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1. Full conditional distribution

Certain components are manufactured in batches. Each batch contains n components. The
components in N batches are then tested and some are found to be defective. Let the number
of defective components in batch i be xi. We suppose that, given the value of πi, where
0 < πi < 1, the value of xi is an observation from a binomial distribution Xi ∼ Bin(n, πi)
and Xi and Xj are independent given πi and πj when i 6= j. Let ηi = loge{πi/(1− πi)}. We
suppose that, given the values of µ and τ, ηi is an observation from the normal N(µ, τ−1)
distribution and ηi and ηj are independent, when i 6= j, given the values of µ and τ. Finally we
have independent prior distributions for µ and τ with µ having a normal prior, µ ∼ N(m, v),
and τ having a gamma prior, τ ∼ Ga(a, b).

Find a function proportional to the density of the full conditional distribution (fcd) of ηi,
that is the distribution of ηi given xi and values for µ and τ.

Solution

The conditional prior density of ηi given µ and τ is proportional to

exp
{
−τ

2
(ηi − µ)2

}
since the distribution is N(µ, τ−1).

The relevant likelihood, that is the probability of observing Xi = xi given ηi, is proportional
to πxi

i (1− πi)n−xi since the distribution is Bin(n, πi). However ηi = log{πi/(1− πi)} so

πi =
eηi

1 + eηi

and the likelihood is proportional to

πxi
i (1− πi)n−xi =

(
eηi

1 + eηi

)xi
(

1− eηi

1 + eηi

)n−xi

=

(
eηi

1 + eηi

)xi
(

1

1 + eηi

)n−xi

=
exiηi

(1 + eηi)n
.

Therefore the fcd is proportional to

exp
{
−τ

2
(ηi − µ)2

} exiηi

(1 + eηi)n
.

(10 marks)
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2. Piston rings

Four compressors are located in the same building. Each has three “legs”. The compressors
are of the same design and are oriented the same way. The three legs of each are labelled
“North”, “Centre” and “South.” Over a certain period of time the number of failures of
piston rings in each leg of each compressor is counted. These numbers are your data.

The model is as follows. Let the number of failures in leg i of compressor j be yi,j (where
i = 1 for North, i = 2 for Centre and i = 3 for South). Given the value of a quantity λi,j > 0,
we assume that yi,j is an observation from a Poisson distribution Yi,j ∼ Po(λi,j), with Yi,j
independent of Yi′,j′ unless (i, j) = (i′, j′), given the values of λi,j and λi′,j′ .

The prior distribution is as follows. Let ηi,j = loge(λi,j). Then

ηi,j = µ+ αi + βj + γi,j

where, α1, . . . , α3, β1, . . . , β4, γ1,1, . . . , γ3,4 and µ are mutually independent and

µ ∼ N(3, 4),

αi ∼ N(0, 1), i = 1, . . . , 3,

βj ∼ N(0, 1), j = 1, . . . , 4,

γi,j ∼ N(0, 0.25), i = 1, . . . , 3, j = 1, . . . , 4.

• Use MCMC to take samples from the posterior distribution of the unknowns in the
model.

(5 marks)

• Display your results appropriately.

(4 marks)

• Explain your method and show your BUGS model specification and the commands
which you have used.

(4 marks)

• Show how you have checked convergence.

(3 marks)

• Give summaries of the posterior distributions of the model unknowns. In particular,
compare the failure rates in the twelve legs using the posterior distribution. What can
you conclude?

(4 marks)

Solution

The solution here is for data set 10.

The posterior distribution of the model unknowns was computed using MCMC by using
BRugs. The model specification is shown in Figure 1.

Convergence and mixing properties were checked using the following commands.

> modelCheck("pistonbug.txt")

> modelData("mypistondata.txt")

> modelCompile(2)

> modelGenInits()

> samplesSet(c("mu","alpha","beta","gamma","eta"))
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model piston

{for (i in 1:12)

{y[i]~dpois(lambda[i])

log(lambda[i])<-eta[i]

eta[i]<-mu+alpha[leg[i]]+beta[comp[i]]+gamma[leg[i],comp[i]]

}

mu~dnorm(3,0.25)

for (i in 1:3)

{alpha[i]~dnorm(0,1)

for (j in 1:4)

{gamma[i,j]~dnorm(0,4)

}

}

for (j in 1:4)

{beta[j]~dnorm(0,1)

}

}

Figure 1: Model specification for the piston-rings problem.

