is the example in section 2.2.2. Use a similar procedure to that for the Poisson regression
above. You will need to put the model specification into a file. You can also put the data into a
file which should look like this.

dose n effects

0.9 46 17

1.1 72 22

1.8 118 52

2.3 96 58

3.0 84 56

3.3 53 43

4.0 38 30

Alternatively you can simply define the variables directly in R, eg

dose<-c(0.9,1.1,1.8,2.3,3.0,3.3,4.0)

and then, eg

sideeffect<-list(dose=dose,n=n,effects=effects)

2.4.5 Loglinear models: Babies

This is the example in section 2.3.2. Use a similar procedure to that for the Poisson regression
above. The model specification is available from MF’s Web page. It is a good idea to put the data
into a file. The data file might look like this.

y1 y2 y3 y4 n age smoke

4012 24 315 50 4401 -1 1

459 6 40 9 514 -1 -1

1594 14 147 41 1796 1 -1

124 1 11 4 140 1 1

You could then use something like

babies<-read.table("babies.txt",header=TRUE)

y<-with(babies,cbind(y1,y2,y3,y4))

babies<-list(y=y,n=babies$n,age=babies$age,smoke=babies$smoke)

Which quantities do you think that you should monitor (ie. record samples)? We could use,
for example,

babysamples<-coda.samples(babyjags,c("beta0","betaa","betas","betaas"),10000)

and then, later,

traceplot(babysamples)

etc.Note that, in order for this coda.samples command to work, it was necessary to define
beta0[1], betaa[1], betas[1] and betaas[1] in the model specification even though we do
not really need them.
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2.4.6 Loglinear models: Tonsils

This is the example in section 2.3.4. Use a similar procedure to that for the Poisson regression
above. The model specification is available from MF’s Web page. You can easily specify the data
directly in R as follows.

tonsilsdata<-list(y=c(19,29,24,497,560,269))

Which quantities do you think that you should monitor?

2.5 Exercises

1. Observations are made on the numbers of caterpillars on commercially grown cabbages in J
plots. The number of observations in plot j is nij . Let the number of caterpillars on the ith

cabbage in plot j be Yij . Given the values of λ1, . . . , λJ , we have

Yij | λj ∼ Po(λj),

a Poisson distribution with mean λj , and Y11, . . . , YnJJ are conditionally independent.

Let ηj = log(λj). Given the values of µ and τ, we have

ηj | µ, τ ∼ N(µ, τ−1),

a normal distribution with mean µ and precision τ, and η1, . . . , ηJ are conditionally indepen-
dent.

We have independent prior distributions for µ and τ with µ ∼ N(m, v) and τ ∼ gamma(a, b).

We make observations Yij = yij and wish to use a Gibbs sampler to evaluate the posterior
distribution.

Find a function proportional to the density of the full conditional distribution of ηj .

2. A particular surgical operation performed on patients with a serious condition is hazardous
and a proportion of the patients die during surgery. Researchers wish to investigate the
relationship between the death rate and the age of the patient. We have the following model.
Let θx be the death rate for patients aged x years. That is, given θx, the probability of death
is θx. Let

ηx = log

(
θx

1− θx

)
.

We suppose that

ηx = a+ bx

for some unknown parameters a, b.

We develop a prior distribution as follows. Consider two ages, x = 50 and x = 70. Our
marginal prior distributions for η50 and η70 are η50 ∼ N(m50, v50) and η70 ∼ N(m70, v70).
The prior correlation of η50 and η70 is 0.8. We assess

Pr(θ50 < 0.05) = Pr(θ50 > 0.20) = Pr(θ70 < 0.1) = Pr(θ70 > 0.4) = 0.025.

(a) Find the values of m50, v50, m70, v70 and the covariance of η50, η70.

(b) Find the joint prior distribution of a, b.
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3. In an experiment on student learning, randomly selected students are assigned to groups
which are given different amounts of tuition. Suppose group i has ni students who are given
ti + 30 hours of tuition.

At the end of the experiment the students are given a test. Suppose that a student’s per-
centage mark is Z. Let X = ln(Z). Suppose that, for a student in group i, we assume
X ∼ N(α + βti, σ

2), where σ = 0.1. Instead of the actual percentage marks, all that is
recorded is whether each student passes or fails the test. A student passes if Z ≥ 40, that is
X ≥ ln 40.

Let yi be the number of students in group i who pass the test.

(a) Express this model as a generalised linear model.

(b) State the link function and error function.

(c) Find the linear predictor.

(d) Use BRugs to evaluate the posterior distributions of α and β. You may use independent
priors for α and β with

α∗ ∼ N(0.1, 0.01), α = α∗ + ln 40 and β ∼ N(0.0, 0.0004).

The data are as follows.

ti ni yi
-10 30 19

0 40 30
10 30 27

(e) What happens if we do not assume that σ = 0.1 but allow σ2 to be unknown?