> modelUpdate(1000)

> samplesHistory("mu")

> samplesHistory("alpha")

> samplesHistory("beta")

> samplesHistory("gamma")

> samplesHistory("eta")

> modelUpdate(2000)

> samplesHistory("mu")

While convergence and mixing for the individual linear predictors ηi seemed satisfactory,
mixing was less good for the underlying random effects and, particularly, for the overall mean
µ. These quantities are less well identified than the individual linear predictors. Illustrative
history plots are shown in Figure 2. Because of the poor mixing, a long burn-in (5000
iterations) and a large number of samples (10000), with two parallel chains, were used.

The following commands were used.

> modelCheck("pistonbug.txt")

> modelData("mypistondata.txt")

> modelCompile(2)

> modelGenInits()

> modelUpdate(5000)

> samplesSet(c("mu","alpha","beta","gamma","eta"))

> modelUpdate(10000)

> samplesStats("mu")

> samplesStats("alpha")

> samplesStats("beta")

> samplesStats("gamma")

> samplesStats("eta")
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Figure 2: History plots for µ and η1,1 (Compressor 1, North leg), piston-rings problem.
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Compressor Leg Quantity Prior Posterior
Mean S.D. Mean S.D. 95% Interval

1 North η1,1 3 2.5 2.825 0.2311 2.3470 3.253
2 North η1,2 3 2.5 3.006 0.2123 2.5750 3.404
3 North η1,3 3 2.5 1.935 0.3365 1.2350 2.546
4 North η1,4 3 2.5 2.662 0.2456 2.1590 3.126
1 Centre η2,1 3 2.5 2.211 0.2994 1.5910 2.766
2 Centre η2,2 3 2.5 2.909 0.2216 2.4510 3.321
3 Centre η2,3 3 2.5 1.713 0.3659 0.9542 2.386
4 Centre η2,4 3 2.5 2.265 0.2950 1.6490 2.811
1 South η3,1 3 2.5 3.569 0.1630 3.2370 3.873
2 South η3,2 3 2.5 2.760 0.2346 2.2790 3.195
3 South η3,3 3 2.5 2.071 0.3185 1.4130 2.652
4 South η3,4 3 2.5 2.694 0.2417 2.1920 3.144

µ 3 2 2.572 0.7437 1.109 4.119
North α1 0 1 0.05074 0.5919 -1.1330 1.2150
Centre α2 0 1 -0.26280 0.5926 -1.4550 0.8765
South α3 0 1 0.19910 0.5996 -0.9876 1.3620

1 β1 0 1 0.27920 0.5305 -0.7905 1.2810
2 β2 0 1 0.30370 0.5472 -0.7843 1.3560
3 β3 0 1 -0.61220 0.5448 -1.7080 0.4295
4 β4 0 1 -0.02611 0.5430 -1.1190 0.9916
1 North γ1,1 0 0.5 -0.07681 0.3767 -0.8122 0.6588
2 North γ1,2 0 0.5 0.08032 0.3740 -0.6513 0.8217
3 North γ1,3 0 0.5 -0.07489 0.3983 -0.8601 0.7110
4 North γ1,4 0 0.5 0.06575 0.3786 -0.6652 0.8139
1 Centre γ2,1 0 0.5 -0.37720 0.3914 -1.1540 0.3776
2 Centre γ2,2 0 0.5 0.29620 0.3825 -0.4581 1.0410
3 Centre γ2,3 0 0.5 0.01669 0.4058 -0.7817 0.8094
4 Centre γ2,4 0 0.5 -0.01761 0.3924 -0.7906 0.7484
1 South γ3,1 0 0.5 0.51920 0.3677 -0.2074 1.2380
2 South γ3,2 0 0.5 -0.31430 0.3838 -1.0690 0.4253
3 South γ3,3 0 0.5 -0.08795 0.3962 -0.8656 0.6824
4 South γ3,4 0 0.5 -0.05094 0.3802 -0.8074 0.6915

Table 1: Prior and posterior summaries, piston-rings problem.

Table 1 shows a summary of the prior and posterior distributions. Figure 3 shows posterior
means and 95% equitailed posterior credible intervals for the log failure rates ηi,j . The dashed
line represents the posterior mean for µ. We can see that the rate for the South leg of
Compressor 1 seems to be unusually great. It seems that Compressor 3 may have a generally
lower failure rate.

Note that we can easily convert the 95% posterior intervals for the log failure rates ηi,j into
95% posterior intervals for the actual failure rates. These are shown in Table 2.

3. Fraud

Banks and credit card companies attempt to detect fraud by looking for unusual observations
in the withdrawal data for customers. This potentially involves quite complicated models.
The model in this question is a somewhat simplified version but the principal is the same.

You will each be supplied with data for five customers. For each of these customers you will
be given the total withdrawals from the customer’s account for each of twenty weeks. The
value for customer j in week i is yi,j .

For each customer in each week there is a small probability π that a fraud takes place. We
therefore use a mixture model with two components. The component indicator for customer
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Figure 3: Posterior means and 95% equitailed posterior credible intervals for the log failure rates
ηi,j , piston-rings problem. “1N” denotes “Compressor 1, North Leg” and so on.

Compressor Leg 95% Posterior
Interval

1 North 10.5 25.9
2 North 13.1 30.1
3 North 3.4 12.8
4 North 8.7 22.8
1 Centre 4.9 15.9
2 Centre 11.6 27.7
3 Centre 2.6 10.9
4 Centre 5.2 16.6
1 South 25.5 48.1
2 South 9.8 24.4
3 South 4.1 14.2
4 South 9.0 23.2

Table 2: Equitailed 95% posterior intervals for failure rates, piston-rings problem.
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j in week i is ci,j .

If ci,j = 1 then a fraud against customer j takes place in week i.

If ci,j = 2 then no fraud takes place against customer j in week i.

We assume that, given the model parameters, ci,j is independent of ci′,j′ for (i, j) 6= (i′, j′).
Given π, we have Pr(ci,j = 1) = π. Our prior distribution for π is Beta(1, 99).

If ci,j = 1 then yi,j ∼ Ga(2, 0.0002). If ci,j = 2 then, given α, βj , we have yi,j ∼ Ga(α, βj).
We assume that yi,j is independent of yi′,j′ for (i, j) 6= (i′, j′), given α, βj and βj′ . Our prior
distribution for α is Ga(2, 0.5).

Let βj = α/λj and λj = exp(µj). Given µ0, τ, we have µj ∼ N(µ0, τ
−1) with µj independent

of µj′ for j 6= j′. Our prior distribution for µ0 is µ0 ∼ N(5.3, 1.4). Our prior distribution for
τ is Ga(3, 4).

Unless otherwise stated, the prior distributions are independent.

• Use MCMC to find the posterior means for pi,j = 2− ci,j and hence find the posterior
probabilities of fraud for each customer in each week and identify any cases where fraud
is likely to have occurred.

(5 marks)

• Display your results appropriately.

(4 marks)

• Explain your method and show your BUGS model specification and the commands
which you have used.

(4 marks)

• Show how you have checked convergence.

(3 marks)

• Give summaries of the posterior distributions of the model parameters.

(4 marks)

Solution

The solution below refers to data set 30.

The model (as described above) was specified in the BUGS model specification given in
Figure 4. Note that the variable prob[i,j] is included as an indicator of fraud in week j for
customer i. Its posterior expectation is the posterior probability of fraud in that case.

The posterior distribution was evaluated using a Gibbs sampler, implemented using the
BRugs software. In order to check the convergence and mixing of the MCMC sampler, an
initial run of 5000 iterations was made with two parallel chains started with different initial
values. The two initial value files were as follows.

list(mu=c(5,5,5,5,5),pi=0.01)

list(mu=c(4,4,4,4,4),pi=0.05)

Note: We can sometimes choose initial values for convergence checking by trying an initial
run of the sampler and then setting the starting values outside the main range of the sampled
values in each direction.

The commands used were as follows.
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model fraud

{for (j in 1:5)

{for (i in 1:20)

{c[i,j]~dcat(q[])

prob[i,j]<-2-c[i,j]

y[i,j]~dgamma(alpha[c[i,j]],beta[c[i,j],j])

}

beta[2,j]<-alpha[2]/lambda[j]

beta[1,j]<-0.0002

lambda[j]<-exp(mu[j])

mu[j]~dnorm(mumean,tau)

}

mumean~dnorm(5.3,p.mu)

p.mu<-1/1.4

tau~dgamma(3,4)

alpha[1]<-2

alpha[2]~dgamma(2,0.5)

pi~dbeta(1,99)

q[1]<-pi

q[2]<-1-pi

}

Figure 4: BUGS model specification, fraud problem.

> modelCheck("fraudbug.txt")

> modelData("myfrauddata.txt")

> modelCompile(2)

> modelInits("fraudinits1.txt")

> modelInits("fraudinits2.txt")

> modelGenInits()

> samplesSet(c("pi","alpha","tau","mumean"))

> modelUpdate(5000)

> samplesHistory("pi")

> samplesHistory("alpha")

> samplesHistory("tau")

> samplesHistory("mumean")

Note that, even though some unknowns were initialised, it was necessary to generate initial
values for others.

Figure 5 shows plots of the sampled values of π, τ, µ0 and α against interation number. The
graphs show little indication of problems, although it seems that in the cases of π and τ the
posterior distributions may have long right-hand tails. It seems that we can safely assume
that convergence has been achived after 5000 iterations and that a further 10000 iterations
should be sufficient for inference purposes.

To evaluate the posterior distribution, a further run of the sampler was used, with a burn-
in of 50000 iterations and values collected over 10000 iterations, with two parallel chains. The
commands used were as follows.

> modelCheck("fraudbug.txt")

> modelData("myfrauddata.txt")

> modelCompile(2)
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Figure 5: Convergence check, fraud problem.
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Parameter Mean Std.Dev. MC error 2.5% point Median 97.5% point
π 0.01602 0.009263 0.000089 0.003341 0.01431 0.03852
α 3.941 0.5556 0.004477 2.913 3.921 5.11
τ 0.5631 0.2481 0.001971 0.1846 0.5276 1.143
µ0 5.521 0.5656 0.004312 4.374 5.528 6.622
λ1 379.50 43.470 0.66700 302.00 376.80 473.30
λ2 41.66 4.812 0.07125 33.19 41.37 52.04
λ3 802.70 101.900 1.68300 631.10 794.10 1029.00
λ4 1684.00 200.900 3.26300 1334.00 1670.00 2119.00
λ5 65.81 7.754 0.11400 52.46 65.17 82.59

Table 3: Summaries of posterior distributions of model parameters

> modelGenInits()

> modelUpdate(5000)

> samplesSet(c("pi","alpha","tau","mumean","lambda","prob"))

> modelUpdate(10000)

Summary values of the posterior distributions of the main model parameters and the mean
weekly withdrawals for the five customers are shown in Table 3. It is clearly seen that there is
wide variation between the mean withdrawal amounts for the five customers.

Figure 6 shows marginal prior and posterior densities for the four main model parameters. It
can be seen that the data have had little effect on the distributions in some cases, particularly of
τ. The posterior distribution is similar to the prior distribution. On the other hand there is a clear
difference between the prior and posterior densities in the cases of µ0 and α.

Table 4 shows the posterior probability of fraud for each customer in each week. The results
for Customer 3 in Week 2 and Customer 5 in Week 8 show that these were almost certainly cases
of fraud (or, at least, very unusual behaviour). Customer 4 in Week 12 gets a probability of almost
13% which merits investigation. There is only one other probability, Customer 4 in Week 5, which
is greater than 1%.
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Figure 6: Prior (dashed) and posterior (solid) marginal densities for the four main model param-
eters
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Week Customer
1 2 3 4 5

1 0.00000 0.00000 0.00020 0.00090 0.00005
2 0.00000 0.00000 0.97750 0.00410 0.00000
3 0.00020 0.00000 0.00000 0.00110 0.00000
4 0.00000 0.00000 0.00010 0.00445 0.00000
5 0.00000 0.00000 0.00015 0.01010 0.00000
6 0.00035 0.00000 0.00085 0.00290 0.00000
7 0.00015 0.00000 0.00415 0.00620 0.00000
8 0.00090 0.00000 0.00060 0.00110 1.00000
9 0.00070 0.00000 0.00000 0.00405 0.00000

10 0.00000 0.00000 0.00020 0.00140 0.00045
11 0.00070 0.00000 0.00025 0.00160 0.00000
12 0.00120 0.00000 0.04075 0.12830 0.00000
13 0.00000 0.00000 0.00075 0.00125 0.00000
14 0.00020 0.00000 0.00030 0.00120 0.00000
15 0.00000 0.00000 0.00485 0.00185 0.00000
16 0.00000 0.00000 0.00045 0.00455 0.00000
17 0.00010 0.00000 0.00035 0.00075 0.00005
18 0.00010 0.00000 0.00130 0.00135 0.00000
19 0.00045 0.00000 0.00045 0.00145 0.00000
20 0.00000 0.00000 0.00170 0.00260 0.00000

Table 4: Posterior probabilities of fraud
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